
Proceedings of the Sixth Workshop on Innovative Use of NLP for Building Educational Applications, pages 170–179,
Portland, Oregon, 24 June 2011. c©2011 Association for Computational Linguistics

Bilingual Random Walk Models for Automated Grammar Correction of
ESL Author-Produced Text

Randy West and Y. Albert Park
Department of Computer Science & Engineering

University of California, San Diego
La Jolla, CA 92093-0533

{rdwest,yapark}@cs.ucsd.edu

Roger Levy
Department of Linguistics

University of California, San Diego
La Jolla, CA 92093-0533
rlevy@ucsd.edu

Abstract

We present a novel noisy channel model for
correcting text produced by English as a sec-
ond language (ESL) authors. We model the
English word choices made by ESL authors as
a random walk across an undirected bipartite
dictionary graph composed of edges between
English words and associated words in an au-
thor’s native language. We present two such
models, using cascades of weighted finite-
state transducers (wFSTs) to model language
model priors, random walk-induced noise, and
observed sentences, and expectation maxi-
mization (EM) to learn model parameters af-
ter Park and Levy (2011). We show that such
models can make intelligent word substitu-
tions to improve grammaticality in an unsu-
pervised setting.

1 Introduction

How do language learners make word choices as
they compose text in a language in which they are
not fluent? Anyone who has attempted to learn a for-
eign language can attest to spending a great deal of
time leafing through the pages of a bilingual dictio-
nary. However, dictionaries, especially those with-
out a wealth of example sentences or accompany-
ing word sense information, can often lead even the
most scrupulous of language learners in the wrong
direction. Consider an example: the English noun
“head” has several senses, e.g. the physical head and
the head of an organization. However, the Japanese
atamacan only mean the physical head or mind, and
likewiseshuchou, meaning “chief,” can only map to

the second sense of head. A native English speaker
and Japanese learner faced with the choice of these
two words and no additional explanation of which
Japanese word corresponds to which sense is liable
to make a mistake on the flip of a coin.

One could of course conceive of more subtle ex-
amples where the semantics of a set of choices are
not so blatantly orthogonal. “Complete” and “en-
tire” are synonyms, but they are not necessarily in-
terchangeable. “Complete stranger” is a common
two-word phrase, but “entire stranger” sounds com-
pletely strange, if not entirely ungrammatical, to the
native English speaker, who will correct “entire”
to “complete” in a surprisingly automatic fashion.
Thus, correct word choice in non-native language
production is essential not only to the preservation
of intended meaning, but also to fluent expression of
the correct meaning.

The development of software to correct ESL text
is valuable for both learning and communication.
A language learner provided instant grammatical-
ity feedback during self-study is less likely to fall
into patterns of misuse, and the comprehension diffi-
culties one may encounter when corresponding with
non-native speakers would be ameliorated by an au-
tomated system to improve text fluency. Addition-
ally, since machine-translated text is often ungram-
matical, automated grammar correction algorithms
can be deployed as part of a machine translation sys-
tem to improve the quality of output.

We propose that word choice production errors
on the part of the language learner can be mod-
eled as follows. Given an observed word and an
undirected bipartite graph with nodes representing
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words in one of two languages, i.e. English and the
sentence author’s native tongue, and edges between
words in each language and their dictionary trans-
lation in the other (see Figure 1 for an example),
there exists some functionf 7→ [0, 1] that defines
the parameters of a random walk along graph edges,
conditioned on the source word. By composing this
graph with a language model prior such as ann-
gram model or probabilistic context-free grammar,
we can “correct” an observed sentence by inferring
the most likely unobserved sentence from which it
originated.

More concretely, given that we knowf , we can
computeargmax

w
′ p(w′|w, f, θ), wherew is the

observed sentence,θ is the language model, andw′

is the “corrected,” unobserved sentence. Under this
view, somew′ drawn from the distributionθ is sub-
jected to some noise processf , which perturbs the
sentence author’s intended meaning and outputsw.
We perform this computation in the standard way
from the statistical machine translation (SMT) liter-
ature (Brown et al., 1993), namely by using Bayes’
theorem to write

p(w′|w, f, θ) =
p(w′|θ)p(w|w′, f, θ)

p(w|θ)

Since the denominator of the RHS is independent of
w

′, we can rewrite ourargmax as

argmax
w

′

p(w′|θ)p(w|w′, f, θ)

We have now decomposed our original equation into
two manageable parts, a prior belief about the gram-
maticality of an unobserved sentencew

′, which we
can compute using a language modelθ learned sepa-
rately using standard supervised techniques (in par-
ticular, n-gram estimation), and the probability of
the observed sentencew given w

′, f , andθ. To-
gether, these constitute a noisy channel model from
information theory (Shannon, 1948). All that re-
mains is to learn an appropriatef , for which we will
employ unsupervised methods, namely expectation
maximization.

The rest of this paper is organized as follows. In
Section 2, we will discuss related work. In Section
3, we will present the implementation, methodology
and results of two experiments with differentf . In
Section 4, we will discuss our experimental results,
and we will conclude in Section 5.

2 Related Work

The literature on automated grammar correction
is mostly focused on rule-based methods and er-
ror identification rather than correction. However,
there has been a recent outgrowth in the applica-
tion of machine translation (MT) techniques to ad-
dress the problem of single-language grammar cor-
rection. Park and Levy (2011) propose a noisy chan-
nel model for learning to correct various types of er-
rors, including article and preposition errors, word-
form errors, and spelling mistakes, to which this pa-
per is an extension. As the present work builds on
Park and Levy’s basic model, we will reserve a more
detailed discussion of their work for Section 3.

Brockett et al. (2006) use phrasal SMT techniques
to identify and correct mass noun errors of ESL stu-
dents with some success, but they correct no other
production error classes to our knowledge.

Lee and Seneff (2006) learn a method to aid ESL
students in language acquisition by reducing sen-
tences to their canonical form, i.e. a lemmatized
form devoid of articles, prepositions, and auxil-
iaries, and then building an over-specified lattice by
reinserting all word inflections and removed word
classes. They then score this lattice using a trigram
model and PCFG. While this method has many ad-
vantages, it does not take into account the full con-
text of the original sentence.

Kok and Brockett (2010) use random walks over
bi- and multilingual graphs generated by aligning
English sentences with translations in 10 other Eu-
ropean languages to learn paraphrases, which they
then evaluate in the context of the original sentence.
While their approach shares many high-level simi-
larities with ours, both their task, paraphrasing cor-
rect sentences, and the details of their methodology
are divergent from the present work.

Désilets and Hermet (2009) employ round-trip
machine translation from L1 to L2 and back again
to correct second language learner text by keep-
ing track of the word alignments between transla-
tions. They operate on a very similar hypothesis
to that of this work, namely that language learners
make overly-literal translations when the produce
text in their second language. However, they go
about correcting these errors in a very different way
than the present work, which is novel to the best of
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Figure 1: Example English-Korean dictionary graph for a subset of the edges out of the Englishhead, leader, and
chief.

head

머리수령지휘자 우두머리장관 주요한지배자

chiefleader

our knowledge, and their technique of using error-
annotated sentences for evaluation makes a compar-
ison difficult.

3 Model Implementation and Experiments

We present the results of two experiments with dif-
ferent random walk parametrizations. We begin by
describing our dataset, then proceed to an overview
of our model and experimental procedures, and fi-
nally detail the experiments themselves.

3.1 Dataset

We use the dataset of Park and Levy (2011), a col-
lection of approximately 25,000 essays comprised of
478,350 sentences scraped from web postings made
by Korean ESL students studying for the Test of En-
glish as a Foreign Language (TOEFL). Of these, we
randomly select 10,000 sentences for training, 504
as a development set, and 1017 held out for final
model evaluation.

Our English-Korean dictionary is scraped from
http://endic2009.naver.com, a widely-
used and trusted online dictionary source in South
Korea. We are unfortunately unaware of any freely
available, downloadable English-Korean dictionary
databases.

3.2 Model and Experimental Procedures

3.2.1 Overview

The bulk of our experimental methodology and
machinery is borrowed from Park and Levy (2011),
so we will summarize that portion of it only briefly
here. At a high level, there are three major compo-
nents to the model of a sentence: a language prior,
a noise model, and an observed sentence. Each
of these is implemented as a wFST and composed

together into a single transducer whose accepting
paths represent all possibilities of transducing from
an (unobserved) input sentence to the (observed)
output sentence, with the path weight being associ-
ated probability. See Figure 2 for an example.

3.2.2 Language Model

For our language model, we use a Kneser-Ney
smoothed trigram model learned from a version
of the British National Corpus modified to use
Americanized spellings (Chen and Goodman, 1996;
Burnard, 1995). The implementation of ann-gram
model as a wFST requires that each state represent a
context, and so one must necessarily instantiate arcs
for all words in the alphabet from each state. In order
to reduce model size and minimize memory usage, it
is standard practice to remove relatively uninforma-
tive higher-ordern-grams from the model, but under
the wFST regime one cannot, for example, remove
some trigrams from a bigram context without re-
moving all of them. Instead, we retain only the 1,000
most informative bigramcontexts, as measured by
the Kullback-Leibler divergence between each bi-
gram context and its unigram counterpart. This is
in contrast to standard cutoff models, which remove
n-grams occurring less than some cutoff number of
times in the corpus.

3.2.3 Noise Models

The structure of the noise wFST differs for each
noise model; for our model of word-choice error, we
can use a single initial/final state with arcs labeled
with unobserved words as input, observed words as
output, and a weight defined by the functionf that
governs the parameters of a random walk across our
dictionary graph (again, see Figure 2 for an exam-
ple). We will reserve the definition off , which is
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Figure 2: Example wFSTs for the sentence “head chief”.
From top to bottom, the pictured transducers are the ob-
served sentences, a noise modeln with parameterλ, a
unigram language modell representing the normalized
frequency of each word, and the fully composed model,
l ◦ n ◦ s.

0 1
head:head/1

2
chief:chief/1

Observed Sentence

0

leader:chief/(λ/2)

leader:head/(λ/2)

leader:leader/(1-λ)

chief:leader/(λ/2)

chief:head/(λ/2)

chief:chief/λ

head:chief/(λ/2)

head:leader/(λ/2)

head:head/(1-λ)

Noise Model

0

chief:chief/(1/5)

leader:leader/(3/10)

head:head/(1/2)

Language Model

0 1

head:head/((1-λ)/2)

leader:head/(3λ/20)

chief:head/(λ/10)

2

head:chief/(λ/4)

leader:chief/(3λ/20)

chief:chief/((1-λ)/5)

Composed Model

different for each experiment, for Section 3.3.
We have thus far proceeded by describing the con-

struction of an ideal noise model that completely
implements the dictionary graph described previ-
ously. However, due to the size of the dictionary
graph, such a model would be computationally pro-
hibitive1. Moreover, we must handle the non-trivial
peculiars of arbitrary lookups in a roughly lem-
matized dictionary and preservation of word forms
through random walks, which we discuss now.

1The maximum degree of the dictionary graph is 515, mean-
ing that the upper bound on the number of paths in a random
walk of length 2 is5152 = 265, 225!

Among its various capabilities, the CELEX database
(Baayen et al., 1995) provides interfaces for map-
ping arbitrary English words to their lemmas, query-
ing for lemma syntactic (sub)classes, and discover-
ing the morphological inflectional features of arbi-
trary words. We use these capabilities in conjunction
with unigram frequencies from our language model
and a standard stop word filter to build abridged sets
of random walk candidates as in Algorithm 1.

Algorithm 1 Build an abridged set of random walk
candidatesC for an observed wordw s.t. each
ci ∈ C has syntactic and morphological characteris-
tics similar tow and is in the topm such candidates
as sorted by word frequency.

Let G = (V,E) be the undirected dictionary
graph,m the max candidates per word,B the set
of stop words,I the set of inflectional features of
w, andC the set of random walk candidates for
w, initially {}
if w ∈ B then

return {}
end if
for lemmasl of w do

Let S be the set of syntactic classes ofl

for l′ generated from a random walk of length
2 in G from l do

if S ∩ {syntactic classes ofl′} 6= {} then
for wordsw′ related tol′ do

if I ∩ {inflectional features ofw′} 6=
{} ∧w′ 6∈ B then

C ← C ∪ {w′}
end if

end for
end if

end for
end for
if |C| > m then

C ← topm members ofC by word frequency
end if
return C

3.2.4 Sentence Models

Sentences are simply identity transducers, i.e.
wFSTs withn + 1 states for a sentence of length
n and a single arc between each state0 ≤ i < n and
statei+1 labeled with input and output tokeni from
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the sentence and weight 1.

3.2.5 Training and Decoding

For training, we hold language model parameters
constant and use expectation maximization (Demp-
ster et al., 1977) to learn noise model parameters as
follows. We replace language model input symbols
and sentence model output symbols with the empty
symbolǫ and use the V-expectation semiring of Eis-
ner (2002) to annotate noise model arcs with ini-
tial parameter values. This is our M-step. Then,
we compose the language, noise, and sentence mod-
els, which produces a transducer with onlyǫ-labeled
arcs, and useǫ-removal to move expectation infor-
mation into a single state from which we can eas-
ily read off expected noise model parameter counts
thanks to the V-expectation semiring’s bookkeeping
(Eisner, 2002; Mohri, 2001). We repeat this pro-
cess over a batch of training sentences and add the
results together to yield a final vector of expected
counts. This is our E-step. Finally, we normalize the
expected parameter counts to recompute our param-
eters and rebuild the noise model in a repetition of
the M-step. This process goes back and forth from
E- to M-step until the parameters converge within
some threshold.

The decoding or inference process is performed
in a similar fashion, the main difference being that
we use the negative log Viterbi semiring for com-
puting shortest paths instead of the V-expectation
semiring. We first build a new noise model for each
sentence using the parameter values learned during
training. Then, the language, noise, and sentence
models (sansǫ substitutions) are composed together,
and the shortest path is computed.

3.2.6 wFST Implementation

All wFST manipulation is performed using Open-
FST (Allauzen et al., 2007), an open source
weighted finite-state transducer library written in
C++. Additionally, we use the V-expectation semir-
ing code of Dreyer et al. (2008) for training.

3.2.7 Evaluation

The most probable unobserved sentencew
′ from

which the observed sentencew was generated under
our model,argmax

w
′ p(w′|θ)p(w|w′, f, θ), can be

read off from the input of the transducer produced

during the decoding process. In order to evaluate
its quality versus the observed ESL sentence, we
use theMETEOR2 andBLEU evaluation metrics for
machine translation (Lavie and Agarwal, 2007; Pap-
ineni et al., 2002). This evaluation is performed us-
ing a set of human-corrected sentences gathered via
Amazon Mechanical Turk, an online service where
workers are paid to perform a short task, and further
filtered for correctness by an undergraduate research
assistant. 8 workers were assigned to correct each
sentence from the development and evaluation sets
described in Section 3.1, and so after filtering we
had 8 or fewer unique corrected versions per sen-
tence available for evaluation. We note that the use
of METEOR andBLEU is justified inasmuch as the
process of grammar correction is translation from
an ungrammatical “language” to a grammatical one
(Park and Levy, 2011). However, it is far from per-
fect, as we shall see shortly.

While human evaluation is far too costly to at-
tempt at every step during development, it is very
worthwhile to examine our corrections through a hu-
man eye for final evaluation, especially given the
somewhat tenuous suitability ofMETEOR andBLEU
for our evaluation task. In order to facilitate this, we
designed a simple task, again using Amazon Me-
chanical Turk, where native English speakers are
presented with side-by-side ESL and corrected sen-
tences and asked to choose which is more correct.
Workers are instructed to “judge whether the cor-
rected sentence improves the grammaticality and/or
fluency of the ESL sentence without changing the
ESL sentence’s basic meaning.” They are then pre-
sented with two questions per sentence pair:

1. Question: “Between the two sentences listed
above, which is more correct?”
Answer choices:“ESL sentence is more cor-
rect,” “Corrected sentence is more correct,”
“Both are equally correct,” and, “The sentences
are identical.”

2Although theMETEOR “synonymy” module may initially
seem appropriate to our evaluation task, we find that it does
little to improve or clarify evaluation results. For that reason,
and moreover since we do not wish for differing forms of the
same lemma to be given equal weight in a grammar correction
task, we instead use the “exact” module for all evaluation inthis
paper.
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2. Question:“Is the meaning of the corrected sen-
tence significantly different from that of the
ESL sentence?”
Answer choices:“Yes, the two sentences do not
mean the same thing,” and, “No, the two sen-
tences have roughly the same meaning.”

Each task is 10 sentences long, 3 of which are iden-
tical filler sentences. When a worker mislabels more
than one sentence as identical in any single task, the
results for that task are thrown out and resubmitted
for another worker to complete. We additionally re-
quire that each sentence pair be judged by 5 unique,
U.S.-based workers.

3.3 Experiments

3.3.1 Experiment 1

Motivation and Noise Model For our first exper-
iment, we assume that the probability of arriving at
some wordw′ 6= w after a random walk of length
2 from an observed wordw is uniform across allw.
This is perhaps not the most plausible model, but it
serves as a baseline by which we can evaluate more
complex models.

More concretely, we use a single parameterλ

modeling the probability of walking two steps along
the dictionary graph from an observed English word
w to its Korean definition(s), and then back to some
other English wordw′ 6= w. Since we treat un-
observed words as transducer input and observed
words as output,λ is normalized by|{w|w 6= w′}|,
i.e. the number of edges with different input and out-
put per input word, andp(w|w) = 1 − λ such that∑

w
p(w|w′) = 1.

Initialization and Other Settings We train two
variations on the same model, settingm from Al-
gorithm 1, i.e. the maximum number of allowed
random walk candidates per word, to 5 and 10. We
initialize λ to 0.01 for each.

Results We find that both variations converge af-
ter roughly 10 iterations3. The parameters learned
are slightly lower than the initialization value (λ =

3Running on a Linux server with two quad-core Intel Xeon
processors and 72GB of memory, training for all models in this
paper takes around 4 hours per model. Note that decoding is a
much quicker process, requiring less than one second per sen-
tence.

0.01), 0.007246 for the 5 candidate variation and
0.009528 for the 10 candidate variation. We inter-
pret the parameter value disparity between the two
model variations as follows. The larger the num-
ber of random walk candidates available for each
observed word, the more likely that at least one of
the candidates has a high probability in the sentence
context, so it makes sense that the 10 candidate vari-
ation would yield a higher value forλ. Moreover,
recalling thatλ is normalized by the number of ob-
served words|{w|w 6= w′}| reachable from each un-
observed candidate wordw′, it is reasonable that a
higher value ofλ would need to be learned in order
to distribute enough probability mass to candidates
that are highly probable in the sentence context.

The METEOR andBLEU scores for this Experi-
ment are summarized in Table 1, and the final pa-
rameter values after 10 iterations are listed in Table
2. We discuss these in greater detail in Section 4.

Table 1:METEOR andBLEU scores for all experiments.

METEOR BLEU
ESL baseline 0.820802 0.715625
Exp. 1, 5 candidates 0.816055 0.708871
Exp. 1, 10 candidates 0.815703 0.708284
Exp. 2, 5 candidates 0.815162 0.707549
Exp. 2, 10 candidates 0.814533 0.706587

Table 2: Final parameter values after 10 iterations for Ex-
periment 1 with 5 and 10 word random walk candidate
limits.

Max 5 Candidates Max 10 Candidates
λ 0.007246 0.009528

3.3.2 Experiment 2

Motivation and Noise Model For our second ex-
periment, we hypothesize that there is an inverse re-
lationship between unobserved word frequency and
random walk path probability. We motivate this by
observing that when a language learner produces a
common word, it is likely that she either meant to
use that word or used it in place of a rarer word that
she did not know. Likewise, when she uses a rare
word, it is likely that she chose it above any of the
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common words that she knows. If the word that she
chose was erroneous, then, it is most likely that she
did not mean to use a common word but could have
meant to use a different rare word with a subtle se-
mantic difference. Hence, we should always prefer
to replace observed words, regardless of their fre-
quency, with rare words unless the language model
overwhelmingly prefers a common word.

In order to model this hypothesis, we introduce
a second parameterα < 0 to which power the
unigram frequency of each unobserved wordw′,
freq(w′), is raised. The resulting full model is

p(w|w′)w 6=w′ = freq(w′)αλ

|{w|w 6=w′}| and p(w|w) = 1 −

freq(w)αλ. We approximate the full model to sim-
ple coin flips by bucketing the unique word frequen-
cies from the language model and initializing each
bucket using its average frequency and some appro-
priate initial values ofα and λ, leaving us with a
number of parameters equal to the number of fre-
quency buckets.

Initialization and Other Settings We train two
variations on the same model, settingm from Al-
gorithm 1 to 5 and 10. We initializeλ to 0.01 andα

to−0.1 for each and use 10 frequency buckets.

Results As in Experiment 1, we find that both
model variations converge after roughly 10 itera-
tions. The random walk parameters learned for
both variations in the highest frequency bucket,
freq(w′)αλ ≈ 0.004803 and 0.004845 for 5 and
10 candidates, respectively, seem to validate our
hypothesis that we should prefer rare unobserved
words. However, the parameters learned for the pro-
ceeding buckets do not indicate the smooth positive
slope that we might have hoped for, which we dis-
cuss further in Section 4. The 10 candidate variation
learns consistently higher parameter values than the
5 candidate variation, and we interpret this disparity
in the same way as in Experiment 1.

The METEOR andBLEU scores for this Experi-
ment are summarized in Table 1, and the final pa-
rameter values after 10 iterations are listed in Table
3. We discuss these in greater detail in Section 4.

4 Discussion

At first glance, the experimental results are less than
satisfactory. However,METEOR andBLEU do not

Table 3: Final parameter values after 10 iterations for Ex-
periment 2 with 5 and 10 word random walk candidate
limits.

Word Frequency Max 5 Max 10
(high to low) Candidates Candidates

Bucket 1 0.004803 0.004845
Bucket 2 0.031505 0.052706
Bucket 3 0.019211 0.036479
Bucket 4 0.006871 0.013130
Bucket 5 0.002603 0.005024
Bucket 6 0.000032 0.000599
Bucket 7 0.001908 0.003336
Bucket 8 0.000609 0.002771
Bucket 9 0.001256 0.002014
Bucket 10 0.006085 0.006828

tell the whole story. At a high level, these metrics
work by computing the level of agreement, e.g. un-
igram and bigram precision, between the sentence
being evaluated and a pool of “correct” sentences
(Lavie and Agarwal, 2007; Papineni et al., 2002).
When the correct sentences agree strongly with each
other, the evaluated sentence is heavily penalized
for any departures from the correct sentence pool.
This sort of penalization can occur even when the
model-corrected sentence is a perfectly valid correc-
tion that just had the misfortune of choosing a dif-
ferent replacement word than the majority of the hu-
man workers. For example, one ESL sentence in
our evaluation set reads,progress of medical science
helps human live longer.All four of our models cor-
rect this toprogress of medical science helps peo-
ple live longer, but none of the workers correct to
“people,” instead opting for “humans.” This issue is
exacerbated by the fact that Mechanical Turk work-
ers were instructed to change each ESL sentence as
little as possible, which helps their consistency but
hurts these particular models’ evaluation scores.

With the exception of some mostly harmless but
ultimately useless exchanges, e.g. changing “reduce
mistakes” to “reduce errors,” the models actually do
fairly well when they correct ungrammatical words
and phrases. As we alluded to in Section 1, all four
model variations correct the sentenceto begin with,
i’d rather not room with someone who is a entire
stranger to mefrom our development set toto be-
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gin with, i’d rather not room with someone who is
a complete stranger to me. But only 2 out of 5 hu-
man workers make this correction, 2 retain “entire,”
and 1 removes it altogether. As another example, all
model variations correcthowever, depending merely
on luck is very dangerousfrom our evaluation set to
however, depending solely on luck is very danger-
ous. However, only 1 worker corrects “merely” to
“solely,” with the others either preferring to retain
“merely” or leaving it out entirely.

None of this is to say that the models suffer only
from an unfortunate difference in correction bias rel-
ative to the workers, or even that the models make
good corrections a majority of the time. In fact, they
make a range of false-positive corrections as well4.
These seem to fall into three major categories: slight
preferences for similar words that don’t fit in the
overall context of the sentence or change its mean-
ing in an undesired way, e.g. changing “roommate”
to “lodger” in you and your roommate must dev-
ide [sic] the housework, strong preferences for very
common words in the local context that render the
corrected sentence ungrammatical, e.g. changing
“compose” to “take” infirst, during childhood years,
we compose our personality, and misinterpretations
of ambiguous parts of speech that cause nouns to
be replaced with verbs, etc., e.g. changing “circum-
stance” to “go” in. . . that help you look abound your
circumstance and find out . . ..

Many of these issues can be blamed at least par-
tially on the myopia of the language model, which,
for example, vastly prefers “go and find” to “cir-
cumstance and find.” However, they can also be
attributed to the motivational intuition for Experi-
ment 2, which states that we should avoid replacing
observed words with common alternatives. While
Table 3 does demonstrate that the models in Ex-
periment 2 learn this preference to a degree for the
highest frequency bucket, the proceeding buckets do
not exhibit a smooth upwards slope analogous to the
function being approximated. Indeed, the words in
bucket 2 are preferred an order of magnitude more

4Although Type I errors are of course undesirable, Gamon
et al. (2009) suggest that learners are able to effectively distin-
guish between good and bad corrections when presented with
possible error locations and scored alternatives. Such an inter-
active system is beyond the scope of this paper but nonetheless
feasible without significant model modification.

than those in bucket 1. This can be traced to the
truncation policy of Algorithm 1, which selects only
the highest frequency words from an over-sized set
of random walk candidates. While it is unclear how
to intelligently select a good candidate set of man-
ageable size, a policy that butts heads with our intu-
ition about which words we should be correcting is
clearly not the right one.

The differences between the models themselves
are somewhat more difficult to interpret. The 5 and
10 candidate variations of Experiment 1 and those
of Experiment 2 correct 103, 108, 115, and 130 sen-
tences out of 1017, respectively, and at least one
model differs from the others on 123 of those sen-
tences (they all agree on 42 sentences). These dis-
agreements are of all types: sometimes only a single
model corrects or vice versa, sometimes two models
are pitted against the other two, and occasionally all
four will choose a different word, but none of these
inconsistencies seem to follow any sort of pattern,
e.g. the two five candidate models agreeing more
often than the other two or the like.

Interestingly, however, the models tend to be in
agreement on the sentences that they correct the
most effectively. We explore this more concretely in
Table 4, in which we manually judge the quality of
sentence corrections versus the agreement between
models. Specifically, we judge a set of sentence
corrections asGood if all of the corrections made
between models improve sentence grammaticality,
Harmlessif the corrections do not significantly im-
prove or reduce grammaticality, andBad if at least
one of the corrections is either ungrammatical or
changes the sentence meaning. We note thatBad
corrections for the most part do not take grammatical
sentences and make them ungrammatical, only per-
turb them in some other erroneous fashion. Clearly,
there is a strong correlation between corrected sen-
tence quality and model agreement. We conclude
from this observation that the models are all learn-
ing to correct the most unambiguously incorrect sen-
tences in a consistent way, but where some deal of
ambiguity remains, they are subject to random dif-
ferences inherent in each’s construction.

To round out our evaluation of correction qual-
ity, we presented the corrected sentences from all
4 model variations to human workers for judgment
using the task detailed in Section 3.2.7. The results
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Table 4: Manual judgments of model-corrected sentence
quality between experiments. If all models are in agree-
ment, a sentence is marked asSame, andDifferent oth-
erwise. We judge a set of sentence corrections asGood
if all of the corrections made between models improve
sentence grammaticality,Harmlessif the corrections do
not significantly improve or reduce grammaticality, and
Bad if at least one of the corrections is either ungram-
matical or changes the sentence meaning. Only corrected
sentences are listed.

Model
Judgment

# of % of
Agreement Sentences Total

Same

Good 6 14.3%
Harmless 11 26.2%

Bad 25 59.5%
Total 42 –

Different

Good 4 3.3%
Harmless 34 27.6%

Bad 85 69.1%
Total 123 –

of this effort are detailed in Figure 3. The work-
ers are perhaps a bit more generous with their judg-
ments than we are, but overall, they tend towards the
same results that we do in our manual evaluation.
Aside from the conclusions already presented, the
worker judgments do expose one interesting finding:
When the corrected sentence is judged to be at least
as grammatical as the ESL sentence, it also tends
to preserve the ESL sentence’s meaning. However,
when the ESL sentence is judged more correct, the
meaning preservation trend is reversed. This obser-
vation leads us to believe that incorporating some
measure of semantic distance into our random walk
functionf might prove effective.

5 Conclusion and Future Work

We have presented a novel noisy channel model for
correcting a broad class of language learner produc-
tion errors. Although our experimental results are
mixed, we believe that our model constitutes an in-
teresting and potentially very fruitful approach to
ESL grammar correction. There are a number of
opportunities for improvement available. Using a
richer language model, such as a PCFG, would un-
doubtedly improve our results. Noting that ESL er-
rors tend to occur in groups within sentences and

Figure 3: Human judgments of corrected sentences gath-
ered using Mechanical Turk. The items listed in the leg-
end are answers to the questionsBetween the [original
(ESL) and corrected] sentences, which is more correct?/
Is the meaning of the corrected sentence significantly dif-
ferent from that of the ESL sentence?See Section 3.2.7
for methodological details and Section 4 for results dis-
cussion.
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are often interdependent, the addition of other noise
models, such as those detailed in Park and Levy
(2011), would further improve things by allowing
the language model to consider a wider range of cor-
rected contexts around each word. Our random walk
model itself could also be improved by incorporat-
ing observed word frequency information or some
notion of semantic difference between observed and
unobserved words, or by learning separate parame-
ters for different word classes. Somewhat counter-
intuitively, a structured reduction of dictionary rich-
ness could also yield better results by limiting the
breadth of random walk candidates. Finally, a more
intelligent heuristic for truncating large sets of ran-
dom walk candidates would likely foster improve-
ment.
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