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Abstract. Determining the semantic role of sentence constituents is a key task in
determining sentence meanings lying behind a veneer of variant syntactic expres-
sion. We present a model of natural language generation from semantics using
the FrameNet semantic role and frame ontology. We train the model using the
FrameNet corpus and apply it to the task of automatic semantic role and frame
identification, producing results competitive with previous work (about 70% role
labeling accuracy). Unlike previous models used for this task, our model does
not assume that the frame of a sentence is known, and is able to identify null-
instantiated roles, which commonly occur in our corpus and whose identification
is crucial to natural language interpretation.

1 Introduction

A central goal of natural language processing is domain-independent understanding.
A useful step towards that goal is the assignment of semantic roles to the (syntactic)
constituents of a sentence. Having semantic roles allows one to recognize semantic ar-
guments of a situation, even when expressed in different syntactic configurations. For
example the role of an instrument, such as a hammer, can be recognized, regardless of
whether its expression is as the subject of the sentence (the hammer broke the vase) or
via a prepositional phrase headed by with. This paper attempts the task of learning to
automatically assign such roles. Identifying such roles and the relationships between
them can in turn serve as support for inference about a sentence’s meaning, for an-
tecedent resolution, or for other understanding or parsing tasks such as prepositional
phrase attachment or word sense disambiguation.

This paper develops a generative model from which one can infer role labels, given
sentence constituents and a word from that sentence that is a predicator, which takes se-
mantic role arguments. We learn the parameters for this model from a body of examples
provided by the FrameNet corpus [1]. The problem and some elements of our approach
are similar to that of [2], but the work differs by use of a generative, not a discrimina-
tive, model, and by assuming less known information for making the role assignment.
A difficulty of this task is that there is limited data available annotated with semantic
roles, in comparison to syntactic parsing. As an illustration of this, in the model de-
veloped by [2] the most accurate rules only covered 50% of the unseen examples. To
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overcome the limited amount of training data, we would ultimately like to apply boot-
strapping, in which limited labeled data are combined with unlabeled data to produce a
more accurate model than that trained on unlabeled data alone [3, 4]. Generative models
are a natural choice in the case of combining fully and partially annotated data. First,
we need to test their capabilities on fully annotated data, such as it exists. This is the
focus of the current paper.

Our work can be compared and contrasted with much past work in information ex-
traction [5–7], in which the goal is to extract from text words or phrases that fill a role,
such as “acquiring company” or “vehicle,” and in which there are often multiple roles of
interest. In particular, recent work such as [5] uses Hidden Markov Models, including
induction over the structure of the model, for the labeling task. The model we use is sim-
ilar, but while our goal is also to identify which roles are filled, and identify the words
that fill them, we additionally aim to identify the overarching relationship that holds
between the roles. We call this relationship the frame. Secondly, information extraction
normally uses a small number of very domain specific roles, while our corpus has a
large number of roles, with many types of roles that apply across domains. The tech-
niques of information extraction may not scale well to large numbers of roles. Also, in
information extraction, the labeling task is somewhat tied, semantically, to the domain
at hand. These methods also tend to rely on regular structure, such as capitalization
or indicator terms drawn from a closed class. Finally, the currently annotated semantic
data is primarily at the sentence level, versus entire texts for information extraction.

The acquisition of selectional preferences, or the tendency of verbs to prefer argu-
ments of a particular type, is a second closely related area [8, 9]. In this line of research
statistical models are typically trained on parsed sentences to determine verb-subject or
verb-direct object relationships. Such information can be useful for prepositional phrase
attachment or to help determine the semantic class of a previously unseen word.

In this paper, we show that our generative model for role labeling produces results
competitive with previous work in this area. In addition, our model is flexible enough
to be used for annotating additional data, thus improving the model and the pool of
data available for other researchers. Second, it has the advantage of capturing the case
when roles are null instantiated in a particular sentence: they are not overtly expressed
but their presence is understood implicitly in discourse. While our model handles these
roles, we leave to future work a full evaluation of this ability. Finally, it can identify
which constituents correspond to role labels of a particular given predicator.

2 Background

In this section we discuss the FrameNet Corpus, the previous work on labeling roles by
Gildea and Jurafsky, and the role labeling task in more detail.

2.1 The FrameNet Corpus

FrameNet [1] is a large-scale, domain-independent computational lexicography project
organized around the motivating principles of lexical semantics: that systematic correla-
tions can be found between the meaning components of words, principally the semantic
roles associated with events, and their combinatorial properties in syntax. This principle
has been instantiated at various levels of granularity in different traditions of linguistic
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research; FrameNet researchers work at an intermediate level of granularity, termed the
frame. Examples of frames include MOTION DIRECTIONAL, CONVERSATION, JUDG-
MENT, and TRANSPORTATION. Frames consist of multiple lexical units—a items cor-
responding to a sense of a word. Examples for the MOTION DIRECTIONAL frame are
drop and plummet. Also associated with each frame is a set of semantic roles. Examples
for the MOTION DIRECTIONAL frame include the moving object, called the THEME;
the ultimate destination, the GOAL; the SOURCE; and the PATH.

In addition to frame and role definitions, FrameNet has produced a large number of
role-annotated sentences; the sentences are drawn primarily from the British National
Corpus. There are two releases of the corpus, FrameNet I and FrameNet II1; we present
results from both, but have so far focused primarily on the former. For each annotated
example sentence, a lexical unit of interest, one which takes arguments, is identified.
We will call this word the predicator2. The words and phrases which participate in
the predicator’s meaning are labeled with their roles, and the entire sentence is labeled
with the relevant frame. Finally, the corpus also includes syntactic category information
for each role. We give some examples below, with the frame listed in braces at the
beginning, the predicator in bold, and each relevant constituent labeled with its role and
phrase type. Note that the last example has a DRIVER role that is null instantiated.

{MOTION DIRECTIONAL} Mortars lob heavy shells high into the sky so that
[NP
THEME they] drop [PP

PATH down] [PP
GOALon the target] [PP

SOURCE from the sky].

{ARRIVING} He heard the sound of liquid slurping in a metal container as
[NP
THEME Farrell] approached [NP

GOALhim] [PP
SOURCE from behind].

{TRANSPORTATION} [NULL
DRIVER ] [NP

CARGO The ore] was boated [PP
GOAL down the

river].

Our focus here is on the FrameNet corpus, but another semantically annotated cor-
pus is under development, called the Proposition Bank [10]. This corpus, based on
adding semantics to the Penn English Treebank, is projected to soon be larger than
FrameNet, and involves comprehensive rather than selective annotation of a corpus.
However, it does not incorporate the rich frame typology of FrameNet, and only a
somewhat limited role typology; while roles are specified for each verb, there is no
generalization across verbs. Finally, Proposition Bank labels only verbs, leaving nouns
and adjectives for a later stage; FrameNet includes all three. Since we desire rich se-
mantic information in preference to a large corpus, we use FrameNet annotations as our
source of training data. Our methods, however, would generalize to Proposition Bank.

2.2 Gildea & Jurafsky’s Discriminative Model

Gildea and Jurafsky (2002) (henceforth, G&J) were the first to apply a statistical learn-
ing technique to the FrameNet data. They describe a discriminative model for deter-

1 Also, confusingly known as version 0.75 and version 1.0, respectively.
2 What we call the predicator is called the target in the FrameNet theory, and what we are calling

a (semantic) role is called in FrameNet a frame element, while what we call a constituent or
argument head, [2] call simply the head. We have found that most people find the FrameNet
terminology rather confusing, and so have adopted alternative terms here.
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mining the most probable role for a constituent given the frame, the predicator and
some other features whose description we defer until later in the paper. They evalu-
ate their model on a pre-release version of the FrameNet I corpus, which at that time
contained about 50,000 sentences and 67 frame types. Their model was trained by first
using the parser of Collins [11], and deriving features from that parse, the original sen-
tence, and the correct FrameNet annotation of that sentence. Their work differs from
ours in a number of important respects. Firstly, in all their experiments, they assume
that the frame is already known, as well as the predicator of interest. While one could
certainly imagine first determining the frame from the sentence (for example, one could
use the model presented here to do that), their use of a discriminative approach makes
it less straightforward to do joint inference over the choice of frame and semantic roles
for constituents, as one would wish to do, whereas that is a natural thing to do within
a generative model. Secondly, since their discriminative model assigns roles to con-
stituents in the sentence, there is no natural way to handle unexpressed arguments, and
they do not attempt to. But unexpressed arguments are common in natural languages,
and again are naturally handled in a generative model. Moreover, most of their work
assigns roles to constituents individually and independently. Later in their paper, they
do develop and consider joint inference over all the semantic roles of a predicator, but
this is more naturally done using the kind of model we present here. Finally, although
this remains a promissory note, we believe that a generative model will be a better basis
for extension via bootstrapping to unlabeled data.

2.3 The Role Labeling Task

With respect to the FrameNet corpus, several factors conspire to make the task of role-
labeling challenging, with respect to the features available for making the classification.
These results are likely to hold across other theories and methodologies for semantic
role determination. The challenges also imply that constructing a hand-built semantic
role identifier would prove a daunting task. First, it is not always predictable from the
syntactic relationship between two phrases whether they stand in a semantic relation-
ship. Second, many words that may participate in a role have a wide variety of possible
roles in which they may participate. There are also many generic roles such as TIME

and PLACE that can be indicated by almost any word. Third, the internal structure of a
syntactic constituent is not always a good predictor of the role it receives. The prepo-
sitional phrase in the hole, for example, can be a LOCATION, as in she sat in the hole,
or a GOAL of movement, as in she jumped in the hole. Finally, as mentioned earlier, in
many cases roles are null instantiated, which is widespread in many languages; an En-
glish example is passive sentences with no specified agent, such as the cake was eaten.
Thus, the only evidence for the presence of such roles is contextual.

With respect to the relationships between predicators, frames, and roles, further
difficulties arise. A leading idea of FrameNet is that there is considerable variety to the
semantic role types available in a particular event (for example, PERCEPTION events
and COMMERCE events have very different participants). Thus, identifying the frame
that is relevant for a particular sentence and predicator narrows the search for roles.
However, many predicators are ambiguous with respect to their frame. Further, not all
lexical units of a particular frame necessarily have the same distribution of roles. For
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example, drop and plummet have lexical entries in the MOTION DIRECTIONAL frame,
but SOURCE is rare for plummet, yet quite common for drop. As a result, for the task of
automatic role assignment a mixture of predicator-specific and frame-specific statistics
are potentially useful to deal with sparseness of a particular predicator or role.

3 A Generative Model for Sentence-Role Labeling

Our goal is to identify frames and roles, given a natural language sentence and predi-
cator. As discussed above, G&J’s approach to this problem was to determine the most
probable role for each constituent of the sentence, given the frame, the predicator and
some other features. However, this does not capture null instantiation, or roles that are
not reified in the sentence. In addition, a model should ideally capture the relationships
between frames and roles, determining which constituents are likely roles for which
predicator. To address these concerns we turn to a generative model to determine the
sequence of role labels for a sentence. In other words, our model defines a joint prob-
ability distribution over predicators, frames, roles, and constituents. While the model
is fully general in its ability to determine these variables, in this paper it is only tested
on its ability to determine roles and frames when given both a list of constituents and
a single predicator. The generative model, illustrated in Figure 1, functions as follows.
First, a predicator, S, is chosen, which then generates a frame, F . The frame generates

S

F

R1 R2 · · · Rn

C1 C2 · · · Cn

Fig. 1. Role Tagger

a (linearized) role sequence, R1 through Rn which in turn generates each constituent
of the sentence, C1 through Cn. Note that, conditioned on a particular frame, the model
is just a Hidden Markov Model. The sentence-to-constituent mapping is discussed in
more detail in Section 3.1.

The model is complicated slightly by the fact that some sentence constituents do
not correspond to a labeled semantic role. We handle these constituents with an idea
from machine translation: that of the null source. A second complication is the null
instantiations, which are also captured by a null, but in this case it is the emission
which is a null. Henceforth, null sources will be described by an UNK (unknown) role
to avoid confusion with null emissions. We will discuss an example with an unknown
role in Section 3.1, and gave an example of a null emission in Section 2.1.
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The joint probability for a FrameNet example in this model is

P (C,R, F, S) = P (S) × P (F |S) × P (R|F, S) × P (C|R, F, S),

where C is the vector of constituent heads, R is the role vector that generates them, F
is the frame, and S is the predicator word. The third and fourth terms of this equation
involve sequences. For the role sequence, we usually make a Markov assumption that
each word’s role is dependent only on the previous role in the sequence. Thus:

P (R|F, S) =
∏

i

P (Ri|R1 · · ·Ri−1, F ) ≈
∏

i

P (Ri|Ri−1, F )

where the Ri are the roles in the sequence. The Markov assumption has been effective
in language modeling and tagging and so seems a good assumption to begin with.

Finally, our basic model assumes that constituent emissions are independent of the
frame and predicator given the sequence of roles, that each emission depends only on
the role that generated it, and that constituents are independent of each other. Thus:

P (C|F, S,R) ≈ P (C|R) =
∏

i

P (Ci|Ri),

where Ci are the elements of C and Ri are the corresponding elements of R. This can be
compared to a part of speech tagging model where words are independent of each other
given the tags, and depend only on the tag in the same position in the sequence. The
independence of the constituents and the frame and predicator given the roles seems
quite reasonable, given that most roles are frame-specific, and the whole rationale of
FrameNet is that frames are sufficiently fine-grained that roles for predicators inside a
single frame behave similarly. Adding further dependencies might be expected to only
exacerbate the problem of sparseness in the data.

3.1 Training the Model

The FrameNet corpus contains annotations for all of the model components described
above. To simplify the model, we chose to represent each constituent by its phrasal
category together with the head word of that constituent. Since the FrameNet anno-
tations do not include head word information, we determined the heads using simple
heuristics. This representation and the method of head-finding are familiar from the
statistical parsing literature ([12]). This data then provides a set of constituents with
correctly annotated roles for a given sentence, where it is known which constituents
correspond to roles and what the appropriate predicator is for those roles. For example,
for the example below, the training example would be: S=rode; F=TRANSPORTATION;
R1=DRIVER; C1=Anne/NP; R2=VEHICLE; C2=donkey/NP; R3=AREA; C3=on/PP.

{TRANSPORTATION} “On 26th May [NP
DRIVER Anne] rode [NP

VEHICLE a donkey]
[PP
AREA on the beach],” the letter said .

Most of the parameters for the model are estimated using a straightforward max-
imum likelihood estimate based on fully labeled training data. Emission probabilities
need to be smoothed, due to the sparseness of head words. During training, all words
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seen only once are replaced by the phrase type label of the constituent of which they are
a head. This gives a phrasal-class based model, which is itself smoothed with a uniform
phrasal class prior, and the probability of generating unseen words belong to a certain
class is estimated as simply a constant (representing P (word|class)) times the proba-
bility of the phrasal class. Therefore, statistics are gathered both for the probabilities of
roles generating each phrase type plus head combination, and there is a backoff model
of roles generating a phrase type, and some unknown word within that type.

In an actual semantic parsing application, it would not be known which constituents
bear a role of which predicators. We could make use of a syntactic parse in determin-
ing constituents that are candidates for roles. In a first approximation of this, we used
a parser to determine constituents and their phrase types, and combined these with the
FrameNet annotations. For this purpose, we restricted ourselves to training and test-
ing on examples whose annotated predicator is a verb, since these are dealt with in a
straightforward manner. The “sentence” level of the model in this case includes only the
verb phrase whose head is the predicator, and its subject and arguments. If a constituent
is identified in the parse but not in the FrameNet annotation, we label it as an UNK role.
Again, this treatment is similar to the case of null emissions in a statistical machine
translation model. For this format, the example above would have an additional role
inserted at the beginning, with role=UNK and constituent=On/PP.

3.2 Producing the Semantic Role Labels

At inference time, the goal is to produce a sequence of role labels, given a sequence
of constituents and a predicator. As just discussed, these constituents may be the head/
phrase-type pairs from the FrameNet data, or the head/phrase-type pairs that are the
result of parsing a sentence in the corpus and extracting the verb phrase with its subject
and arguments. The role-labeling procedure is dependent on the frame, itself a hidden
variable at labeling time. If the frame were known, we could simply use the HMM
Viterbi algorithm, with the roles as the hidden states and the constituent heads and their
phrase type as the emissions. In that case, we would use transition probabilities from
only the frame of interest. Because we currently add empty constituents for the null
instantiated roles whether using parsing information or not, our Viterbi sequence is of
the same length as the input constituent sequence.

For the emission probabilities, there are two options, since a particular role can ap-
pear in multiple frames. One option is to condition the emission probabilities also on the
frame. That is, the emission probabilities are calculated from only those role/constituent
pairs that originally appeared in the given frame. A second option is to calculate emis-
sion probabilities for a role over all frames in the training data, since this arguably
would provide more evidence and mitigate sparse data problems to some extent. How-
ever, the second option also leads to a potential problem, that of words unseen in the
given frame but seen as emissions of the role in other frames. We compare both options
in the results.

If the frame is not known, the more realistic case, then we have several options. We
could just change the model and make the roles a combination of a role and a frame,
but then the Viterbi sequence might change frames part way through, which seems
unsatisfactory, given the intended semantics of the model. We could marginalize out
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the frame variable. In practice, given that most roles are particular to individual frames,
doing such a marginalization would probably give results little different to our current
results, but this also seems conceptually wrong, since we’re wanting to do inference for
the most likely frame and roles underlying a sentence. So instead we calculate the most
probable configuration of all the hidden variables. This generalized Viterbi algorithm is
a straightforward instance of max-propagation algorithms for Bayesian networks [13].

For this case, this is equivalent to the less efficient operation of simply finding all
frames with P (F |S) > 0, compute the role sequence probabilities given the transition
probabilities for that frame and the emission probabilities across all frames, and then
choosing the maximum product of the prior probability of the frame for the predicator
and the probability returned by the HMM Viterbi algorithm.

4 Experimental Results

To test the above model, we trained it on annotated FrameNet data, randomly dividing
the data into a training set and an unseen test set. Each frame was randomly split so that
70% of its examples were in the training set and 10% were in the test set. We report
on three types of accuracy. First, role labeling accuracy is the number of constituents
correctly labeled. Since we label all constituents, this makes the familiar metrics of
recall and precision equivalent. We micro-average by adding up the number of correct
labels for all examples and dividing by the number of total labels for all examples, so
this is not an average accuracy per-sentence, though we have done the calculations both
ways, and for these experiments the two figures are quite close to each other. Second, we
report the percent of sentences for which all roles are correctly labeled, or full sentence
accuracy. Finally, frame accuracy is calculated as the proportion of sentences for which
the correct frame was chosen based on the predicator.

For a baseline comparison, we computed the accuracy of a zeroth-order Markov
model, treating all transition probabilities between roles as uniform. We also computed
the accuracy of choosing, for all constituents, the most common role given the predi-
cator, and the accuracy of choosing the most common role given the frame, where the
most common frame (argmaxF P (F |S)) for the known predicator is chosen.

4.1 Results: Annotated Roles

Our first set of experiments trained and tested our model from the correctly annotated
sentences of the FrameNet corpus, together with constituent heads as determined by
a parser. We performed most of our experiments on FrameNet I, but ran some experi-
ments with FrameNet II as well3. The constituents’ heads were chosen by some simple

3 We regard the FrameNet I results as broadly comparable with those of G&J, though the data
sets are not exactly the same, and there are various other differences (we guess the frame
whereas they assume it; except in parsing experiments, we use the phrasal category given in
FrameNet, whereas they always use phrasal categories returned by a parser, even when using
the constituent extent information given by FrameNet). We have recently obtained G&J’s data,
and hope to provide a more precise comparison in future work.
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Table 1. FrameNet I Experimental Results. Key: Role=Role labeling accuracy, Full=full sentence
accuracy, Frame=Frame choice accuracy. Trn=Training Set, Tst=Test Set

System Trn Role Tst Role Trn Full Tst Full Tst Frame
FirstOrder 86.1% 79.3% 75.4% 65.3% 97.5%
ZeroOrder – 60.0% – 34.6% 96.5%
BasePredicator 39.9% 39.2% 10.5% 10.2% N/A
BaseFrame 37.8% 37.6% 9.2% 9.5% N/A

Table 2. FrameNet I Arg Max versus all Sequences

System Role Full Frame
First All 79.3% 65.3% 97.5%
First ArgMax 77.2% 63.2% 94.8%
Zero All 60.0% 34.6% 96.5%
Zero ArgMax 58.8% 33.4% 94.8%

heuristics, but their labels correspond to the Phrase Type labels from FrameNet. These
tests are similar but not identical to the analysis in Section 4.2 of G&J.

The first results are on 36,805 training sentences, containing a total of 82,169 con-
stituents, and 5299 test sentences containing 11,833 constituents. There are 78 frames,
139 possible role labels, and 1,385 predicators. We obtain 86.1% role labeling accu-
racy on the training data, 79.3% on the test data. For full sentence accuracy,we obtained
75.4% accuracy on the training data and 65.3% on the test data. Finally, the correct
frame was chosen for 98.1% of training sentences and 97.5% of the test sentences.
Table 1 summarizes these and the remainder of our results for this data set. We did
not measure the training accuracy in the zeroth-order case. These results are roughly
comparable to results of 78.5% on test data for G&J’s model on data with constituents
marked, and they cite a similar result for BasePredicator of 40.6%. We can at least
conclude that performance is similar.

We also measured the benefit of exploring all sequences versus only the sequence
for the frame with the highest probability given the predicator. The difference is shown
in Table 2, for training accuracy only in the First Order and Zero Order case. The dif-
ferences are about two percentage points in most cases.

Our next set of results are on FrameNet II, where we evaluated only the ArgMax
case. Training on 70% and testing on 10% resulted in a corpus of 89,900 training sen-
tences and 12,990 test sentences. Here there are 282 frames, 423 possible role labels,
and 4,712 predicators. The performance results on the test set, shown in Table 3, are
somewhat weaker than for FrameNet I, but not overly so, considering the increased
number of roles and frames.

In analysis of the role labeling results, we noticed two major sources of error. The
first is words unseen in a particular frame but not “rare” over the whole corpus. We
could partially address this with a held-out mass for unseen words that is weighted by
the prevalence of rare words of each phrase type. Second, some cases are just very
difficult, for example, prepositions commonly heading more than one type of role can
induce ambiguity, one example being Instrument/Manner ambiguity on with-marked
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Table 3. FrameNet II Experimental Results

System Role Full Frame
FirstOrder 73.9% 63.7% 88.7%
ZeroOrder 61.3% 43.0% 89.3%

Table 4. Parse Model Experimental Results

System Trn Role Tst Role Trn Full Tst Full
FirstOrder 81.0% 70.1% 58.1% 39.5%
ZeroOrder 78.8% 67.8% 50.7% 34%
BasePredicatorParse 35.4% 33.2% 1.0% 0.7%

roles. We also have difficulties with roles in frames such as Differentiation, which con-
tains roles for Phenomena, Phenomenon1, and Phenomenon2, or Conversation, with its
Interlocutors, Interlocutor1, and Interlocutor2 roles. These roles are semantically simi-
lar, and we would need a richer syntactic representation to differentiate them.

4.2 Results: All Constituents

In the next set of experiments, we evaluated the system, together with a parser, on the
ability to both determine which constituents correspond to roles, and to label those
constituents. To do so, we used our statistical parser [14] to parse only the sentences
used in the previous section which have a verbal predicator. The parser was trained on
Brown and about half of the Wall Street Journal. Our generative model was trained as
described above, with the inclusion of UNK roles for constituents not corresponding to
a labeled role. At role labeling time, the verb phrases as determined by the parser are
presented to the model with (the labeled heads of) their subject and arguments, with
the main verb as the predicator. The model now has the option of choosing UNK role
labels.

Because of the difficulty in matching parse constituents with their appropriate role
labels in the annotated data, the size of the data set for these tests is considerably smaller
than that above. We used only the verb phrases corresponding to known frames, but with
the UNK roles included. There are are 13,782 training examples, 1,558 test examples,
55 frames, and 980 different predicators. Also, there are 117 unique roles and 43,937
constituents. On this task, the system obtained 81% role labeling accuracy on the train-
ing set and 70.1% on the test set. Full sentences were considerably more difficult to get
right, with 58.1% training accuracy and 39.5% test accuracy. Frame choice accuracy
was 94.5% on the training data and 93.3% on the test data. These results are summa-
rized in Table 4. The only figure G&J give for full sentence accuracy is 38% for a system
that had to determine both which constituents correspond to roles, and what those role
labels should be, which is again roughly comparable to our 39.5% performance on the
test set.
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4.3 Discussion

Our model and these results can be compared and contrasted with those of G&J. Some
of the features used by G&J are similar to those used by our model. Both models use the
phrase type and head word of each constituent. Both models incorporate the predicator,
but in different ways. Our model assumes the predicator is either explicitly given or
assumes that each main verb in the sentence is a predicator. A future version could
determine the probability that each head word is a predicator.

In addition to these features, G&J introduce several other features. First, the Gov-
erning Category determines for noun phrases, whether an S or VP most closely dom-
inates the phrase. This feature may provide similar information to that given by our
Markov chain. Second, their Path feature follows the parse tree from the predicator to
the constituent, represented as the string of nonterminals encountered. The final two
features missing from our model but present in theirs are whether the main verb phrase
of the sentence is in active or passive Voice, and the Position of the constituent, before
or after the predicator. However, these are partially captured by linear order and phrasal
constituent type. On the other hand, they always assume knowledge of the frame, and
because they only labeled the roles of actual sentence constituents, their model does not
include null instantiated roles, nor is it obvious how to extend it to do so.

Finally, our ultimate use for this model is not just role labeling, but to estimate pa-
rameters when the training data is only partially observed. In that case, using the max-
imum likelihood estimate is statistically sound, whereas maximizing the conditional
likelihood would not be and a generative model is to be preferred.

5 Conclusion and Future Work

We have described and evaluated a successful generative model for semantic role la-
beling. Our results to date are encouraging but more remains to be done. While small
improvements, such as better unknown word handling, can be made to the model, we
also see several larger issues that need to be addressed. To do role boundary detection
a more sophisticated model is necessary, since under some circumstances non-verbal
predicators assign roles to syntactically non-local constituents. Also, while it is fairly
straightforward to generalize the current model to the case of multiple predicators per
sentence, an articulated theory of when constituents can take roles from multiple predi-
cators is still under development in FrameNet, and would require further articulation in
our theory. Finally, it would also be useful to incorporate some extra syntactic informa-
tion, such as predicator position, and the presence of coordination, and to model role-
shuffling operations such as passivization, imperative forms, and extraposition, since
these operations, if not modeled, can obscure linguistically motivated generalizations
about the linear order of roles.
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