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Abstract

We propose a model of L2 phonological learning in which
the acquisition of novel phonological category inventories pro-
ceeds not by mapping L2 inputs onto existing category inven-
tories available in L1 and other already known languages, but
rather through general categorization processes in which L1
and other language knowledge serves as an inductive bias. This
approach views linguistic knowledge as hierarchically orga-
nized such that the outcome of acquisition of a language—L1
or otherwise—includes not only knowledge of the specific lan-
guage in question, but also beliefs about how any language is
likely to be structured. In this paper we test a set of predictions
regarding how two key types of information can come together
to drive L2 learning: distributional information within a single
phonetic dimension and generalization bias derived from ex-
isting knowledge of language. We tested these predictions by
training adult monolingual English speakers in a distributional
learning paradigm (Maye & Gerken, 2000; Maye, Werker, &
Gerken, 2002) on a novel contrast, segmental length, and test-
ing them on categorization of short and long segments for
both trained and untrained items. Results show both learning
and generalization from one class of segments (sonorants) to
another class (obstruents), broadening the empirical range of
phonetic contrasts for which distributional learning has been
shown to be effective and providing evidence for our approach
to L2 learning as one of inductive inference and generalization
rather than of mapping.
Keywords: L2 phonological acquisition; distributional learn-
ing; speech perception; categorization; generalization.

Introduction
Language learning in adulthood has traditionally been re-
garded as an inherently difficult process due to first language
(L1) interference. One reason for this view is the common
assumption that second language (L2) begins as parasitic on
L1, and only gradually separates itself as an independent lan-
guage in the course of learning (e.g., MacWhinney, 1987).
We propose a model in which L2 learning (and, more specif-
ically, phonological acquisition) is instead viewed as a pro-
cess of inductive inference, where learners make implicit
predictions about the possible underlying structures of the
novel language by combining two sources of information:
(1) the statistical properties of the L2 input, and (2) previous
language knowledge (including both experience and any in-
nate biases), which serves as an inductive bias guiding learn-
ers in their inferences about novel phonological structures.
The proposed model assumes that the structure of language
knowledge is represented at multiple levels with one level for
knowledge of specific languages, and a higher level represent-
ing more abstract knowledge of the structure of languages in
general. This model fits within the general approach to learn-
ing as a process of rational hypothesis construction and test-
ing, in which learners infer the underlying structure of their
input by generalizing beyond the specific surface properties

that they are exposed to (e.g., Tenenbaum & Griffiths, 2001;
Xu & Tenenbaum, 2007; Gerken, 2010). At the same time, the
proposed model is radically different from traditional views
on L2 phonological acquisition, where perception and learn-
ing of novel sounds have been assumed to rely on the pro-
cess of mapping of L2 sounds onto L1 phonological cate-
gories (Best, 1995; Flege, 1995; Hancin-Bhatt, 1994; Kuhl &
Iverson, 1995). Under these views, L2 learners—instead of
making implicit rational predictions about the L2 phonologi-
cal categories—try to establish conceptual links between L2
sounds and their most similar L1 counterparts, so as to pro-
cess the unfamiliar sounds directly through their L1 phono-
logical system. We propose, in contrast, that learners do not
directly filter the L2 speech input through their L1 phono-
logical categories, but rather that they make the best possible
guesses about how individual novel sounds are grouped into
categories by relying on the same mechanisms that are used in
general categorization processes for many types of perceptual
stimuli.

In order to define the details of the proposed model we fol-
low the general categorization literature in that any percep-
tual stimulus can be represented as a point in a multidimen-
sional psychological space. People are able to categorize the
stimuli by abstracting information about stimulus dimensions
(e.g., color, shape, size, etc.) from single instances of the input
(Posner & Keele, 1968; Kruschke, 1992). Within Kruschke’s
model, learning categories occurs by computing and attach-
ing weights (or attention strength) to each of the stimulus
dimensions. The attention strength reflects the relevance of
any given dimension for a particular categorization task. That
is, high strength will be associated with dimensions hypoth-
esized as the most informative in distinguishing between cat-
egories. This way, people are able to perform categorization
tasks by selectively attending to dimensions that are relevant,
while at the same time ignoring other dimensions (Nosofsky,
1986). For instance, with stimuli varying along three dimen-
sions such as color, shape, and size (Fig. 1a), people are good
at categorizing by just one dimension, for example color. In
this situation, the psychological space gets stretched along the
color dimension—due to high attention strength assigned to
this dimension (Kruschke, 1992)—and shrunk along the size
and shape dimensions (Fig. 1b). This strategy is effective in
categorization tasks because by attending selectively to the
relevant dimension, people maximize within-category sim-
ilarity and between-category discriminability, thus avoiding
between-category confusion due to variation along irrelevant
dimensions.

We pursue a similar idea to account for phonological
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Figure 1: (a) Eight stimuli that vary along three binary-valued
dimensions: color (black/white), shape (circle/triangle), and
size (big/small). (b) Attending selectively to the color dimen-
sion. (Figure from Nosofsky, 1986, p. 4.)

categorization. Sound segments, as other perceptual stim-
uli, can be represented as points in a multidimensional per-
ceptual space. Languages group segments into phonolog-
ical categories, or phonemes, by partitioning this percep-
tual space along different phonetic dimensions (Maddieson,
1984). Therefore, a large part of the problem facing children
in L1 phonological learning is to differentiate between phono-
logically relevant (i.e., informative for assigning meaning)
and irrelevant phonetic dimensions. That is, children learn to
selectively attend to certain phonetic dimensions (e.g., for-
mant frequencies), while disregarding—at least for purposes
of categorization—others (e.g., amplitude) (Kuhl, Williams,
Lacerda, Stevens, & Lindblom, 1992; Jusczyk, 1992).

Now, let us turn our attention to L2. Accurate phonological
learning in L2 requires repartitioning of the perceptual space
in accordance with which phonetic dimensions are informa-
tive to categorize L2 sounds (Strange & Shafer, 2008). On our
proposal this is difficult because learners’ L1 knowledge has
created strong inductive bias in inferences about what any L2
structure may be like, which leads them to selectively attend
to only those phonetic dimensions that are phonologically rel-
evant in their L1. This might be implemented in Kruschke’s
model by readjusting weights, which would increase attention
to dimensions phonologically relevant in the L2 and suppress
attention to irrelevant dimensions.

If our proposal is correct and learners categorize L2 sounds
based on their inferences about which phonetic dimensions
are likely to be relevant in that language, then we expect lis-
teners’ perception and categorization of novel speech sounds
to be guided by their experience with phonetic dimensions,
and not individual segments. That is, in contrast to previ-
ous approaches, we predict that novel distinctions within a
given phonetic dimension should be perceived more accu-
rately by listeners who know a language in which that dimen-
sion is contrastive for some set of segments than by listeners
for whom that dimension is never contrastive, even when the
novel distinctions are used within segment classes for which
the dimension is never contrastive for either group of listen-
ers. This means that listeners are predicted to generalize the

relevance of phonetic dimensions from known segments to
novel segments. Pająk (2010) confirmed this prediction for
the length dimension: for example, speakers of Cantonese,
who are familiar with vowel length contrasts, are better at
discriminating short from long consonants ([kasa]/[kassa])
than speakers of Mandarin, who are not familiar with any
length contrasts. We took this result to suggest that Cantonese
speakers generalized length across segment classes. This re-
sult is problematic for theories assuming L2-to-L1 segment
mappings, under which familiarity with vowel length con-
trasts should not have any effect on perception and learning
of consonant length contrasts: novel long consonants would
be assumed to map onto L1 short consonants for both Can-
tonese and Mandarin speakers, thus making their discrimina-
tion equally difficult for both groups.

In this paper we investigate another type of evidence for
the proposed model. One of the hallmark phenomena in the
human categorization literature is the ability to learn category
distinctions on the basis of purely distributional evidence—a
bimodal distribution on some perceptual dimension, for ex-
ample, generally supports the inference of a category distinc-
tion more strongly than a unimodal distribution—as predicted
by rational accounts such as that underlying the Size Princi-
ple of Tenenbaum (1999) & Tenenbaum and Griffiths (2001).
Since L2 phonological learning in our approach is simply a
special case of the general problem of categorization, then
distributional evidence may be able to overcome L1-derived
bias against a category distinction in a phonetic dimension
which is never distinctive in L1 (although the amount of ex-
posure needed might differ depending on the cue’s percep-
tual salience and on its L1 distribution). Crucially, general-
ization to a novel set of segments should straightforwardly
follow from learning the relevance of a dimension for just
one set of segments, exactly as in the previous study with
Cantonese speakers. The perceptual learning literature pro-
vides mixed evidence on whether limited laboratory train-
ing can be sufficient to induce generalization in adults. Pre-
vious research focused on novel voicing distinctions (e.g.,
prevoiced vs. voiceless unaspirated stops for native speak-
ers of English), and only tested limited types of generaliza-
tion: for stops from one place of articulation to another (e.g.,
from alveolar [d]-[t] to velar [g]-[k]). Early studies with ex-
plicit category training showed that this type of generalization
is possible (McClaskey, Pisoni, & Carrell, 1983; Tremblay,
Kraus, Carrell, & McGee, 1997). On the other hand, train-
ing adults on a novel voicing distinction in the distributional
learning paradigm (Maye & Gerken, 2000; Maye et al., 2002)
was inconclusive regarding the ability of participants to gen-
eralize to a different place of articulation: Maye and Gerken
(2001) reported no generalization, but Perfors and Dunbar
(2010) found some evidence of generalization by increasing
the duration of training and using natural stimuli.

In this study we tested the predictions of our model us-
ing the distributional learning paradigm, in which listeners
(here, monolingual English speakers) are exposed to a new
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language (L2) through listening to stimuli sampled from a
continuum of sounds that vary along some phonetic dimen-
sion (here, segmental length). The stimuli are sampled from
either a bimodal frequency distribution, suggesting that there
are two categories along the continuum (here, short and long
segments), or a unimodal distribution, suggesting only one
category (and, thus, no contrast between short and long seg-
ments). Crucially, all participants are exposed to the same in-
ventory of stimuli, differing only in relative frequency of oc-
currence among stimuli within the inventory. Thus, any dif-
ferences between bimodal and unimodal conditions in subse-
quent testing must be due to participants’ interpretation of the
novel sounds as influenced by training and not just to auditory
sensitization. Beyond its relevance for testing the distinctive
predictions made by our model (as compared with the map-
ping models described earlier), this work contributes to the
perceptual learning literature by investigating distributional
learning on a previously unstudied phonetic dimension—
segmental length—and generalization across segment classes
(sonorants and obstruents). Unlike the voicing dimension,
length cross-cuts a wide range of possible segments, and is
not in any form contrastive in the participants’ native lan-
guage (English).1

Experiment
We trained monolingual English speakers on a novel phono-
logical contrast, segmental length, using the distributional
learning paradigm, as applied by Maye and Gerken (2001)
in a study with adult participants. Subsequently, we tested
their categorization of short and long segments for trained
and untrained segment classes (sonorants and obstruents). We
predicted that participants would generalize the relevance of
length in sound categorization from a trained class to an un-
trained class.

Method
Participants 48 undergraduate students at UC San Diego
participated in the experiment for course credit. They were
all monolingual speakers of English, in most cases with some
limited high school and/or college exposure to Spanish or
French. Crucially, none of them had any exposure to any lan-
guage that uses length contrastively. All participants reported
no history of speech or hearing problems.

Materials The materials consisted of nonce words recorded
in a soundproof booth by a phonetically-trained native
speaker of Polish. The critical length items included segments
from two classes: sonorants ([j], [l], [m], [n]), and obstru-
ents ([s], [f], [T], [S]). They were recorded as words with long

1Although English vowels do vary in length, and length is used
by native speakers as an auxiliary cue for voicing in word-final stops,
vowel length alone is never used to distinguish between two vowel
categories. This is reflected in how English native speakers process
length: by 18 months of age English-learning infants show differ-
ences in their sensitivity to the length cue compared to infants learn-
ing a language that has phonemic length contrasts, such as Dutch
or Japanese (Dietrich, Swingley, & Werker, 2007; Mugitani, Pons,
Fais, Werker, & Amano, 2008).

consonants: [ajja], [illa], [amma], [inna], [assa], [iffa], [aTTa],
[iSSa]. Subsequently, the consonant length in each word was
manipulated to create length continua, each with eight tokens.
There are several ways in which such continua could be cre-
ated. One way would be to maintain natural between-segment
duration differences (e.g., sonorant consonants are generally
shorter than fricatives2), but manipulate relative durations so
that for each continuum the endpoints are always in the same
duration ratio (cross-linguistically, the long-to-short conso-
nant ratio varies between 1.5 to 3; Ladefoged & Maddieson,
1996). Another way, which we adopted, is to use the same dis-
tribution on absolute durations for all segments (see the dis-
cussion section for more on the consequences of this choice).
In the continua we created, durations of all consonants ranged
from 100msec (short) to 205msec (long), and each adjacent
token differed by 15msec. The fillers resembled the critical
items, but different consonants were used: [iRa], [iPa], [aÃa],
[aÙa], [idza], [iţa], [aba], [apa], [ida], [ita], [aga], [aka], [ixa],
[iXa], [aKa], [aQa].

Procedure The experiment adhered as closely as possible
to the procedure used by Maye and Gerken (2001), and con-
sisted of two main parts: training and testing.
Training: In training, participants listened to single words
presented over headphones that were of one of two STIMU-
LUS TYPES: critical or filler. Each participant was trained on
critical items from one TRAINED SEGMENT CLASS (either
sonorants or obstruents), and in one of two CONDITIONS:
(1) bimodal, imitating a language with phonemic contrasts
between short and long consonants, and (2) unimodal, im-
itating a language with no phonemic length contrasts (see
Fig. 2). All participants were trained on the same filler items:
the words [iRa], [iPa], [aÃa], [aÙa]. To maintain participants’
attention on the experimental items, they were instructed to
push a button after they heard each word. The response to
a given stimulus triggered the presentation of the following
stimulus with a delay of 1sec. Training consisted of a total of
384 words and lasted for about 10min. This included four rep-
etitions of a training block, where each block had 64 critical
items (16 tokens from each length continuum) and 32 filler
items (8 different recordings of each item). Stimulus order
was randomized for each participant, and there was a self-
terminated break after each block.
Testing: The testing was identical for all participants, and
consisted of an AX discrimination task. Participants listened
to pairs of words, and were asked to judge whether these
were two different words or two repetitions of the same word.
For critical pairs, these were endpoints of each continuum,
either ‘different’ (100msec–205msec, 205msec–100msec) or
‘same’ (100msec–100msec, 205msec–205msec). For filler
‘different’ pairs, these were two words that differed by one

2The ranges of duration for English consonants that are equiv-
alent to those used in the experiment are roughly the following (in
msec): [j] 39-100, [l] 42-85, [m] 50-89, [n] 38-83, [s] 61-126, [f]
88-138, [T] 46-90, [S] 88-138 (based on the phonetically annotated
portion of the Switchboard corpus, as described in ‘The Switchboard
Transcription Project’ report by Steven Greenberg, 1996.)

2675



     [n]             Stimuli continuum (msec)             [nn]

P
re

se
nt

at
io

ns
 p

er
tr

ai
ni

ng
 b

lo
ck

1

2

3

4

100 115 130 145 160 175 190 205

bimodal

unimodal

Figure 2: Critical training stimuli.

segment: the contrasts were either in voicing ([Ã]–[Ù], [dz]–
[ţ], [b]–[p], [d]–[t], [g]–[k]), in place of articulation ([x]–[X],
[K]–[Q]), or in both ([R]–[P]). The ‘same’ pairs were always
physically identical. The TESTED WORDS were of one of two
types: trained (i.e., heard in training) or untrained (i.e., heard
for the first time in testing). There was a total of 384 word
pairs, which included 6 repetitions of a testing block. One
block consisted of 32 critical pairs (16 ‘same’ and 16 ‘dif-
ferent’) and 32 filler pairs (16 ‘same’ and 16 ‘different’). The
words in each pair were separated by an interstimulus interval
of 750ms. As with training, stimulus order was randomized
for each participant, and there was a self-terminated break af-
ter each block. Participants responded by pushing a button
on a gamepad. They were instructed to respond according to
their intuition based on what they learned during the train-
ing period, and were assured that there were no strictly right
or wrong answers. The instructions included a short practice
with English words, where ‘different’ words were minimal
pairs (e.g., mass – miss), and ‘same’ words were repetitions
of the same word pronounced with different intonations. Test-
ing lasted about 20min.

Results
We predicted that successful distributional training should
lead to a difference between the bimodal and the unimodal
conditions on critical length trials: bimodal training result-
ing in more ‘different’ responses (since the training should
suggest that short and long consonants are contrastive in this
language), while unimodal training leading to fewer ‘differ-
ent’ responses (because the training provided no evidence
that short and long consonants belong to different categories).
Furthermore, we predicted that participants would general-
ize the relevance of length from trained to untrained words
(reflected in no difference in performance on trained and un-
trained items), and that this generalization would be bidirec-
tional (i.e., from sonorants to obstruents, and vice versa).

Since performance was at ceiling on ‘same’ trials (>95%
correct for each TYPE, CONDITION, TRAINED SEGMENT
CLASS, and TESTED WORDS type), we only analyzed the
responses from ‘different’ trials, using mixed-effects logit
models with random slopes and intercepts for participant and
item.3

3We also performed ANOVA analyses and found no major dif-
ferences in results. Minor discrepancies are reported in footnotes.
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Figure 3: Performance by participants trained on the
sonorant class. (Error bars are standard errors.)
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Figure 4: Performance by participants trained on the
obstruent class. (Error bars are standard errors.)

First, we examined the critical trials for the fixed effects of
CONDITION (bimodal, unimodal), TESTED WORD (trained,
untrained), and TRAINED SEGMENT CLASS (sonorant, ob-
struent). There was a main effect of CONDITION (p < .05):
as predicted, participants in the bimodal condition responded
‘different’ more often than in the unimodal condition. How-
ever, there was also a significant interaction between CON-
DITION and TRAINED SEGMENT CLASS (p < .05): the dif-
ference between the bimodal and the unimodal conditions
was driven mainly by the participants trained on the sono-
rant class.4 That is, as can be seen in the left part of Fig. 3,
participants trained on sonorants responded ‘different’ more
often in the bimodal than in the unimodal condition. However,
as illustrated in the left part of Fig. 4, all participants trained
on obstruents performed similarly regardless of the condition,
even on the trained items. These results suggest that the distri-
butional training was successful when it was done on sonorant
length continua, but not when the training continua involved
obstruents, in which case there was no difference between the
bimodal and the unimodal conditions on any tested words:
whether critical or filler, or trained and untrained.

Since the training was only successful for the sonorant-
trained participants, we examined the critical trials for the ef-
fect of generalization for this group alone. We used a mixed

4Both of these effects were only marginal in ANOVAs with p =
.06 and p = .08, respectively.
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model with fixed effects of CONDITION (bimodal, unimodal)
and TESTED WORD (trained, untrained). As expected by pre-
vious main effect, there was a significant main effect of CON-
DITION (p < .01) with participants in the bimodal condition
responding ‘different’ more often than in the unimodal condi-
tion. Furthermore, as predicted by the generalization hypoth-
esis, there was no significant main effect of TESTED WORD,
meaning that participants in both bimodal and unimodal con-
ditions performed similarly on trained and untrained items.
Separate pairwise comparisons revealed that the difference
between bimodal and unimodal conditions was significant for
both trained and untrained critical items (ps< .01). These re-
sults suggest that participants generalized length to the novel
segment class.

This effect was not due to a simple bias of bimodally-
trained participants to respond ‘different’ on any trial, as re-
flected by a significant interaction between CONDITION and
STIMULUS TYPE (critical, filler) (p < .05), as well as the
same interaction for only untrained items (p < .05)5: the dif-
ference between the bimodal and the unimodal conditions
was significantly larger for the critical than for the filler trials,
even when just the untrained items were considered.

The fact that testing was identical for all participants,
but the distributional training was only successful for the
sonorant-trained group, and not for the obstruent-trained one,
allows us to make a direct comparison between the two
groups. By treating the performance of the obstruent-trained
group as a baseline (38% ‘different’ responses), we can see
the net effect of bimodal vs. unimodal training by comparing
the performance of sonorant-trained participants to the base-
line. This comparison reveals that successful bimodal training
increased ‘different’ responses by 13%, whereas successful
unimodal training decreased ‘different’ responses by 21%.

Discussion
This study yielded two key results. First, monolingual speak-
ers of English can be trained through purely distributional
learning to recognize a phonological category distinction on
a phonetic dimension (segmental length) which is never con-
trastive in their native language. After only one ten-minute
training session of 256 critical items, participants exposed to
sonorants sampled from a bimodally distributed length con-
tinuum categorized words differing only in sonorant length
as being distinctive more often than did participants exposed
to sonorants of unimodally distributed length. Second—and
even more crucially to our model’s predictions—speakers
generalized the relevance of length for sound categorization
to a different set of consonants, obstruents. This generaliza-
tion was quite aggressive, with the effect on obstruent cate-
gorization during testing just as strong as the effect on sono-
rant categorization. This result seems not to be reducible to
greater general sensitization to any phonetic distinctions for
the bimodally trained group, since the effect on performance

5For these cases the models with the full random effects structure
failed to converge. Thus, we iteratively removed random effects with
the smallest variance until convergence was successful.

for fillers—even those to which participants received no ex-
posure during training—was smaller (though this comparison
must be taken with caution since performance for fillers was
higher across the board than for critical trials). This result
contrasts with Maye and Gerken’s (2001) study of distribu-
tional learning of a novel voicing distinction, where no evi-
dence of generalization was found.6 Since Maye and Gerken
only used one segment continuum for training, our results
suggest that training on a wider range of segments might yield
stronger generalization.

For participants trained on obstruents, in contrast, the
choice of bimodal versus unimodal distribution of segment
length had no discernible effect on word categorization. We
believe the most likely reason for this is related to the dif-
ferences in duration between these two classes of consonants
in naturally spoken English: obstruents (or at least all frica-
tives that we used in the experiment) are generally longer
than sonorants. Since we created uniform length continua
for both segment classes, this meant that all the tokens from
the sonorant continua were longer than their usual duration
range in English, while for obstruents these ranges partially
overlapped. We believe that this might have been the rea-
son why the obstruent-trained participants did not pick up
on the distributional information: they may have heard the
fricatives of around 200msec as unusually long, but still inter-
preted them as within reasonable English-like duration range,
which consequently was not sufficient for bimodally-trained
participants to infer contrastiveness of the length dimension.
If this is correct, then modifying the obstruent continua (by
including longer durations) should be more effective in guid-
ing participants’ inferences. Preliminary data from a follow-
up experiment (N=11) suggest that this is indeed the case:
when the obstruent continua range from 140msec to 280msec,
the results for obstruent-trained participants look similar to
those for sonorant-trained participants in the experiment re-
ported in this paper. In the face of the learning failure ob-
served in the present experiment for obstruent-trained partic-
ipants, the generalization by sonorant-trained participants to
obstruents is all the more impressive: distributional evidence
as to whether length is contrastive for sonorants informs par-
ticipants’ perception of obstruent length contrastiveness even
within a range of the continuum which would not itself drive
learning through exposure to obstruents themselves.

The results reported in this paper are problematic for tra-
ditional mapping approaches to L2 sound perception and
learning because these approaches have no straightforward
explanation of distributional learning, much less of gener-
alization. If we assume that phonological categorization of
novel sounds proceeds through mapping of these sounds onto
the most similar L1 categories, then frequency of exposure
to sounds from a given phonetic continuum (as in distribu-
tional learning) should not have any effect on how the end-

6Perfors and Dunbar (2010) did obtain both learning and gener-
alization for a voicing distinction similar to Maye and Gerken’s, but
they used much more training and no fillers.
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points of that continuum are mapped. Our results show, how-
ever, a clear difference in responses between bimodally- and
unimodally-trained participants. Furthermore, under mapping
approaches there is no reason why exposure to novel stimuli
from one segment class should affect perception and catego-
rization of stimuli from another class. Yet our results show
this exact kind of dependency.

Conclusion
In this paper we described a model of L2 phonological ac-
quisition, in which learners are assumed to use their previ-
ous language knowledge, combined with statistical proper-
ties of the novel language, to make implicit predictions about
the underlying structure of the phonological system of that
language. We predicted that learners should be able to infer,
during a short period of exposure, that if a given phonetic di-
mension is contrastive for some set of segments, then it is
also possibly contrastive for a different set of segments in
that language. Consequently, listeners trained to attend to a
given dimension for some segments should also be able to
attend to this dimension for novel segments. We tested this
prediction of the model by training monolingual speakers of
English on a novel phonological contrast (segmental length),
and then testing them on categorization of the contrasted seg-
ments for both a trained segment class and an untrained class.
We showed that participants were able to infer a phonologi-
cal contrast on this dimension even though the dimension is
never contrastive in their native language, and that they gen-
eralized length from one class to another (from sonorant to
obstruent consonants), suggesting that they were able to infer
that length cross-cuts a wide range of segments. These results
support our approach to understanding L2 learning as a pro-
cess of inductive inference.
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