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Binomial expressions are more regularized—their ordering preferences (e.g. “bread and but-
ter” vs. “butter and bread”) are more extreme—the higher their frequency. Although standard
iterated-learning models of language evolution can encode overall regularization biases, the sta-
tionary distributions in these standard models do not exhibit a relationship between expression
frequency and regularization. Here we show that introducing a frequency-independent regu-
larization bias into the data-generation stage of a 2-Alternative Iterated Learning Model yields
frequency-dependent regularization in the stationary distribution. We also show that this model
accounts for the distribution of binomial ordering preferences seen in corpus data.

1. Introduction

Languages are shaped both by the cognitive architectures of individual speakers
and by the process of cultural transmission that acts across generations. In this
paper we ask how these two factors jointly contribute to a key dichotomy in lan-
guage structure: the trade-off between broadly-applicable compositional knowl-
edge and knowledge of item-specific idiosyncrasies. Specifically, we take up the
case of frequency dependence in regularization—the consistency of a preference
for a given form among multiple alternatives.* Although regularization is a well-
attested phenomenon in statistical learning, frequency-dependent regularization is
not. Here we demonstrate that frequency dependence of regularization can arise as
an emergent property of a frequency-independent regularization bias in language
production, combined with the bottleneck effect of cultural transmission.
Item-specific idiosyncrasies (i.e. exceptions to the rules) are well known to
be frequency-dependent. For example, more frequent verbs are more likely to
have irregular conjugations (Lieberman, Michel, Jackson, Tang, & Nowak, 2007).
More recently, we (Morgan & Levy, 2015) have demonstrated a different type

2Following previous evolutionary linguistics literature, particularly Reali and Griffiths (2009), we
define regularization as reduction in entropy of a distribution, i.e. reduction in variation. We note that
this is different from the notion of “regular” items as those that conform to compositional rules.



of frequency-dependent idiosyncrasy at the level of multi-word phrases, specifi-
cally binomial expressions of the form “X and Y” (Cooper & Ross, 1975; Benor
& Levy, 2006). Word order preferences for these expressions are gradient; for
example, “radio and television” is preferred to “television and radio” in a 63 to
37 ratio, while “bread and butter” is preferred to “butter and bread” 99 to 1 (Lin
et al., 2012). These ordering preferences are partially compositional, determined
by productive, violable constraints, e.g. a constraint to put shorter words before
longer words. But these expressions are also subject to learned item-specific id-
iosyncrasies, e.g. despite a generally strong constraint for words referring to males
to preceed words referring to females, “ladies and gentlemen” is preferred over
“gentlemen and ladies”. In addition to the possibility of the complete reversal of
compositional preferences, item-specific idiosyncrasies can also be gradient, e.g.
a binomial whose compositional preference predicts a 60/40 distribution might
instead be used in a 90/10 ratio. Morgan and Levy (2015) showed that, as is the
case with irregular verbs, the distribution of idiosyncrasies in binomial ordering
preference is frequency-dependent: more frequent binomial expressions deviate
more from compositional preferences. In particular, more frequent binomials are
more strongly regularized.

Regularization is a well-established phenomenon in statistical learning. In a
variety of tasks, both linguistic and non-linguistic, in which participants learn and
reproduce probability distributions over alternates, both children and adults tend
to regularize their productions (Hudson Kam & Newport, 2005; Reali & Griffiths,
2009; Ferdinand, Kirby, & Smith, 2014). For example, Reali and Griffiths (2009)
found that when exposed to two labels for a novel object, subjects on average
reproduced the more frequent label even more frequently than that label was seen
in training. Although this tendency was weak, they demonstrated that even such
a small bias towards regularization can have significant long-term impacts, as the
bias acts across successive generations to shape language over time. Bickerton
(1981), Hudson Kam and Newport (2005), and others have argued that children’s
tendency to regularize is an important mechanism of language change, e.g. for
forming more consistent languages out of pidgins.

However, standard iterated-learning theories of language evolution do not, in
general, lead to frequency-dependent regularization. Thus our finding in Morgan
and Levy (2015) is unexpected, and poses a challenge to models of language evo-
lution. In this paper, we review the key data (Section 2) and show that standard
iterated-learning models fail to account for frequency-dependent regularization
(Section 3). We then show that frequency-dependent regularization emerges when
the data-generation stage of a standard iterated learning model is augmented with
a frequency-independent regularization bias, and that this augmented model ac-
counts for the empirical distribution of binomial ordering preferences (Section 4).
Section 5 concludes.



2. Dataset

We take advantage of a uniquely appropriate real-world data set: Morgan and Levy
(2015)’s corpus of 594 binomial expression types hand-annotated for a range of
semantic, phonological, and lexical constraints known to affect binomial order-
ing preferences, and with frequencies of each ordering extracted from the Google
Books corpus (Lin et al., 2012). Morgan and Levy also reported a model esti-
mating the quantitative compositional ordering preference for each binomial ex-
pression, as expected on the basis of the above constraints (independent of actual
occurrence frequencies). The dataset and model thus give us three key measures
for these expressions:
o The overall (unordered) frequency of an expression: freq(“X and
Y”)+freq(“Y and X”)
e The observed preference for occurrence in a given order, expressed as a
number between 0 and 1: freq(“X and Y”)/(freq(“X and Y”")+freq(“Y and
X))
e The compositional preference for occurrence in a given order, expressed as
a number between 0 and 1, given by Morgan and Levy’s model.
Observed preferences are multimodally distributed, with modes at the extremes
as well as around 0.5 (Fig. 1a). Crucially, this pattern is not predicted by com-
positional preferences, which predict only a single mode (Fig. 1b). This pattern
reflects the key generalization to be accounted for in the present paper: that expres-
sions with higher overall frequency diverge most from compositional preferences,
and are more regularized (Fig. 1c).

3. Regularization is Frequency-Independent in Standard Iterated
Learning

We use 2-alternative iterated learning—specifically following Reali and Griffiths
(2009) (see also Smith, 2009)—to simulate the evolution of binomial expressions
over generations of speakers. A learner hears /N tokens of a binomial expression,
with x; of them in a given order—we use alphabetical order as a neutral reference
order—and then infers a hypothesis §; € [0, 1] which is the proportion of time
a binomial should be produced in alphabetical order. The learner then generates
new data using 6.

The prior probability P(6) of a binomial being preferred in a given order can
be expressed using the beta distribution. We can treat the compositional prefer-
ence as a form of prior knowledge of ordering preferences for a binomial. To
incorporate this prior knowledge, we use a parameterization of the beta distribu-
tion with a parameter p that determines the mean of draws and a concentration
parameter v that determines how tightly clustered around the mean those draws
are. (v can also be thought of as reflecting how confident in the prior we are, e.g.
v = 10 would indicate confidence equivalent to having seen ten instances of a
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Figure 1. Results from Morgan and Levy (2015). (a) Histogram of binomial types’ observed pref-
erences. (b) Histogram of binomial types’ compositional preferences. (c) We define an expression’s
extremity as the absolute difference between its observed preference and 0.5. More frequent expres-
sions have more extreme/regularized preferences; see Morgan & Levy (2015) for alternative ways to
quantify extremity that yield similar conclusions. Lower panel shows density of overall frequency
counts (scaled as described in Section 4.2). The distribution is non-Zipfian because the corpus is re-
stricted to binomial types with at least 1000 occurrences in the Google Books corpus to ensure accurate
observed preference estimates.

given binomial expression type before.) Under this parameterization,

pur—1 1—p)v—1
p(oy = A=) (M
B(uv, (1 - p)v)

where B is the beta function. Because p represents compositional ordering pref-
erences, it varies for each binomial, and is set according to Morgan and Levy’s
model. All learners are assumed to have the same y value for a given binomial.
v is constant for all binomial expressions for all learners, and is a free parameter.
Given 64, data is generated binomially:

N
P(Jflwl) = (xl)efl(l — 91)N—x1 2)

We define a chain of learners under this model by initializing a single learner
with some hypothesis. This first generation produces N utterances according to
the distribution defined in Eq. 2. The learner in the next generation applies Bayes
rule and chooses a hypothesis from the resulting posterior distribution over hy-
potheses. This process continues iteratively.

Reali and Griffiths (2009) have demonstrated that regularization occurs in it-
erated learning models with sparse priors (i.e. those that favor hypothesis close to
0 and 1); given our parameterization of the beta distribution, these are hypothesis
with v < 2. However, this regularization is not dependent on the expression’s
overall frequency. We demonstrate this by modeling chains of learners with dif-
ferent values of V. We model a single binomial expression with prior probability
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Figure 2. Simulated distribution of binomial ordering preferences for a single expression type with
# = 0.6 in a standard 2-Alternative Iterated Learning Model (dotted lines) and one with an explicit
regularization bias in data production of R = 1.1 (solid lines). Note that #] = 6; in the standard
model. Regularization depends upon IV only in the model with an explicit regularization bias.

1 = 0.6. We explore different values of v, specifically v = 1 (a sparse prior) and
v = 10 (a dense prior), and values of N = 10, 100, 200, 500. For each combina-
tion of v and N, we approximate the distribution over expression preferences by
running 100 chains of learners for 500 generations each and taking the hypothesis
of the final generation in each chain, except in the N = 500, v = 1 case where
chains are run for 1000 generations each because convergence to the stationary
distribution is slower for higher values of IN. (For all chains in all simulations in
this paper, we initialize #; = 0.5 and use maximum a posteriori (MAP) estima-
tion to choose 0, in each new generation. Results are qualitatively similar under
posterior sampling.) Regularization in the resulting distributions does not depend
on N (Fig. 2, dashed lines; the small apparent sensitivity to /N for a given value
of v is due to the finite number of chains used in the simulations.) The number of
times an expression is seen in each generation does not affect its ultimate degree
of regularization.

4. Emergence of Frequency-Dependent Regularization in Iterated
Learning

The standard 2-Alternative Iterated Learning Model does not predict frequency-
dependent regularization. We now demonstrate that we can predict frequency-
dependent regularization by introducing a frequency-independent regularization



bias into our model. Under this model, frequency-dependent regularization is an
emergent property of the interaction of the frequency-independent regularization
bias with the bottleneck effect of cultural transmission.

We augment the learning and transmission process as follows. After hearing
data, the learner chooses a hypothesis 6; as before, then applies a regularization
function to produce a new hypothesis 67, then generates data from 6.

The regularization function is the regularized incomplete beta function (equiv-
alently, the cumulative distribution function of the beta distribution), restricted to
be symmetric such that it has a single free parameter R:

Syt —p)f-tat

f(x;R) = B(E,R)

3)

As shown in Fig. 3, the bias parameter R controls strength of regularization. When
R =1, this is the identity function, i.e. no explicit regularization is added, hence
the standard model is a special case of the augmented model with R = 1. As R
increases, the regularization bias grows stronger.

4.1. Results: Frequency-dependent regularization

When we repeat the simulations from above us-
ing a non-trivial regularization bias & = 1.1,
we see frequency-dependent regularization in the
case with a dense prior (Fig. 2). Although the
regularization bias itself is frequency-independent,
frequency-dependence emerges from the interac-
tion of the regularization bias with the process of
cultural transmission: At lower frequencies, there
is not sufficient data for the regularization bias to
overcome the prior. At higher frequencies, the reg-
ularization bias becomes increasingly dominant as
there is increasingly enough data for the effects of this bias to be carried across
generations. Even a relatively weak bias (R = 1.1) can produce noticeable regu-
larization when compounded across generations. However, the prior always con-
tinues to exert some influence; thus, even the highest frequency expressions do
not become completely regularized.

Another linguistically accurate property of this model is that for sufficiently
high values of N, the distribution over hypotheses includes a mode on the opposite
side of 0.5 from the prior. Thus the model correctly predicts that at high enough
frequencies, an expression can become idiosyncratically preferred in the opposite
of its compositionally predicted direction (as in “ladies and gentlemen”).

Figure 3. Regularization function
with different values of R
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Figure 4. Predicted distribution of 6. We see a trade-off between effects of the prior and the regular-
ization bias. When the prior is stronger (high v, low R), we see a unimodal distribution of preferences,
similar to Fig. 1b. When the regularization bias is stronger (low v, high R), we see too much regular-
ization. At appropriate values of R and v, we see the correct multimodal distribution of preferences
as seen in corpus data (Fig. 1a).
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4.2. Results: Simulating corpus data

Having demonstrated that our augmented model produces frequency-dependent
regularization, we now show that it additionally predicts the true language-wide
distribution of binomial preference strengths seen in corpus data. The target dis-
tribution to be accounted for is shown in Fig. 1a.

We take the true properties of each binomial expression in the corpus: its com-
positional preference determines p and its overall frequency determines N. We
scale overall frequency counts based on estimated lifetime exposure to 300 million
total words (Levy, Fedorenko, Breen, & Gibson, 2012, footnote 10). The result-
ing distribution of values /V is shown in Fig. 1c. For each binomial in the corpus,
we approximate the stationary distribution by modeling 10 chains of learners for
200 generations each and taking the hypothesis 6] of the final generation of each
chain.

Our model has two free parameters, v and R. We model the corpus data as
described above for a range of values of both of these parameters. As shown in
Fig. 4, our model displays a trade-off between the prior and the regularization
bias as a function of these parameters. At appropriate values, our model correctly
predicts the multimodal distribution of corpus data as seen in Fig. 1a.

5. Conclusion

We have demonstrated that a frequency-independent regularization bias in data
generation, combined with cultural transmission, can produce the pattern of
frequency-dependent regularization of binomial ordering preferences seen in cor-
pus data. Cultural transmission creates frequency-dependence by introducing a



bottleneck effect (i.e. a limit on the number of tokens of a binomial seen by
each generation) that favors prior knowledge at lower frequencies while allowing
the regularization bias to be increasingly well transmitted at higher frequencies.
This finding sheds light on the origins of linguistic structure in two important
ways: one, it confirms earlier demonstrations of a bias to regularize when learn-
ing stochastic linguistic items. Second, it shows that this bias can apply equally
across all levels of frequency, but that the distribution of idiosyncrasy seen in the
language emerges from the interaction of individuals’ cognitive biases with the
bottleneck effect of cultural transmission. Additionally, we have expanded the
empirical coverage of iterated learning models, showing that they can account for
not only qualitative generalizations in natural language and data from laboratory
experiments, but also detailed patterns of naturalistic corpus data. As we hope to
have shown, binomial ordering preferences are a particularly suitable test case for
iterated learning models, at once theoretically interesting, data-rich, and compu-
tationally tractable.
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