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Abstract

Most models of choice in language focus on broadly applica-
ble generative knowledge, treating item-specific variation as
noise. Focusing on word order preferences in binomial ex-
pressions (e.g. bread and butter), we find meaning in the
item-specific variation: more frequent expressions have more
polarized (i.e. frozen) preferences. Of many models consid-
ered, only one that takes expression frequency into account can
predict the language-wide distribution of preference strengths
seen in corpus data. Our results support a gradient trade-oft in
language processing between generative knowledge and item-
specific knowledge as a function of frequency.

Keywords: Bayesian modeling; binomial expression; fre-
quency; word order

Introduction

A pervasive question in language processing research is how
we reconcile generative knowledge with idiosyncratic prop-
erties of specific lexical items. In many cases, the generative
knowledge is the primary object of study, while item-specific
idiosyncrasies are treated as noise. For instance, in mod-
eling the dative alternation, Bresnan, Cueni, Nikitina, and
Baayen (2007) take care to demonstrate that effects of ani-
macy, givenness, etc. on structure choice hold even after ac-
counting for biases of individual verbs. But the verb biases
themselves are not subject to any serious investigation. Here
we present evidence that patterns within the item-specific
variation are meaningful, and that by modeling this variation,
we not only obtain better models of the phenomenon of in-
terest, we also learn more about language structure and its
cognitive representation.

Specifically, we will develop a model of word order prefer-
ences for binomial expressions of the form X and Y (i.e. bread
and butter preferred over butter and bread). Binomial order-
ing preferences are in part determined by generative knowl-
edge of violable constraints which reference the semantic,
phonological, and lexical properties of the constituent words
(e.g. short-before-long; Cooper & Ross, 1975; McDonald,
Bock, & Kelly, 1993), but speakers also have idiosyncratic
preferences for known expressions (Morgan & Levy, 2015;
Siyanova-Chanturia, Conklin, & van Heuven, 2011). Bino-
mial expressions are a useful test case for modeling idiosyn-
cracies because their frequencies can be robustly estimated
from the Google Books n-grams corpus (Lin et al., 2012).
Here we will demonstrate that explicitly modeling these ex-
pressions’ idiosyncrasies both produces a better predictive
model for novel expressions and also constrains our theory
of these expressions’ cognitive representations.

Specifically, we identify two reasons why such a model is
advantageous:

1. Models identify both rules and exceptions.

One intrinsic reason that modeling idiosyncrasies is advan-
tageous is because identifying exceptions can help identify
rules. In a traditional linguistic setting (e.g. identifying rules
for past tense formation), we rely upon intuition to deter-
mine what is the grammatical rule and which verbs should
be treated as exceptions. In the case of binomial expressions,
we likewise expect there to be exceptions to the rules, partic-
ularly for frequent expressions. For example, there is in gen-
eral a strong constraint to put men before women; however,
ladies and gentlemen is preferred over the reverse due to its
conventionalized formal use. But compared with past tense
formation, the rules that determine binomial ordering are far
more complex and gradient, such that using traditional lin-
guistic analysis to determine the full set of rules is not viable.
In this case, we require our model not only to identify what
the rules are but simultaneously to determine which expres-
sions must be treated as exceptions. Having such a model is
useful for empirical cognitive science, e.g. for disentangling
the effects of people’s generative knowledge from effects of
their item-specific linguistic experience on language process-
ing (Morgan & Levy, 2015).

2. Models relate cognitive representations to
language-wide structure.

As a further benefit, models can help us understand how
structural properties of the language relate to people’s cog-
nitive linguistic representations. In particular, let us look at
the distribution of preferences for binomial expressions taken
from a subset of the Google Books corpus (described later in
Creating the Corpus.) Each binomial can be assigned a pref-
erence strength corresponding to how frequently it appears in
alphabetical order, from 0 (always in non-alphabetical order)
to 0.5 (perfectly balanced) to 1 (always alphabetical). Bino-
mials which always or nearly always appear in one order are
said to be frozen. The distribution of preference strengths is
shown in Figure 1. Preferences have a multimodal distribu-
tion with modes at the extremes as well as around 0.5. This
distribution poses a challenge to standard models of binomial
preferences. As we will show later, standard models predict
only a single mode around 0.5. In other words, the true distri-
bution of binomial expressions includes more frozen binomi-
als than standard models predict. As we develop a model that
accounts for this multimodal distribution, we will see that this
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language-structural fact puts constraints on our theories of in-
dividuals’ cognitive representations of binomial expressions.

In the remainder of this paper, we first describe how we
developed a new corpus of binomial expressions. We then
explore a variety of models with differing levels of ability to
model item-specific idiosyncrasies. Finally, we return to the
issue of how these models inform us about cognitive repre-
sentations of language.
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Figure 1: Binomial preferences are multimodally distributed
in corpus data

Creating the Corpus

We extracted all Noun-and-Noun binomials from the
parsed section of the Brown corpus (Marcus, Santorini,
Marcinkiewicz, & Taylor, 1999) using the following Tregex
(Levy & Galen, 2006) search pattern:

/"N/=top < (/°NN/ 'S, (/,/ > =top)

((CC <: and > =top) (/°NN/ > =top)))

This pattern finds all Noun-and-Noun sequences dominated
by a Noun Phrase which are not preceded by a comma (to
exclude the final pair in lists of more than two elements), a
total of 1280 tokens.

Binomials were coded for a variety of constraints, origi-
nally described by Benor and Levy (2006) but restricted to
the subset determined to be most relevant for predicting or-
dering preferences by Morgan and Levy (2015):

Length The shorter word (in syllables) comes first, e.g.
abused and neglected.

No final stress The final syllable of the second word should
not be stressed, e.g. abused and neglected.

Lapse Avoid unstressed syllables in a row, e.g. FARMS and
HAY-fields vs HAY-fields and FARMS

Frequency The more frequent word comes first, e.g. bride
and groom.

Formal markedness The word with more general meaning
or broader distribution comes first, e.g. boards and two-by-
fours.

Perceptual markedness Elements that are more closely
connected to the speaker come first. This constraint encom-
passes Cooper and Ross’s (1975) ‘Me First’ constraint and in-
cludes numerous subconstraints, e.g.: animates precede inan-
imates; concrete words precede abstract words; e.g. deer and
trees.

Power The more powerful or culturally prioritized word
comes first, e.g. clergymen and parishioners.

Iconic/scalar sequencing Elements that exist in sequence
should be ordered in sequence, e.g. achieved and maintained.
Cultural Centrality The more culturally central or common
element should come first, e.g. oranges and grapefruits.
Intensity The element with more intensity appears first, e.g.
war and peace.

The metrical constraints, Length and No final stress, were
automatically extracted from the CMU Pronouncing Dictio-
nary (2014), augmented by manual annotations when neces-
sary. Word frequency was taken from the Google Books cor-
pus, counting occurrences from 1900 or later. Semantic con-
straints were hand coded by two independent coders (drawing
from the first author and two trained research assistants). Dis-
crepancies were resolved through discussion.

For each binomial, we obtained the number of occurrences
in both possible orders in the Google Books corpus from 1900
or later. Items containing proper names, those with errors
in the given parses, those whose order was directly affected
by the local context (e.g. one element had been mentioned
previously), and those with less than 1000 total occurrences
across both orders were excluded from analysis, leaving 594
binomial expression types.

Models

We will develop four models of binomial ordering prefer-
ences: a standard logistic regression, a mixed-effects logis-
tic regression, and two hierarchical Bayesian beta-binomial
models. All are based on the idea of using logistic regres-
sion to combine the constraints described above in a weighted
fashion to produce an initial preference estimate for each bi-
nomial. The models differ in whether and how they explic-
itly model the fact that true preferences will be distributed id-
iosyncratically around these estimates. The standard logistic
regression includes no explicit representation of item-specific
idiosyncrasies. The mixed-effect logistic regression includes
random intercepts which account for item-specific idiosyn-
crasies, but which are constrained to be distributed normally
around the initial prediction. The two Bayesian models as-
sume that item-specific preferences are drawn from a beta
distribution whose mean is determined by the initial predic-
tion. In the first of these models, the concentration of the beta
distribution is fixed, while in the second, it varies with the
frequency of the binomial in question.

Evaluation

One obvious criterion for evaluating a model is how well it
predicts known binomial preferences (i.e. the corpus data).
For this, we report R*(X,X) as well as mean L1 error,
%Zﬁ\lz | [%i — x;|, where %; is the model prediction for how of-
ten binomial i occurs in a given order, and x; is the true corpus
proportion.

In addition to considering model predictions for each in-
dividual item, we want to consider the overall distribution of
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preferences within the language. As we will see, a model can
provide good predictions for individual items without cor-
rectly capturing the language-wide multimodal distribution
of these expressions’ preference strengths. Thus our second
desideratum will be the shape of the histogram of expression
preferences.

Logistic regression

Logistic regression is the standard for modeling syntactic al-
ternations, both for binomial expressions specifically (e.g.
Benor & Levy, 2006; Morgan & Levy, 2015) as well as
other syntactic alternations (e.g. Bresnan et al., 2007; Jaeger,
2010). Thus we begin by constructing a baseline logistic re-
gression model. Benor and Levy have argued that one should
train such a model on binomial types rather than binomial to-
kens because otherwise a large number of tokens for a small
number of overrepresented types can skew the results. While
agreeing with this logic, we note that to train only a single
instance of each type is to ignore a vast amount of data about
the gradient nature of binomial preferences. As a compro-
mise, we instead train a model on binomial tokens, using to-
ken counts from the Google Books corpus, with each token
weighted in inverse proportion to how many tokens there are
for that binomial type, i.e. a type with 1000 tokens will have
each token weighted at 1/1000. In this way, we preserve the
gradient information about ordering preferences (via the di-
versity of outcomes among tokens) while still weighting each
type equally. The constraints described above are used as pre-
dictors. Outcomes are coded as whether or not the binomial
token is in alphabetical order.

For this and all future models, predictions are generated for
all training items using 20-fold cross validation. Results for
all models can be seen in Figure 2. While the logistic regres-
sion model does a reasonable job of predicting preferences
for individual items, it does not capture the multimodal dis-
tribution of preference strengths seen in the corpus data. We
proceed to consider models in which item-specific idiosyn-
crasies are modeled explicitly.

Mixed-effects regression

By far the most common method in language modeling for
accounting for item-specific idiosyncrasies is mixed-effects
regression models (Jaeger, 2008). Formally, this model as-
sumes that idiosyncratic preferences are distributed normally
(in logit space) around the point estimate given by the fixed-
effects components of the regression model.

We train a mixed-effect logistic regression on binomial to-
kens using the 1med package in R. We use as predictors the
same fixed effects as before, plus a random intercept for bino-
mial types. As described above, the fitted model now predicts
a distribution, rather than a single point estimate, for a novel
binomial. To make predictions for our (cross-validated) novel
data, we sampled 1000 times from this distribution for each
item. The histogram in Figure 2(c) shows the full sample dis-
tribution across all items. In order to generate point estimate
predictions for computing L1 and R? (shown in Figure 2(b)),

we take the sample median for each item, which optimizes
the L1 error.

Including random intercepts improves neither our point es-
timates nor our language-wide distribution prediction. Appar-
ently, the normal distribution of the random intercepts is not
well suited to capturing the true distribution of binomial pref-
erences. In particular, for a given item, the normality of ran-
dom effects in logit space leads to predictions that are skewed
towards the extremities of probability space.!

Hierarchical Bayesian beta-binomial model

Having seen that normally distributed random intercepts do
not adequately capture the distribution of item-specific pref-
erences, we introduce the beta distribution as a potentially
better way to model this distribution. The beta distribution,
defined on the interval [0, 1], has two parameters: one which
determines the mean of the draws from the distribution, and
one which determines the concentration, i.e. whether draws
are likely to be clustered around the mean versus distributed
towards O and 1. For example, for a beta distribution with
a mean of 0.7, a high concentration implies that most draws
will be close to 0.7, while a low concentration implies that
roughly 70% of draws will be close to 1 and 30% of draws
will be close to 0. When we treat the output of the beta dis-
tribution as a predicted binomial preference, a high concen-
tration corresponds to a pressure to maintain variation while
a low concentration corresponds to a pressure to regularize.

In order to incorporate the beta distribution into our model
of binomial preferences, we combine the logistic regression
and the beta distribution in a hierarchical Bayesian model
(Gelman et al., 2013), as shown in Figure 3. For each item,
the model determines a mean u via standard logistic regres-
sion, using the same predictors as before. The model also
fits a concentration parameter v. These two parameters deter-
mine a beta distribution from which the binomial preference n
is draw. Observed data is drawn from a binomial distribution
with parameter 7.

We fit this model using the rjags package in R (Plum-
mer, 2003). After a burn-in period of 2000 iterations, we
run for 2000 more iterations sampling every 20 iterations. In
order to predict novel data, we fix the point estimates for the
regression coefficients § and the concentration parameter v.
We then sample 1000 draws of & for each item. As with
the mixed-effects model, the histogram in Figure 2(c) shows
the full sample distribution, while point estimates (the sample
median) are used to calculate L1 error and R? (Figure 2(b)).

This model performs better on L1 and R? than the mixed-
effects model, but still worse than the initial logistic regres-
sion. The predicted histogram shows hints of the multimodal
distribution seen in corpus data, but is overall too flat.

! An alternative method of prediction for novel items would be to
take the median random intercept in logit space, i.e. to set all random
intercepts to 0. This method yields results that are very similar to—
but all-around slightly worse than—the original regression model.
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@ N: # unordered binomial types
M,: Frequency of binomial n
Q X: Predictors (i.e. generative
constraints)
B: Regression coefficients
0: Uninformative priors
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Figure 3: Our initial hierarchical Bayesian beta-binomial
model. The set of nodes culiminating in 4 implements a stan-
dard logistic regression. The output of this regression deter-
mines the mean of the beta distribution (with v determining
the concentration) from which 7 and finally the observed data
itself is drawn.

Beta-binomial with a variable concentration
parameter

A crucial fact that we have not taken into account in previ-
ous models is the role of frequent reuse in shaping expres-
sions’ preferences. In particular, the degree to which an ex-
pression takes on a polarized preference may depend upon its
frequency. We build upon the beta-binomial model in the pre-
vious section by parameterizing the concentration parameter
by the frequency of the (unordered) binomial expression:

v =exp(o+p-log(M,)) (h

where M,, is the total number of occurrences of binomial 7 in
both orders. Training and testing of the model are identical to
above.

We find that f = —0.26 is significantly different from 0
(tgg = —94;p < 2.2 x 10719), indicating that the concentra-
tion parameter changes significantly as a function of fre-
quency: less frequent expressions have more dense distribu-
tions while more frequent expressions have more polarized
distributions, as shown in Figure 5. We find that this model
generates the best predictions of all our models, produc-
ing a marginally significant improvement in both L1 (f503 =
1.86; p = 0.06) and R? (by fold t;9 = 1.76; p = 0.09) relative
to the initial logistic regression. Moreover, it correctly pre-
dicts the multimodal distribution of expression preferences.

Discussion

Overall, we found that all models made approximately simi-
larly good best-guess predictions for binomials they weren’t
trained on, but the frequency-sensitive beta-binomial model
was clearly superior in predicting the language-wide distribu-
tion of idiosyncratic binomial-specific ordering preferences.

Figure 4: Hierarchical Bayesian beta-binomial model with
variable concentration parameter
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Figure 5: Concentration parameter v as a function of fre-
quency with 95% confidence intervals. (Left) Parameteriza-
tion given in Eq. 1. (Right) Alternate parameterization with

cubic splines, for comparison.

This model also indicates that more frequent binomials are
on average more polarized.

This modeling finding supports Morgan and Levy (2015)’s
claim that generative knowledge and item-specific direct ex-
perience trade off gradiently in language processing, such that
processing of novel or infrequent items relies upon generative
knowledge, with reliance upon item-specific experience in-
creasing with increasing frequency of exposure. Morgan and
Levy support this claim with behavioral data, showing that
empirical preferences for binomials which are completely
novel depend on generative constraints while preferences for
frequent expressions depend primarily on frequency of expe-
rience with each order. Our modeling results augment this ar-
gument by demonstrating that this trade-off is likewise neces-
sary in order to predict the language-wide distribution of pref-
erence strengths. In particular, we can conceive of generative
knowledge as providing a prior for ordering preferences. Un-
der our final model, the logistic regression component serves
an estimate of generative knowledge, which generates pref-
erences clustered unimodally around 0.5. The amount of di-
rect experience one has with an expression then modulates
whether it conforms to this prior or whether it deviates. Items
with low frequency have a high concentration: they maintain
their variability and continue to contribute to the mode around
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0.5. Items with high frequency have a low concentration: they
are more likely to regularize and contribute to the modes at 0
and 1. Crucially, the inclusion of expression frequency as a
predictor of the concentration of the beta distribution is nec-
essary in order to achieve this effect in the model, demon-
strating that expressions are indeed relying differentially on
generative knowledge versus direct experience depending on
their frequency.

This finding fits with previous models of cultural transmis-
sion in which, in general, preferences gravitate towards the
prior (Griffiths & Kalish, 2005), but with sufficient expo-
sure, exceptions can be learned (e.g. irregular verbs; Lieber-
man, Michel, Jackson, Tang, & Nowak, 2007). However,
this raises a question which is not answered by our or oth-
ers’ models: why don’t all expressions converge to their prior
preferences eventually? We present two possibilities.

One possibility is that people’s probabilistic transmission
behavior differs at different frequencies. Convergence to the
prior relies upon probability matching: people must repro-
duce variants in approximately the proportion in which they
have encountered them. However, this is not the only possi-
ble behavior. Another possibility is that people preferentially
reproduce the most frequent variant they have encountered,
to the exclusion of all other variants, a process known as reg-
ularizing. If people’s tendency to probability match versus
regularize is dependent on the frequency of the expression
in question (with more regularizing at high frequencies), this
could produce the pattern of more polarized expressions at
higher frequencies seen in our data. Another possibility is that
there is some other unspecified exogenous source of pressure
towards regularization, as for instance seems to be the case in
child language acquisition (Hudson Kam & Newport, 2009).
This pressure might be weak enough that it is overwhelmed
by convergence towards the prior at lower frequencies, but
can be maintained for items with high enough frequencies to
have sufficient exposure to deviate from the prior. Further
work is necessary to disentangle these explanations.

In addition to contributing to our understanding of bino-
mial expression processing, we have demonstrated the value
of modeling the distribution of idiosyncratic preferences in
two ways. First, it has improved our ability to predict pref-
erences for novel items, by better differentiating the rule-
following training data from the exceptions. Second, this
model turns an observation about language-wide structure
(the multimodal distribution of preferences) into a constraint
on our theory of the cognitive representation and processing
of language (more polarization at higher frequencies).
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Figure 2: For each of our four models, we display: (a) Parameter estimates for the logistic regression component. Dots show
point estimates with bars indicating standard errors. (b) Predictions for each item, as well as mean by-type L1 error and R? with
by-fold standard errors. (c) Language-wide predicted distribution of preference strengths.
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