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Abstract

If language users are rational, they might choose to structure their utterances so
as to optimize communicative properties. In particular, information-theoretic and
psycholinguistic considerations suggest that this may include maximizing the uni-
formity of information density in an utterance. We investigate this possibility
in the context ofsyntactic reduction, where the speaker has the option of either
marking a higher-order unit (a phrase) with an extra word, orleaving it unmarked.
We demonstrate that speakers are more likely to reduce less information-dense
phrases. In a second step, we combine a stochastic model of structured utterance
production with a logistic-regression model of syntactic reduction to study which
types of cues speakers employ when estimating the predictability of upcoming
elements. We demonstrate that the trend toward predictability-sensitive syntactic
reduction (Jaeger, 2006) is robust in the face of a wide variety of control vari-
ables, and present evidence that speakers use both surface and structural cues for
predictability estimation.

1 Introduction

One consequence of the expressive richness of natural languages is that usually more than one means
exists of expressing the same (or approximately the same) message. As a result, speakers are often
confronted with choices as to how to structure their intended message into an utterance. At the same
time, linguistic communication takes place under a host of cognitive and environmental constraints:
speakers and addressees have limited cognitive resources to bring to bear, speaker and addressee
have incomplete knowledge of the world and of each other’s state of knowledge, the environment of
communication is noisy, and so forth. Under these circumstances, if speakers are rational then we
can expect them to attempt to optimize the communicative properties of their utterances.

But what are the communicative properties that speakers choose to optimize? The prevalence of
ambiguity in natural language—the fact that many structural analyses are typically available for a
given utterance—might lead one to expect that speakers seekto minimize structural ambiguity, but
both experimental (Arnold et al., 2004, inter alia) and corpus-based (Roland et al., 2006, inter alia)
investigations have found little evidence for active use ofambiguity-avoidance strategies. In this
paper we argue for a different locus of optimization: that speakers structure utterances so as to opti-
mizeinformation density. Here we use the term “information” in its most basic information-theoretic
sense—the negative log-probability of an event—and by “information density” we mean the amount
of information per unit comprising the utterance. If speakers behave optimally, they should structure
their utterances so as to avoid peaks and troughs in information density (see also (Aylett and Turk,
2004; Genzel and Charniak, 2002)). For example, this principle of uniform information density
(UID) as an aspect of rational language production predictsthat speakers should modulate phonetic



duration in accordance with the predictability of the unit expressed. This has been shown by Bell
et al. (2003, inter alia) for words and by Aylett and Turk (2004) for syllables. If UID is a general
principle of communicative optimality, however, its effects should be apparent at higher levels of
linguistic production as well. In line with this predictionare the results of Genzel and Charniak
(2002); Keller (2004), who found that sentences taken out ofcontext have more information the
later they occur in a discourse. For phonetic reduction, choices about word duration can directly
modulate information density. However, it is less clear howthe effects of UID at higher levels of
language production observed by Genzel and Charniak (2002)and Keller (2004) come about. Gen-
zel and Charniak (2002) show that at least part of their result is driven by the repetition of open-class
words, but it is unclear how this effect relates to a broader range of choice points within language
production. In particular, it is unclear whether any choices above the lexical level are affected by
information density (as expected if UID is general). In thispaper we present the first evidence that
speakers’ choice during syntactic planning is affected by information density optimization. This
evidence comes fromsyntactic reduction—a phenomenon in which speakers have the choice of ei-
ther marking a phrase with an optional word, or leaving it unmarked (Section 3). We show that in
cases where the phrase is marked, the marking reduces the phrase’s information density, and that the
phrases that get marked are the ones that would otherwise be the most information-dense (Section
4). This provides crucial support for UID as a general principle of language production.

The possibility that speakers’ use of syntactic reduction optimizes information density leads to ques-
tions as to how speakers estimate the probability of an upcoming syntactic event. In particular, one
can ask what types of cues language users employ when estimating these probabilites. For example,
speakers could compute information density using only surface cues (such as the words immediately
preceding a phrase). On the other hand, they might also take structural features of the utterance into
account. We investigate these issues in Section 5 using an incremental model of structured utterance
production. In this model, thepredictabilityof the upcoming phrase markable by the optional word
is taken as a measure of the phrase’s information density. The resulting predictability estimate, in
turn, becomes a covariate in a separate model of syntactic reduction. Through this two-step mod-
eling approach we show that predictability is able to explain a significant part of the variability in
syntactic reduction, and that evidence exists for speakersusing both structural and surface cues in
estimating phrasal predictability.

2 Optimal information density in linguistic utterances

We begin with the information-theoretic definition that theinformation conveyed by a complete ut-
teranceu is u’s Shannon information content (also called itssurprisal), or log2

1
P (u) . If the complete

utteranceu is realized inn units (for example, wordswi), then the information conveyed byu is the
sum of the information conveyed by each unit ofu:

log
1

P (u)
= log

1

P (w1)
+ log

1

P (w2|w1)
+ · · · + log

1

P (wn|w1 · · ·wn−1)
(1)

For simplicity we assume that eachwi occupies an equal amount of time (for spoken language) or
space (written language). Optimization of information density entails that the information conveyed
by eachwi should be as uniform and close to an ideal value as possible. There are at least two ways
in which UID may be optimal. First, the transmission of a message via spoken or written language
can be viewed as a noisy channel. From this assumption it follows that information density is
optimized near the channel capacity, where speakers maximize the rate of information transmission
while minimizing the danger of a mistransmitted message (see also Aylett (2000); Aylett and Turk
(2004); Genzel and Charniak (2002)). That is, UID is an optimal solution to the problem ofrapid
yet error-free communicationin a noisy environment.

Second and independently of whether linguistic communication is viewed as a noisy channel, UID
can be seen as minimizing comprehension difficulty. The difficulty incurred by a comprehen-
der in processing a wordwi is positively correlated with its surprisal (Hale, 2001; Levy, 2006).
If the effect of surprisal on difficulty is superlinear, thenthe total difficulty of the utteranceu
(
∑n

i=1[log 1
P (wi|w1···wi−1)

]k with k > 1) is minimized when information density is uniform (for



proof see appendix; see also Levy 2005, ch. 2).1 That is, UID is also an optimal solution to the
problem oflow-effort comprehension.

3 Syntactic reduction

UID would be optimal in several ways, but do speakers actually consider UID as a factor when
making choices during online syntactic production? We address this question by directly linking a
syntactic choice point to UID. If information density optimization is general, i.e. if it applies to all
aspects of language production, we should find its effects even in structural choices.

We use variation in the form of certain types of English relative clauses (henceforth RCs) to test this
hypothesis. At the onset of an RC speakers can, but do not haveto, utter the relativizerthat.2 We
refer to the omission ofthat as syntacticREDUCTION.

(1) How big is [NP the familyi [RC (that) you cook for i ]]?

Our dataset consists of a set of 3,452 RCs compatible with theabove variation, extracted from
the Switchboard corpus of spontaneous American English speech. All RCs were automatically
annotated for a variety of control factors that are known to influence syntactic reduction of RCs,
including RC size, distance of the RC from the noun it modifies, data about the speaker including
gender and speech rate, local measures of speech disfluency,and formal and animacy properties of
the RC subject (a full list is given in the appendix; see also (Jaeger, 2006)). These control factors
are used in the logistic regression models presented in Section 5.

4 Reduction as a means of information density modulation

From a syntactic perspective, the choice to omit a relativizer means that the first word of an RC
conveys two pieces of information simultaneously: the onset of a relative clause and part of its
internal contents (usually part of its subject, asyou in Example (1)). Using the notationw···−1 for
the context preceding the RC andw1 for the RC’s first word (excluding the relativizer, if any), these
two pieces of information can be expressed as a Markov decomposition ofw1’s surprisal:

log
1

P (w1|w···−1)
= log

1

P (RC|w···−1)
+ log

1

P (w1|RC, w···−1)
(2)

Conversely, the choice to use a relativizer separates out these two pieces of information, so that the
only information carried byw1 is measured as

log
1

P (w1|RC, that, w···−1)
(3)

If the overall distribution of syntactic reduction is in accordance with principles of information-
density optimization, we should expect that full forms (overt relativizers) should be used more often
when the information density of the RCwould be high if the relativizer were omitted.The infor-
mation density of the RC and subsequent parts of the sentencecan be quantified by their Shannon
information content. As a first test of this prediction, we usen-gram language models to measure the
relationship between the Shannon information content of the first word of an RC and the tendency
toward syntactic reduction.

We examined the relationship between rate of syntactic reduction and the surprisal thatw1 would
have if no relativizer had been used—that is,log 1

P (w1|w···−1)
—as estimated by a trigram language

1Superlinearity would be a natural consequence of limited cognitive resources, although the issue awaits
further empirical investigation.

2To be precise, standard American English restricts omission of that to finite, restrictive, non-pied-piped,
non-extraposed, non-subject-extracted relative clauses. Only such RCs are considered here.
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Figure 1: RCn-gram-estimated information density and syntactic reduction. Dotted green line
indicates lowess fit.

model.3 To eliminate circularity from this test (the problem that for an unreduced RC token,
P (w1|w···−1) may be low precisely becausethat is normally inserted betweenw···−1 andw1), we
estimatedP (w1|w···−1) from a version of the Switchboard corpus in which all optional relativizers
were omitted. That is, if we compare actual English with a hypothetical pseudo-English differing
only in the absence of optional relativizers, are the overt relativizers in actual English distributed in
a way such that they occur more in the contexts that would be ofhighest information density in the
pseudo-English?4 For every actual instance of an RC onset· · ·w−2w−1(that)w1 · · · we calculated
the trigram probabilityP (w1|w−2w−1): that is, an estimate of the probability thatw1 would have
if no relativizer had been used, regardless of whether a relativizer was actually used or not. We
then examined the relationship between this probability and the outcome event: whether or not a
relativizer was actually used. Figure 4 shows the relationship between the different quantiles of the
log-probability ofw1 and the likelihood of syntactic reduction. As can be seen, reduction is more
common when the probabilityP (w1|w−n · · ·w−1) is high. This inverse relationship betweenw1

surprisal and relativizer use matches the predictions of UID. 5

5 Structural predictability and speaker choice

Section 4 provides evidence that speakers’ choices about syntactic reduction are correlated with
information density: RC onsets that would be more informationally dense in reduced form are less
likely to be reduced. This observation does not, however, provide strong evidence that speakers are
directly sensitive to information density in their choicesabout reduction. Furthermore, if speakers
aresensitive to information density in their reduction choices, it raises a new question: what kind of
information is taken into account in speakers’ estimation of information density?

This section addresses the questions of whether reduction is directly sensitive to information density,
and what information might be used in estimates of information density, using a two-step modeling
approach. The first step involves a incremental stochastic model of structured utterance production.
This model is used to construct estimates of the first term in Equation (2) contributing to an RC
onset’s information density: thepredictability (conditional probability) of an RC beginning at a

3In cases where the conditioning bigram was not found, we backed off to a conditioning unigram, and
omitted cases where the conditioning unigram could not be found; no other smoothing was applied. We used
hold-one-out estimation ofn-gram probabilities to prevent bias.

4Omitting optional relativizers in the language model can alternatively be interpreted as assuming that
speakers equate (3) with the second term of (2)—that is, the presence or absence of the relativizer is ignored in
estimating the probablity of the first word of a relative clause.

5We also calculated the relationship for estimates of RC information density using a trigram model of the
Switchboard corpus as-is. By this method, thereis a priori reason to expect a correlation, and indeed reduction
is (more strongly than in Figure 4) negatively correlated with this measure.
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Figure 2: A flattened-tree representation of a sentence containing an RC. The incremental parse
throughworld consists of everything to the left of the dashed line.

given point in a sentence, given an incremental structural representation for the sentence up to that
point. Because the target event space of this term is small, awide variety of cues, or features, can
be included in the model, and the reliability of the resulting predictability estimates is relatively
high. This model is described in Section 5.1. The resulting predictability estimates serve as a crucial
covariate in the second step: a logistic regression model including a number of control factors (see
Section 3 and appendix). This model is used in Sections 5.3 asa stringent test of the explanatory
power of UID for speakers’ reduction choices, and in Section5.4 to determine whether evidence
exists for speakers using structural as well as surface cuesin their predictability estimates.

5.1 A structural predictability model

In this section we present a method of estimating the predictability of a relative clause in its sen-
tential context, contingent on the structural analysis of that context. For simplicity, we assume that
structural analyses are context-free trees, and that the complete, correct incremental analysis of the
sentential context is available for conditioning.6 In general, the task is to estimate

P (RCn+1···|w1···n, T1···n) (4)

that is, the probability that a phrase of type RC appears in the utterance beginning atwn+1, given
the incremental structured utterance〈w1···n, T1···n〉. To estimate these probabilities, we model pro-
duction as a fully incremental, top-down stochastic tree generation process similar to that used for
parsing in Roark (2001). Tree production begins by expanding the root node, and the expansion
process for each non-terminal nodeN consists of the following steps:

(a) choosing a leftmost daughter eventD1 for N , and making it theactivenode;

(b) recursively expanding the active node; and

(c) choosing the next right-sister eventDi+1, and making it the active node.

Steps (b) and (c) are repeated until a special right-sister event ∗END∗ is chosen in step (c), at
which point expansion ofN is complete. As in Collins (2003) and Roark (2001), this typeof
directed generative process allows conditioning on arbitrary features of the incremental utterance.

6If predictability from the perspective of the comprehenderrather than the producer is taken to be of primary
interest, this assumption may seem controversial. Nevertheless, there is little evidence that incremental struc-
tural misanalysis is a pervasive phenomenon in naturally occuring language (Roland et al., 2006), and the types
of incremental utterances occurring immediately before relative clauses do not seem to be good candidates for
local misanalysis. From a practical perspective, assumingaccess to the correct incremental analysis avoids the
considerable difficulty involved in the incremental parsing of speech.



After each wordwn, the bottom-right preterminal of the incremental parse is taken as the currently
active nodeN0; if its i-th ancestor isNi then we have:7

P (RCn+1···|w1···n, T1···n) =
k

∑

i=0

[

P (RC|Ni)
i−1
∏

j=0

P (∗END ∗ |Nj)

]

(5)

Figure 2 gives an example of an incremental utterance just before an RC, and illustrates how Equa-
tion (5) might be applied.8 At this point, NN would be the active node, and step (b) of expanding
NP(3) would have just been completed. An RC beginning afterwn (world in Figure 2) could con-
ceivably modify any of the NPs marked (1)-(3), and all three of those attachments may contribute
probability mass toP (RCn+1···), but an attachment at NP(2) can only do so if NP(1) and PP-LOC
make no further expansion.

5.2 Model parameters and estimation

What remains is to define the relevant event space and estimate the parameters of the tree-generation
model. For RC predictability estimation, the only relevantcategory distinctions are between RC,
∗END∗, and any other non-null category, so we limit our event spaceto these three outcomes.
Furthermore, because RCs are never leftmost daughters, we can ignore the parameters determining
first-daughter event outcome probabilities (step (a) in Section 5.1). We estimate event probabilities
using log-linear models (Berger et al., 1996; Della Pietra et al., 1997).9

We included five classes of features in our models, chosen by linguistic considerations of what is
likely to help predict the next event given an active node in an incremental utterance (see Wasow
et al. (ress)):

• NGRAM features: the last one, two, and three words in the incremental utterance;

• HEAD features: the head word and head part of speech (if yet seen),and animacy (for NPs)
of the currently expanded node;

• HISTory features: the incremental constituent structure of thecurrently expanded node
N , and the number of words and sister nodes that have appeared to the right ofN ’s head
daughter;

• PRENOMinal features: when the currently expanded node is an NP, theprenominal adjec-
tives, determiners, and possessors it contains;

• EXTernal features: when the currently expanded node is an NP, its external grammatical
function, and the verb in the clause it governs.

The complete set of features used is listed in a supplementary appendix.

7Equation (5) relies on the fact that an RC can never be the firstdaughter of a node expansion; the possibility
of RC generation through left-recursion can thus be ignored.

8The phrase structures found in the Penn Treebank were flattened and canonicalized to ensure that the
incremental parse structures do not contain implicit information about upcoming constituents. For example,
RC structures are annotated with a nested NP structure, suchas

[NP [NP something else] [RC we could have done]]

Tree canonicalization consisted of ensuring that each phrasal node had a preterminal head daughter, and that
each preterminal node headed a phrasal node, according to the head-finding algorithm of Collins (2003). VP
and S nodes without a verbal head child were given special null-copula head daughters, so that the NP-internal
constituency of predicative nouns without overt copulas was distinguished from sentence-level constituency.

9The predictability models were heavily overparameterized, and to prevent overfitting were regularized with
a quadratic Bayesian prior. For each trained model the valueof the regularization parameter (constant for all
features) was chosen to optimize held-out data likelihood.RC probabilities were estimated using ten-fold cross-
validation over the entire Switchboard corpus, so that a given RC was never contained in the training data of
the model used to determine its probability.



5.3 Explanatory power of phrasal predictability

We use the same statistical procedures as in (Jaeger, 2006, Chapter 4) to put the predictions of
the information-density hypothesis to a more stringent test. We evaluate the explanatory power of
phrasal predictability in logistic regression models of syntactic reduction that include all the control
variables otherwise known to influence relativizer omission (Section 3). To avoid confounds due to
clusters of data points from the same speaker, the model was bootstrapped (10, 000 iterations) with
random replacement of speaker clusters.10 Phrasal predictability of the RC (based on the full feature
set listed in Section 5.2) was entered into this model as a covariate to test whether RC predictability
co-determines syntactic reduction after other factors arecontrolled for. Phrasal predictability makes
a significant contribution to the relativizer omission model (χ2(1) = 54.3; p < 0.0001). This
demonstrates that phrasal predictability has explanatorypower in this case of syntactic reduction.

5.4 Surface and structural conditioning of phrasal predictability

The structural predictability model puts us in a position toask whether empirically observed patterns
of syntactic reduction give evidence for speakers’ use of some types of cues but not others. In
particular, there is a question of whether predictability based on surface cues alone (theNGRAM
features of Section 5.2) provides a complete description ofinformation-density effects on speakers’
choices in syntactic reduction. We tested this by building asyntactic-reduction model containing two
predictability covariates: one usingNGRAM features alone, and one using all other (i.e., structural, or
all-but-NGRAM) feature types listed in Section 5.2. We can then test whether the parameter weight in
the reduction model for each predictability measure differs significantly from zero. It turns out that
both predictability measures matter: all-but-NGRAM predictability is highly significant (χ2(1) =
23.55, p < 0.0001), but NGRAM predictability is also significant (χ2(1) = 5.28, p < 0.025).
While NGRAM and all-but-NGRAM probabilities are strongly correlated (r2 = 0.70), they evidently
exhibit enough differences to contribute non-redundant information in the reduction model. We
interpret this as evidence that speakers may be using both surface and structural cues for phrasal
predictability estimation in utterance structuring.

6 Conclusion

Using a case study in syntactic reduction, we have argued that information-density optimization—
the tendency to maximize the uniformity of upcoming-event probabilities at each part of a
sentence—plays an important role in speakers’ choices about structuring their utterances. This ques-
tion has been previously addressed in the context of phonetic reduction of highly predictable words
and syllables (Aylett and Turk, 2004; Bell et al., 2003), butnot in the case of word reduction. Using a
stochastic tree-based model of incremental utterance production combined with a logistic regression
model of syntactic reduction, we have found evidence that when speakers have the choice between
using or omitting an optional function word that marks the onset of a phrase, they use the func-
tion word more often when the phrase it introduces is less predictable. We have found evidence
that speakers may be using both phrasal and structural information to calculate upcoming-event
predictabilities. The overall distribution of syntactic reduction has the effect of smoothing the in-
formation profile of the sentence: when the function word is not omitted, the information density
of the immediately following words is reduced. The fact thatour case study involves the omission
of a single word with little to no impact on utterance meaningmade the data particularly amenable
to analysis, but we believe that this method is potentially applicable to a wider range of variable
linguistic phenomena, such as word ordering and lexical choice.

More generally, we believe that the ensuing view of constraints on situated linguistic communication
as limits on the information-transmission capacity of the environment, or on information-processing
capacity of human language processing faculties, can serveas a useful framework for the study of

10Our data comes from approximately 350 speakers contributing 1 to 40 RCs (MEAN= 10, MEDIAN= 8,
SD= 8.5) to the data set. Ignoring such clusters in the modeling process would cause the models to be overly
optimistic. Post-hoc tests conducted on the models presented here revealed no signs of over-fitting, which
means that the model is likely to generalize beyond the corpus to the population of American English speakers.
The significance levels reported in this paper are based on a normal-theory interpretation of the unbootstrapped
model parameter estimate, using a bootstrapped estimate ofthe parameter’s standard error.



language use. On this view, syntactic reduction is available to the speaker as a pressure valve to reg-
ulate information density when it is dangerously high. Equivalently, the presence of a function word
can be interpreted as a signal to the comprehender to expect the unexpected, a rational exchange
of time for reduced information density, or a meaningful delay (Jaeger, 2005). More generally,
reduction at different levels of linguistic form (phoneticdetail, detail of referring expressions, as
well as omission of words, as in the case examined here) provides a means for speakers to smooth
the information-density profile of their utterances (Aylett and Turk, 2004; Genzel and Charniak,
2002). This raises important questions about the specific motivations of speakers’ choices: are these
choices made for the sake of facilitating production, or as part of audience design? Finally, this view
emphasizes the connection between grammatical optionality and communicative optimality. The
availability of more than one way to express a given meaning grants speakers the choice to select
the optimal alternative for each communicative act.
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