Memory and surprisal in human sentence comprehension

Roger Levy

Corrected version of 4 October 2015

INTRODUCTION

Humboldt famously described language as a system of rules which “makes infinite use of finite
means” (Humboldt, 1836; Chomsky, 1965) and this is doubly true in the study of language
comprehension. On the one hand, the comprehender’s knowledge of language must be finitely
characterized: the brain itself as a computational device is finite, as is the comprehender’s
experience of her native language. Hence understanding is an act of generalization: the
comprehender must apply the knowledge gleaned from her lifetime of previous linguistic
experience to analyze a new sentence and infer what the speaker is likely to have intended
to mean. This need for analysis gives rise to the second sense in which Humboldt’s aphorism
is true: to understand a sentence in real time the comprehender must deploy her limited
cognitive resources to analyze input that is potentially unbounded in its complexity. Nowhere
are these truths more evident than in the determination of sentence structure during language
comprehension, as in (1) below. Before you go on reading, take as much time as you need
to fully understand this sentence, and while you are doing so, reflect upon what you find
difficult about it. You may even want to write down your reflections on its difficulty so that
you can remind yourself of them once you reach the end of the chapter.

(1) Because the girl that the teacher of the class admired didn’t call her mother was con-
cerned.

I am confident that you have never encountered this sentence before, but you probably
understood it fully with some effort. In order to understand it, you had to correctly construct
all the structural relationships it contains: that girl is both the subject of didn’t call and the
object of admired, that the subject of admired is teacher, that there is a clause boundary
between call and her mother and thus that her mother is the subject of was but not the
object of admired, and so forth. You have probably encountered few if any sentences with the
precise array of structural relationships seen here, but the individual elements are familiar;
your ability to understand the sentence at all rests on your ability to put these elements
together in novel configurations in real time, despite the occasional difficulty involved.

As this sentence illustrates, although we are generally successful (perhaps remarkably
so) in our ability to achieve linguistic understanding in real time, hallmarks of our limited
experience and cognitive resources do exist and can be measured: misunderstanding does
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occur, and even among sentences that are successfully understood, difficulty is differential
and localized. That is, not all sentences are equally easy to understand, nor are all parts
of a given sentence equally easy to get through. There are two places where you probably
found sentence (1) especially difficult: around the word admired, where you probably felt
uncomfortable with having to keep track of the relationships among the preceding elements
girl, teacher, and class; and at the phrase was concerned, where you probably were taken
aback at encountering the main verb of the sentence without prior warning. By the time
we reach the end of this chapter, you will have learned about leading theories of real-time
sentence comprehension that account both for your ability to understand sentence (1) and
for these sources of difficulty that you may have experienced in doing so.

This chapter thus presents a broad outline of two approaches to understanding these
cognitive underpinnings of real-time language comprehension. Each approach is rooted in a
deep intuition regarding the nature of limitations in the cognitive resources deployed dur-
ing sentence understanding. One focuses on memory—the use of cognitive resources for
storage and retrieval of the representational units used in analysis of linguistic input. The
other focuses on expectations—the pre-emptive allocation of cognitive resources to various
alternatives in the face of uncertainty. In each case, the hypothesis is that the resources in
question are sufficiently scarce so as to form a bottleneck in real-time comprehension: over-
taxing these resources, either by overloading memory or by presenting the processor with a
sufficiently unexpected event, can create measurable disruption in real-time comprehension.
Each approach has a rich history in the literature, has been formalized mathematically, and
enjoys considerable empirical support. Yet there are cases where the two come into conflict,
and their proper resolution remains to be fully understood. In this chapter I begin with
memory-based approaches, continue with expectation-based approaches, and then turn to
cases where the two come into conflict.

MEMORY LIMITATIONS, LOCALITY, AND INTERFERENCE

The traditional picture of memory limitation in sentence comprehension

The notion of limited memory as a bottleneck on language comprehension dates back to
the earliest days of modern psycholinguistics. In the late 1950s, Chomsky introduced the
competence /performance distinction of knowledge versus patterns of usage of a language, and
with it introduced phrase-structure grammars as a formal means of characterizing key aspects
of a native speaker’s syntactic competence (Chomsky, 1956, 1957). It was immediately
recognized, however, that a wide range of sentences generated by linguistically plausible
competence grammars could not actually be understood by native speakers, raising questions
regarding the relationship between the competence grammars posited by the new generative
linguistics and actual linguistic performance. One answer to this problem put forward by
George Miller and others (Miller and Chomsky, 1963; Miller and Isard, 1963; Marks and
Miller, 1964) was the strong position that competence grammars were essentially faithful
characterizations of a speaker’s psychological knowledge, but that performance constraints
interfered with the effective deployment of this competence for some types of sentences. One
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such type was the multiply center-embedded sentence, such as (2) below (Yngve, 1960; Miller
and Chomsky, 1963):

(2) This is the malt that the rat that the cat that the dog worried killed ate.

This sentence is simply generated by the repeated application of grammatical rules for form-
ing object-extracted relative clauses, as in (3) below:

(3) the dog worried the cat = the cat that the dog worried
the cat that the dog worried killed the rat = the rat that the cat that the dog worried
killed

Despite the straightforwardness of its derivation, however, (2) is extremely difficult to com-
prehend. That this difficulty cannot be ascribed purely to the complexity of the meaning of
the sentence can be seen by comparison with (4) below, which is essentially synonymous but
much easier to understand.

(4) This is the malt that was eaten by the rat that was killed by the cat that was worried
by the dog.

The earliest work on this problem (Yngve, 1960; Miller and Chomsky, 1963; Chomsky and
Miller, 1963) attributed the difficulty of (2) to the large number of incomplete and nested
syntactic relationships that must be maintained partway through the string. Figure 1 illus-
trates the situation for (2), assuming that the comprehender’s incremental representation of
sentence structure is captured by a left-to-right incrementally expanded context-free tree.
After the final instance of the, the sentence has reached a fourth level of center-embedding,
and a stack of four categories must be kept in memory for faithful completion of the tree
when further input is encountered. Yngve (1960) proposed a model in which human in-
cremental language comprehension assigns such incremental structural representations but
has severely limited (3 or less) stack depth, making complex center-embedded sentences

incomprehensible.

However, it soon became clear that such a straightforward characterization of memory
limitation was unworkable (Miller and Chomsky, 1963; Gibson, 1991). For one thing, it is
empirically the case that processing breakdown seems to happen when the comprehender
emerges from the deeply center-embedded structure, around the word killed, rather than
when the comprehender arrives at the deepest embedding level (Gibson and Thomas, 1999;
Christiansen and MacDonald, 2009; Vasishth et al., 2010). Second, Yngve’s strictly top-
down model had no good mechanism for explaining how recursively left-branching structures,
prevalent in head-final languages such Japanese, are parsed. Third, the type and arrangement
of embedding structures turns out to matter as much as the sheer depth of embedding. A
particularly clear example of this latter point can be seen in the contrast of (5) below (the
verb-argument dependency arrows drawn in the example will be used later on to describe
memory-based analyses of processing difficulty for these examples):

| m — 1 [
(5) a. The fact that the bike messenger who the car just missed blocked traffic angered the motorcyclist.
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Figure 1: Deep inside a multiply center-embedded sentence in the stack-depth model of
Yngve (1960)
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b. The motorcyclist who the fact that the bike messenger blocked traffic angered just missed the car.

In (5a), an object-extracted relative clause (who the car just missed; ORC) is embedded
inside a complement clause (that the bike messenger who the car just missed blocked traffic;
CC). We have the reverse situation in (5b), where a CC is embedded inside an ORC. Gibson
and Thomas (1997; see also Cowper, 1976; Gibson, 1991) demonstrated that the CC-inside-
ORC variant (5b) is considerably harder to understand than the ORC-inside-CC variant
(5a), despite the fact that the depth of phrase-structural center-embedding—two levels—is
identical in these cases.

Observations such as these have drawn particular attention to the moments during syn-
tactic comprehension when links between words can be constructed establishing particular
aspects of sentence meaning. The key difference between noun-modifying relative and com-
plement clauses is that whereas the former simply involve modification of a noun by a clause
that could itself stand alone as an independent sentence, the latter involve EXTRACTION of
an NP, such that proper interpretation requires reconstruction of the relationship between
the head noun and the element governing the extraction site (Chomsky, 1981; Pollard and
Sag, 1994). Intuitively, an underlying verb-object DEPENDENCY relation needs to be estab-
lished between missed and bike messenger in (5a) and between angered and motorcyclist
in (5b), but not between blocked and fact in either example. Notably, the linear distance
between the verb and the object resulting from the extraction is considerably greater for the
CC-inside-RC example (angered—motorcyclist in (5b)) than for the RC-inside-CC example
(missed— bike messenger in (5a)). Furthermore, more noun phrases intervene between the
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RC verb and its object in (5b) than in (5a).

Two prominent theories of memory in online syntactic comprehension have arisen from
data of the type described above. One theory is the DEPENDENCY LOCALITY THEORY
(DLT, also called Syntactic Prediction Locality Theory; Gibson, 1998, 2000; Grodner and
Gibson, 2005), which deals with the integrations between elements in a sentence (in prac-
tice, usually word-word dependencies), as well as with expectations for those integrations.
In DLT, there are two types of costs that can be incurred during processing of part of a
sentence: the INTEGRATION cost incurred during the establishment of the dependencies be-
tween the currently-processed word(s) and earlier parts of the sentence; and the STORAGE
cost incurred for maintaining representations of incomplete dependencies that will be com-
pleted later in the sentence. In the theory, integration costs are larger (i) the more new
dependencies are constructed at once, and (ii) the more material intervening between the
governor and governed elements of each dependency. Hence DLT is able to capture the
pattern seen in (5). At the word angered in (5b), two dependencies must be constructed
simultaneously: one between angered and its object, motorcyclist (with three intervening
nouns—fact, bike messenger, and traffic), and another between angered and its subject, fact
(with two intervening nouns—bike messenger and traffic). In (5a), there is no correspond-
ing word requiring such a complex set of simultaneous integrations: at each verb where two
integrations are required, at least one of the governed NPs is linearly adjacent.

A range of other evidence has also been adduced in support of the integration component
of DLT, particularly from the comprehension of different types of relative clauses (e.g.,
Warren and Gibson, 2002; Hsiao and Gibson, 2003; Gordon et al., 2004, and see below).
One of the best-known examples is the asymmetry in comprehension difficulty of subject-
extracted versus object-extracted RCs in English when both the head noun and the RC-
internal NP are animate, as in (6) below:

\L L \
(6) a. The reporter who attacked the senator left the room.
¥ \ L |

b. The reporter who the senator attacked left the room.

The integration cost at the RC verb attacked is greater in the ORC (6b) than in the SRC
(6a), since in the ORC there are two preceding dependents that must simultaneously be
integrated, one of which is not adjacent to the verb; whereas in the SRC the dependents are
integrated one by one—in (6a), the dotted line reflects that when attacked is processed the
senator has not yet been seen and thus is not yet integrated—and each is adjacent to the
verb. The greater processing difficulty of such ORCs has been demonstrated empirically in
many studies (Wanner and Maratsos, 1978; Ford, 1983; King and Just, 1991; Gordon et al.,
2001; Grodner and Gibson, 2005, inter alia). Evidence for the storage component is scarcer,
though see Chen et al. (2005); Gibson et al. (2005); Grodner et al. (2002); Nakatani and
Gibson (2010) for published studies. We will return to the study of Grodner et al. (2002)
shortly.

The second theory has many qualitative similarities to DLT, but differs in focusing more
exclusively on the integration component of comprehension, and in placing greater emphasis
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on grounding the content of integration operations in influential theories of working mem-
ory within cognitive psychology, specifically theories of CONTENT-ADDRESSABLE memory
with CUE-BASED RECALL. In the most explicit instantiations of such a theory (Lewis and
Vasishth, 2005; Lewis et al., 2006), the parser has no explicit representation of linear order
of preceding input, including the relative priority of preceding sites of potential syntactic
attachment (contrasting with theories such as Yngve’s; Figure 1). Rather, an incremental,
tree-structured representation of the sentence thus far is stored in content-addressible mem-
ory, and in order to construct new dependencies between the currently processed word and
preceding content, the current word serves as a cue for recall of the appropriate integration
site(s). In the SRC of (6a) above, for example, upon reading the word attacked the parser
must retrieve the representation of reporter from content-addressable memory in order to
link it as the argument of the current word.

One crucial component of the cue-based recall theory is that representations of all pre-
ceding syntactic items stored in working memory compete with one another during retrieval.
Two factors affect the ease of retrieval of the correct (TARGET) unit. First, retrieval is easier
the better the match between the features of the cue and target, relative to the degree of
match between the features of the cue and other, non-target, items in working memory. Sec-
ond, in some variants (Lewis and Vasishth, 2005; Lewis et al., 2006), retrieval is easier the
greater the ACTIVATION LEVEL of the target item relative to the activation level of other,
non-target items plays a role: items have a high activation level when first encoded in mem-
ory, that activation decays over time, but every retrieval boosts the item’s activation. The
theory thus predicts the same differential difficulty effect observed in the English SRC/ORC
contrast of (6) and predicted by the DLT. In (6b), as in (6a), one of the operations that
has to take place at the RC verb attacked is retrieval of the representation of the head noun
reporter and construction of a dependency of the appropriate type between it and the verb.
In (6b), however, unlike in (6a), another noun—senator—is already encoded in memory, and
successful retrieval requires correct association of these nouns with the subject and object
roles for attacked respectively. The semantic similarity of the two nouns leads to high re-
trieval interference, slowing processing and even creating the possibility of misretrieval—that
is, interpreting the RC as semantically reversed (as the reporter attacked the senator). The
predictions of the cue-based recall theory in terms of online processing effects thus match
those of the DLT, with greater reading times predicted at attacked in (6b) than in (6a).

Predictions of the cue-based theory and the DLT diverge, however, for cases such as (7)
below:

(7) The movie that the director watched received a prize.

For the DLT, the RC verbs in (7) and (6b) incur exactly the same integration costs, since
they both involve integrating two dependents with the same distances. In the cue-based
recall theory, however, two factors make argument retrieval at the RC verb easier in (7) than
in (6b): first, movie and director are less semantically similar than reporter and senator,
making their memory representations more distinct; second, the properties of movie do not
match the retrieval cues for the subject position of watched, since only animate entities can
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perform watching. This difference in predicted processing difficulty was confirmed by Traxler
et al. (2002).

Applications beyond center-embedding difficulty

Although the study of memory limitation in online sentence comprehension has its roots in
processing difficulty and breakdown effects associated with unambiguous center-embedding
and retrieval difficulty, the resulting theories have been applied to a considerably wider vari-
ety of phenomena. Gibson (1991), for example, introduced the idea that syntactic ambiguity
resolution in online comprehension might attempt to minimize memory storage costs due to
unfulfilled syntactic expectations of the sort encoded in the DLT. One study exploring such
an idea is Grodner et al. (2002), who examined sentences like (8) below.

(8) a. The river which the valley (that was) captured by the enemy contains has its source

at a glacier. [RC]
b. The commander knows that the valley (that was) captured by the enemy contains a
river. [SC]

According to DLT in both cases, when the valley is processed there is an expectation gener-
ated for an upcoming verb for which it is the subject. Further downstream, when the words
that was are absent (the AMBIGUOUS variants) there is a temporary syntactic ambiguity
at captured between a finite-verb interpretation (e.g., The river which the valley captured
the sunlight reflecting off of was flowing quickly) and a reduced-relative interpretation (as
in (8a)). On the finite-verb interpretation, captured completes the upcoming-verb expecta-
tion generated earlier, but on the reduced-relative interpretation this expectation remains
unmet. Hence the reduced-relative interpretation imposes a higher memory-storage cost
than the finite-verb interpretation. But as we already saw in analysis of (5), the RC context
of (8a) itself is more memory-intensive than the SC context of (8b). Thus, if comprehenders
avoid especially memory-intensive interpretations—as the RC context combined with the
reduced-relative interpretation would lead to—the finite-verb interpretation should be more
strongly preferred in the ambiguous variant of (8a) than in the ambiguous variant of (8b).
Indeed, Grodner et al. found an interaction between ambiguity and embedded-clause type
at the critical region by the enemy, which disambiguates the structure toward a reduced
relative interpretation; reading times were superadditively greatest in the ambiguous RC
condition, suggesting that the RC context may indeed induce comprehenders to entertain a
finite-verb analysis of captured (though see further discussion under Conflicting predictions
between expectations and memory).

Let us turn now to interference-based theories and a distinctive type of prediction they
make, involving cases where preceding context may make retrieval of preceding dependents
at a verb not only difficult but even inaccurate. Here I briefly outline two examples. Wagers
et al. (2009) have applied interference-based theory in the study of AGREEMENT ATTRAC-
TION in online comprehension. To explain the phenomenon of agreement attraction, which
has been studied primarily in the sentence production literature, consider example (9) below.
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(9) a. The key to the cabinets were rusty from many years of disuse. [UNGRAMMATICAL,
+ATTRACTOR]

b. The key to the cabinet were rusty from many years of disuse. ~[UNGRAMMATICAL,
—ATTRACTOR)]

Each of these sentences contains an agreement “error” in which the number marking on the
finite verb were fails to match the number of the subject NP, which is determined by the
head noun of the subject, in this case key. Agreement attraction is the phenomenon of errors
of the type in sentence (9a), where the verb’s number marking matches the number of some
noun (the ATTRACTOR, here cabinets) other than the true head of the subject, being more
common than errors of the type in sentence (9b) (Bock and Miller, 1991; Eberhard, 1999;
Eberhard et al., 2005; Franck et al., 2002; Vigliocco and Nicol, 1998, inter alia). One of the
leading theories from the field of language production is that attraction effects arise from
PERCOLATION of agreement features from within a complex NP (here, plural number from
cabinets) up to the NP head, leading to incorrect representation of the subject NP’s number.

In the comprehension literature, Pearlmutter et al. (1999) had previously found that
plural attractors effectively weakened the precision of comprehenders’ online assessment of
subject-verb agreement. Reading times immediately after the verb in both (9a) and (9b) are
inflated compared with singular-verb variants (was instead of were), but plural attractors
reduce the reading-time penalty. The percolation theory of the sentence-production litera-
ture can explain the results of Pearlmutter et al. in comprehension: if the comprehender
misrepresents the number of the complex NP the key to the cabinets, then this might lead to
failure to identify the agreement anomaly when the correct syntactic relationship between
were and the preceding subject NP is constructed. Wagers et al., however, showed that
attraction can equally affects comprehension of verbs inside relative clauses, using sentences
such as (10) below:

(10) a. The musician who the reviewer praise so highly will probably win a Grammy.
b. The musicians who the reviewer praise so highly will probably win a Grammy.

Reading times immediately after the RC verb praise in (10b) are deflated relative to those
in (10a), suggesting that plural marking on the RC head noun can reduce the strength of
the anomaly experienced at a singular verb whose subject is an RC-internal singular NP (a
similar acceptability pattern was first reported by Kimball and Aissen, 1971). This result is
not explained by the percolation theory, because the plural noun (musicians) is not inside
the RC subject (the reviewer) and thus upward percolation of the plural feature would not
lead to an incorrect representation of the RC subject’s number. As Wagers et al. describe,
in an interference-based framework this pattern could arise from the possibility of incorrect
retrieval of the RC head for the subject slot of the RC verb, which would result in failure to
detect the subject-verb number mismatch. That is, under the interpretation of Wagers et al.
the number mismatch may lead to an incorrect syntactic relationship being entertained or
even established between praise and reviewers. Although these results cannot themselves
adjudicate completely between theories in which the true subject’s number features are incor-
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rectly represented and theories in which the wrong NP is retrieved for the verb’s subject slot,
they speak to the ability of interference-based theories to make testable predictions regarding
online comprehension difficulty ranging over a wide variety of syntactic configurations.!

A second example relates to the understanding of LOCAL COHERENCE EFFECTS, where
a grammatical analysis that would be available for a substring of a sentence only when that
substring is taken in isolation seems to compete with the global grammatical analysis:

(12) a. The coach smiled at the player tossed the frisbee.
b. The coach smiled at the player thrown the frisbee.

In (12a), the player tossed would be analyzable in isolation as the onset of an independent
clause with the player as the subject and tossed as the main verb, but that analysis is
inconsistent with the grammatical context set up by the rest of the sentence. This is not
an issue in (12b) as the thrown does not have the part-of-speech ambiguity that allows it to
serve as a finite verb. Tabor et al. (2004) showed that reading times were greater starting
at this critical verb in sentences like (12a) as compared with (12b), and argued for a model
in which bottom-up and top-down syntactic analysis took place simultaneously and could
thus come into conflict (see also Bicknell and Levy (2009) for a Bayesian variant of such a
model).?

Van Dyke (2007), however, points out that an interference-based model such as that of
Lewis and Vasishth (2005) can accommodate local-coherence effects, since the player might
sometimes be incorrectly picked out by the subject-retrieval cues of tossed. Van Dyke goes
on to show examples where a match between a verb’s retrieval cues and an NP that is not
immediately adjacent can induce similar processing difficulty, as in (13) (see also Van Dyke
and Lewis, 2003 for related studies):

(13) The worker was surprised that the resident who said that the warehouse/neighbor was
dangerous was complaining about the investigation.

Here, differential processing difficulty begins at the region was complaining, with greater
difficulty when the sentence contains the meighbor than when it contains the warehouse.
This result suggests that when the preceding NP matches the semantic requirements made
by the main-clause verb on its subject, it is sometimes entertained as the subject of the main-

! As Roger van Gompel points out, interference-based theories make an incorrect prediction for the pattern
of verbal agreement processing for grammatical sentences as in (11) below:

(11) a. The key to the cabinet was rusty from many years of disuse. [GRAMMATICAL, —ATTRACTOR]
b. The key to the cabinets was rusty from many years of disuse. [GCRAMMATICAL, +ATTRACTOR]

Interference-based theories predict that the verb should be more difficult when both nouns inside the subject
NP are singular, as in (11a), since both nouns match the verb’s target cue, whereas in (11b) only the true
subject matches this cue. But no trace of this pattern was found by either Pearlmutter et al. (1999) orWagers
et al. (2009).

2 Although the local-coherence effect seems difficult to accommodate in a model where syntactic analysis
is entirely top-down, Levy (2008b) presents such a model in which the effect arises from uncertainty about
the representation of preceding context; Levy et al. (2009) confirm predictions made by this model.
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clause verb even though neither the global nor the local syntactic context would license such
an analysis.

EXPECTATION-BASED COMPREHENSION AND SURPRISAL

Equally fundamental as the intuition that memory limitations affect online sentence compre-
hension is the intuition that a language user’s context-derived EXPECTATIONS regarding how
a sentence may continue can dramatically affect how language comprehension unfolds in real
time. Among the best-known early demonstrations of this phenomenon are the SHADOWING
studies pioneered by Marslen-Wilson (1975), who demonstrated that listeners continuously
repeating back speech they hear with lags as short as a quarter-second are biased to correct
disrupted words; for example, when shadowing He’s departing the day after tomorrane the
listener might correct the final word to tomorrow, but only when the corrected form of the
word was syntactically and semantically consistent with context. This result indicated the
extreme rapidity with which comprehenders use context to constrain the interpretation of
new linguistic input—in this case, recognition of a word’s identity.

Since then, the known empirical scope of this biasing effect of context-derived expectation
has expanded in two key respects. First, it is now known that correct expectations increase
the rate at which novel input is processed. Ehrlich and Rayner (1981) demonstrated that
words which are strongly predicted by their preceding context, as measured by the “fill in the
blank” Cloze completion method (Taylor, 1953), are read more quickly than unpredictable
words. Hence, of the two contexts

(14) a. The boat passed easily under the ___
b. Rita slowly walked down the shaky ___

the word strongly predicted for context (14a) is read more quickly in that context than in
(14b).3 Analogous signatures of correctly matched expectations can also be found in EEG
responses during online sentence comprehension (Kutas and Hillyard, 1980, 1984; see also
Van Berkum et al., 2005; DeLong et al., 2005, and Wicha et al., 2004 for more recent evi-
dence). Second, it is now known that incremental discrimination among alternative analyses
of structurally ambiguous input is exquisitely sensitive to (both linguistic and non-linguistic
context). To take a well-known example, as the sentence onset Put the apple on the towel. . .
is uttered, the listener’s interpretation of on the towel (is it describing which apple to move,
or where to put the apple?) is strongly influenced by how many apples are present in a vis-
ible physical array (Tanenhaus et al., 1995; see also Altmann and Kamide, 1999; Trueswell
et al., 1994; MacDonald, 1993, among others; see also Spivey, McRae, and Anderson, this
volume). In the 1990s, two classes of computational models were proposed which had a lot
to say about how diverse information sources influenced ambiguity resolution: CONSTRAINT-
BASED models inspired by neural networks (Spivey and Tanenhaus, 1998; McRae et al., 1998;
Tabor and Tanenhaus, 1999; see also McRae and Matsuki, this volume) and PROBABILISTIC

3You have probably already guessed: the vast majority of native English speakers fill in the blank with
the word bridge (Arcuri et al., 2001).
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GRAMMAR-BASED DISAMBIGUATION models (Jurafsky, 1996; Narayanan and Jurafsky, 1998,
2002; Crocker and Brants, 2000). Because these models covered only resolution of ambiguity
in the grammatical analysis of input that had already been seen, however, they had little
to say about expectation-derived processing speedups in examples like (14) above, or about
the rich set of syntactic-complexity effects found in what are for the most part structurally
unambiguous situations (see section on Memory limitations,locality,and interference).

Surprisal

In 2001, however, Hale, drawing inspiration from Attneave (1959), proposed a quantification
of the cognitive effort required to process a word in a sentence—the SURPRISAL of the word
in the context it appears—which has raised prospects for a unified treatment of structural
ambiguity resolution and prediction-derived processing benefits. Surprisal (sometimes called
“Shannon information content” in the information theory literature) is defined simply as
the log of the inverse of the probability of an event; in the case of a word w; in a sentence
following words wq, ..., w;_; and in extra-sentential context C, the surprisal is thus simply

1 ! 1)
Og P(wi\wl, e ,wi,l, C)

Hale focused on the framing of incremental sentence comprehension as the step-by-step dis-
confirmation of possible phrase-structural analyses for the sentence, leading to an interpre-
tation of the cognitive load imposed by a word as “the combined difficulty of disconfirming
all disconfirmable structures at a given word”. On that view, surprisal emerges as a natural
metric of word-by-word cognitive load on the assumption that more probable structures are
more work to disconfirm (see section on Theoretical Justifications for Surprisal for greater
discussion of this assumption).

Surprisal and garden-path disambiguation

Hale (2001) and Levy (2008a) cover a range of psycholinguistic phenomena which can be
successfully analyzed within the surprisal framework ranging from classic instances of garden-
path disambiguation (the horse raced past the barn fell; Bever, 1970) to processing benefits
when ambiguity is left unresolved (Traxler et al., 1998; van Gompel et al., 2001, 2005) to
syntactic-expectation-based facilitation in unambiguous contexts (see section on Constrained
syntactic contexts).To give the reader a more concrete picture of how surprisal can simul-
taneously account for both empirically observed syntactic-processing effects which involve
disambiguation and effects which do not, I provide here a novel and fairly explicit illus-
tration of how probabilistic grammatical analysis can be combined with surprisal to derive
predictions for a well-studied construction which turns out to exhibit both types of effects.
Example (15) from Staub (2007) below serves as a starting point:

(15) When the dog scratched the vet and his new assistant removed the muzzle. *
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Garden-path disambiguation is an important feature of this sentence: the phrase the vet and
his new assistant creates a temporary structural ambiguity: this phrase could be the object
NP of the subordinate-clause verb scratched; or it could be the subject NP of the main clause,
in which case scratched would have no overt object (Frazier and Rayner, 1982; Clifton, 1993;
Ferreira and Henderson, 1990; Mitchell, 1987; Adams et al., 1998; van Gompel and Pickering,
2001; Pickering and Traxler, 1998; Sturt et al., 1999; Staub, 2007). Intuitively, the preferred
initial interpretation is as the object of scratched, which is globally incorrect; the strongest
disambiguatory evidence comes at the main-clause verb removed. The measurable real-time
correlate of this disambiguation effect was first demonstrated by Frazier and Rayner (1982),
who showed that the amount of time that the eyes linger upon the disambiguating material
is elevated in cases like (15) when compared with cases such as (16) below, in which the
presence of either an overt NP object of scratched (its owner in (16a)) or a comma marking
the end of the subordinate clause (16b) facilitates the initial interpretation of the following
NP as the main-clause subject:

(16) a. When the dog scratched its owner the vet and his new assistant removed the muzzle.
b. When the dog scratched, the vet and his new assistant removed the muzzle.

How can the relative difficulty of (15) be captured in a framework of sentence comprehen-
sion as probabilistic grammar-based inference? Table 1 illustrates a small PROBABILISTIC
CONTEXT-FREE GRAMMAR (PCFG; Booth, 1969; Manning and Schiitze, 1999) which in-
cludes the grammatical rules necessary to cover both the garden-path and globally correct
interpretations of examples (15) and (16). Intuitively, a PCFG both states what grammatical
structures are possible (determined by the set of rules in the grammar) and distinguishes the
relative likelihood of different possible grammatical structures (with more likely grammati-
cal structures given higher probability values).” The syntactic categories and style of phrase
structure rule used here are chosen to roughly conform to those used in the Penn Treebank
(Marcus et al., 1994), the most widely used syntactically annotated corpus in computational
linguistics. The probabilities in this grammar are chosen by hand for expository purposes,
but they reflect two important facts about the distributions of the relevant constructions
in naturalistic English text: first, verb phrases can be either transitive or intransitive (re-
flected in the presence of both VP — V NP and VP — V rules); second, most but not all
sentence-initial subordinate clauses are delimited on the right by a comma (reflected in the

4To keep the grammar used for exposition small, I have substituted removed for the phrase took off
actually used by Staub, to avoid verb-particle constructions. None of the analyses are qualitatively affected
by this change.

®More technically, a PCFG is a collection of context-free grammatical rules of the form X — «, where
X is a single non-terminal symbol (syntactic category) and « is a sequence of symbols (syntactic categories
and/or words), each of which has a probability. The probabilities are constrained such that for every non-
terminal symbol X in the grammar, the probabilities of all rules with X on the left-hand side sum to 1:
Yo P(X = a) = 1. The product of a tree T is the product of the probability of each rule used in the
derivation of T' (if a rule is used more than once, its probability is multiplied in each time it’s used), and
the product of a string wq._, is the sum of the products of all trees whose yield (the leaves of the tree, read
from right to left) equals wy. . The interested reader is encouraged to consult Jurafsky and Martin (2008)
or Manning and Schiitze (1999) for more details.
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high probability of the SBAR — COMPL S COMMA rule).

To understand how probabilistic syntactic knowledge and incremental comprehension
interact to yield garden-path disambiguation effects within the surprisal framework, let us
consider the probability distribution over incremental parses of the pre-disambiguation sen-
tence prefixes shown in (17) below:

(17) a. When the dog scratched the vet and his new assistant. . .
b. When the dog scratched its owner the vet and his new assistant. . .

In (17a), the PCFG of Table 1 makes two incremental parses available, shown in Figure 2.
These trees are “incremental” in the sense that, aside from nodes strictly dominating input
that have already been seen, only nodes that can be inferred with probability 1 are indicated.
To explain how inference about a sentence’s syntactic structure arises from the application of
probabilistic grammars, we introduce a bit of notation: let w;._; denote the sentence thus far
(up to the current word w;) and let the variable T" denote some incremental syntactic parse
that is logically possible given the grammar and the sentence thus far. The probability of
each incremental parse 7' can be computed using Bayes’ Rule, a basic theorem of probability
theory, according to which we can say that

P(T)

P(T|w ;) = Pl ) (2)

That is, the probability of a particular parse T' given the string observed thus far is equal to
the probability assigned to the parse by the grammar, divided by the total probability of the
partial sentence seen thus far.® Thus, only parses consistent with the grammar are permitted,
and among them, those with higher probability given by the grammar are preferred over those
with lower probability. When these computations are applied to the examples in Figure 2,
we find that the tree in which the vet and his new assistant is interpreted as the direct
object of scratched has probability 0.826, and the tree in which it is interpreted as the main-
clause subject has probability 0.174.7 In (17b), by contrast, only the main-clause subject
interpretation is available (with probability 1) for the vet and his new assistant, due to the

5To be more technically precise, Bayes Rule tells us that

P(Tw:..;) = P(wi..;)

but by definition P(w;. ;|T) is 1 when the yield of T is wy. ; and 0 otherwise, so if we limit ourselves to
considering parses consistent with the input sentence we can just drop the first term in the numerator, giving
us (2).

"This difference in conditional probability between the two analyses arises from three differences between
the two incremental trees: namely, in the main-clause analysis:

1. the subordinate-clause VP rewrites to V rather than to V NP;

2. there is a commitment that only one subordinate-clause SBAR node initiates the sentence;

3. there is a commitment that there is no comma between the subordinate clause and the main clause.
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SBAR S SBAR S
—_— — —_— P
COMPL S NP VP COMPL S NP VP
| — — | | —_— |
When NP VP NP Conj NP v When NP VP v
P | P | —7 P —
Det N v Det N and Det Adj N Det N Y NP
| | | | | | | | | | | —
the dog scratched the vet his new assistant the dog scratched NP Conj NP
P | —7

Det N and Det Adj N
| | | | |
the vet his new assistant

Figure 2: The two incremental analyses for sentence (15) pre-disambiguation.

presence of its owner as direct object of scratched. With respect to the probabilities assigned
to incremental interpretations of a sentence, surprisal theory is thus quite similar to pruning
and attention-shift theories of garden-path disambiguation Jurafsky (1996), Narayanan and
Jurafsky (1998, 2002), and Crocker and Brants (2000).

Within the simplest version of surprisal theory, however, the garden-path disambiguation
effect itself arises not from complete loss of the correct analysis but from the comprehender’s
need to hedge her predictive bets regarding how the sentence may continue. Let us ask:
given that after processing the word assistant the two structures of Figure 2 are maintained
with the probabilities just stated, how likely is it that the next word of the sentence is the
word removed? According to the laws of probability theory, both structures contribute to
predicting how likely removed is to be the next word in the sentence, but the more likely
structure plays a larger role in determining the strength of the prediction. Under the main-
clause subject analysis, the conditional probability of removed being the next word is 0.2;®
under the direct-object analysis, the conditional probability is 0 since a verb cannot appear
until after a main-clause subject has been encountered. The surprisal of removed is simply
the weighted average of these two probabilities:?

P(wy; = removed|w; . 10) = 0.2 X 0.174 + 0 x 0.826 = 0.0348

so the surprisal is log, 0.0348 = 4.85 bits. The corresponding surprisal for (17b), in which
the incremental syntactic analysis was unambiguously main-clause subject, is log, 0.2 = 2.32
bits (Table 2). Hence surprisal theory correctly predicts the difference in processing difficulty
due to this case of garden-pathing.

It is worth noting in this example grammar that no distinction is made between transitive
and intransitive verbs. However, Mitchell (1987) and van Gompel and Pickering (2001) (see

8This conditional probability reflects (i) that the subject must not continue with another NP conjunct;
and (ii) that the main-clause verb must turn out to be removed.

9In probability theory, the determination of this weighted average is called MARGINALIZATION; in its
general form for this example we would write that:

P(wy1 = removed|w . 10) = ZP(wu = removed|wi. 10, T)P(T|wi.. 10)
T

and we would say that the probability of the upcoming word is computed “marginalizing over the possible
structural analyses of the sentence thus far”.
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Rule Prob. Rule Prob. Rule Prob.
S — SBAR S 0.3 | Conj — and 1| Adj — new 1
S — NP VP 0.7 | Det — the 0.8 | VP — V NP 0.5
SBAR — COMPL S 0.3 | Det — its 0.1 | VP -V 0.5
SBAR — COMPL S COMMA 0.7 | Det — his 01|V — scratched  0.25
COMPL — When 1N —dog 02|V — removed 0.25
NP — Det N 06 | N — vet 02|V — arrived 0.5
NP — Det Adj N 0.2 | N — assistant 0.2 | COMMA — | 1
NP — NP Conj NP 0.2 | N  — muzzle 0.2
N — owner 0.2

Table 1: A small PCFG for the sentences in section on surprisal and garden-path disam-
biguation

also Staub, 2007) provided relevant evidence evidence by comparing reading of sentences like
(15) with sentences like (18) with intransitive subordinate-clause verbs.

(18) When the dog arrived the vet and his new assistant removed the muzzle.

These studies in fact revealed two interesting effects. First, early reading times at the main-
clause verb (removed in this case) were elevated for transitive as compared with intransitive
subordinate-clause verb sentences. This is precisely the effect predicted by incremental
disambiguation models in which fine-grained information sources are used rapidly: before
encountering the main-clause verb, the comprehender is already much more committed to
a main-clause analysis when the subordinate-clause verb is intransitive. Equally interest-
ing, however, early reading times at the onset of the potentially ambiguous NP (the vet in
this case) were lower for transitive as compared with intransitive subordinate-clause verb
sentences. This effect is not obviously predicted by all incremental disambiguation models
using fine-grained information sources; the constraint-based model of Spivey and Tanenhaus
(1998) and McRae et al. (1998), for example, which predict processing slow-downs when a
structural ambiguity is encountered and relative preferences for the alternative interpreta-
tions need to be determined, might well predict greater difficulty at the ambiguous-NP onset
in the transitive case, since there is a true structural ambiguity only when the preceding
verb is transitive.l®

To understand the predictions of surprisal in this situation, let us refine our grammar
very slightly by explicitly distinguishing between transitive and intransitive verbs. We do
so by replacing the portion of the grammar of Table 1 that mentions the verb category (V)
with a finer-grained variant:

10Mitchell (1987) and van Gompel and Pickering (2001) originally argued that the differential difficulty
effect seen at the vet was evidence that transitivity information is initially ignored, but the analysis presented
here demonstrates that this effect arises under surprisal when transitivity information is taken into account.
A related piece of evidence is provided by Staub (2007), who shows that the absence of a comma preceding
the vet increases processing difficulty; the account here is also generally consistent with this result, since
most such subordinate clauses do in fact end in commas.
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VP — V NP 0.5 VP — Vtrans NP 0.45
VP —» 'V 0.5 VP — Vtrans 0.05
V  — scratched 0.25 | Replaced by | yvp — Vintrans 0.45
V — removed 0.25 = VP — Vintrans NP 0.05
V — arrived 0.5 Vtrans — scratched 0.5

Vtrans — removed 0.5

Vintrans — arrived 1

In essence, the revision to the grammar says that verbs come in two varieties: transitive
(scratched and removed) and intransitive (arrived); transitive verbs usually have a right-
sister NP (but not always); intransitive verbs rarely have a right-sister NP (but not never;
e.g., arrived the night before). For this revised grammar, surprisals at the ambiguous-NP
onset and the disambiguating verb can be found in Table 2. The disambiguating verb
is more surprising when the subordinate-clause verb was transitive (scratched) than when
it was intransitive (arrived), reflecting the stronger preceding commitment to the incorrect
analysis held in the transitive case. Furthermore, the ambiguous-NP onset is more surprising
in the intransitive case. This latter effect may be less intuitively obvious: it reflects the fact
in the intransitive case, the comprehender must resort to a low-probability grammatical rule
to account for the ambiguous-NP onset—either the intransitive verb has an NP right sister
or a subordinate clause without a final comma. Hence under surprisal theory the simple act
of encoding verb transitivity into a probabilistic grammar accounts for both of the processing
differentials observed by Staub (2007).

Of course, one may reasonably object that this result obtained by a hand-constructed
PCFG might not generalize once a BROAD-COVERAGE grammar with rule probabilities re-
flecting naturalistic usage is adopted—contemporary probabilistic parsers have rules num-
bering in the tens of thousands, not in the dozens as in the small PCFGs here (Charniak,
1996). Thus Figure 3 reports region-by-region surprisals alongside the first-pass time results
of Staub (2007) using a grammar obtained from the entire parsed Brown corpus (Kucera
and Francis, 1967; Marcus et al., 1994) using “vanilla” PCFG estimation (Charniak, 1996;
Levy, 2008a). Because the parsed Brown corpus does not mark verb transitivity, I added the
single refinement of distinguishing between verbs which do and do not have an immediate
right-sister NP; the resulting grammar has 11,984 rules. With such a grammar there is a
huge number of incremental parses that are possible for most partial-sentence inputs, so
exact analysis is not as simple as for the small grammar of Table 1. Nevertheless, algorithms
from computational linguistics can be used to compute word-by-word surprisals for such
a large grammar (Jelinek and Lafferty, 1991; Stolcke, 1995). As can be seen in Figure 3,
broad-coverage surprisal correctly predicts the two reliable differences in first-pass times:
those at the onset of the main-clause subject NP, which does not itself involve garden-path
disambiguation; and those at the main-clause verb, which does.!!

' This simple model fails to capture the empirical result that the garden-path disambiguation effect is
larger in magnitude than the surprise effect at the onset of the ambiguous NP. Among other reasons, this
failure is due to the fact that specific verb-noun preferences are not encoded in the model. Arrived can
occasionally have an NP right sister; humans know that vet is not a good head for such an NP, but our
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Original PCFG Transitivity-distinguishing PCFG

Condition  Resolution | Condition Ambiguity onset Resolution
NP absent 4.85 | Intransitive (arrived) 2.11 3.20
NP present 2.32 | Transitive (scratched) 0.44 8.04

Table 2: Surprisals at ambiguity resolution in (16) and (16a), and at ambiguity onset and
resolution in (17), using small PCFG

60
|

—— First-pass time
= = Surprisal -

20 40
|

Transitive RT — Intransitive RT
0
!
Transitive surprisal — Intransitive surprisal (bits)

T T T T
the vet and his new assistant removed the muzzle.

Figure 3: Broad-coverage transitivity-distinguishing PCFG assessed on (17)

Theoretical justifications for surprisal

Another development since Hale’s (2001) original proposal has been work justifying surprisal
as a metric for online processing difficulty within the context of rational cognitive models
(Shepard, 1987; Anderson, 1990; Tenenbaum and Griffiths, 2001). Here I briefly describe
three such justifications in the literature. First, Levy (2008a) posed the view of surprisal as
a measure of RERANKING COST. In this approach, the problem of incremental disambigua-
tion is framed as one of allocating limited resources (which correspond to probability mass in
probabilistic frameworks) to the possible analyses of the sentence. On this view, the process-
ing difficulty of a word w could be taken to be the size of the shift in the resource allocation
(equivalently, in the conditional probability distribution over interpretations) induced by
w. Levy (2008a) showed that under highly general conditions in which possible joint word-
sequence/interpretation structures are specified by a generative probabilistic grammar, the

model does not. Thus our model has not disconfirmed the incorrect analysis before the disambiguating
region as fully as a model with finer-grained information sources would have.
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size of this shift induced by w, as measured by the RELATIVE ENTROPY (Cover and Thomas,
1991) between the conditional distributions over interpretations before and after seeing w
is also the surprisal of w. This reranking-cost interpretation is extremely close to Hale’s
original intuition of processing difficulty as being the work done in disconfirming possible
structures.

The other two justifications are distinctive in explicitly modeling the comprehender as a
RATIONAL agent—that is, one which makes decisions which optimize its expected effective-
ness in operating in its environment—and in directly confronting the problem of how much
time a rational agent would spend processing each word of a sentence in its context. One
justification involves a focus on OPTIMAL PERCEPTUAL DISCRIMINATION, and is particu-
larly well-suited to the problem of analyzing motor control in reading. In many theories of
reading (Reichle et al., 1998; Engbert et al., 2005; Reilly and Radach, 2006), LEXICAL AC-
CEss—identifying the word currently attended to, retrieving its representation from memory,
and integrating it into the context—is posited to be a key bottleneck in the overall process
of reading a sentence. Formalizing this notion of a lexical-access bottleneck turns out to lead
naturally to surprisal as an index of incremental processing difficulty. A simple formalization
is given for the isolated word-recognition case by Norris (2006, 2009): before encountering
any word, the reader has a set of expectations as to what that word may be. What it means
to process a word is to accrue noisy perceptual samples from the word; in general, these
samples will gradually guide the reader toward correctly recognizing the word. A simple
decision rule for the comprehender is to collect input samples until some predetermined
threshold of certainty is surpassed, after which the comprehender can confidently commit to
the word’s identity and move on. This formulation casts word recognition as a SEQUENTIAL
PROBABILITY RATIO TEST, an old problem whose psychological applications date back to
Stone (1960; see also Laming, 1968). Mathematical analysis reveals that it is equivalent
to a directed random walk in the space of possible word identities, with the average step
size toward the correct word identity being approximately constant in log-probability. The
starting position of this random walk is simply the word’s surprisal, hence the expected time
to decision threshold is linear in log-probability. Figure 4a illustrates example outcomes of
this random walk for different surprisal values; note that as word surprisal increases (smaller
values on the y axis), smaller changes in raw starting probability are needed to obtain similar
changes in the amount of time needed to reach threshold. The only enhancement to this
model required to account for sentence-level reading is to make the comprehender’s prior
expectations for a word’s identity depend on context, as we saw how to do in the previous
section (see Bicknell and Levy, 2010, 2012 for recent work using such a model).

The other rational-analysis justification is of OPTIMAL PREPARATION, introduced by
Smith and Levy (2008, ). In this approach, one makes the assumption that some time-
consuming mental computations are required to integrate a word into its context during
comprehension; specific commitments as to the type of computation are not required. The
time required for a computation is a quantity that can be chosen by the rational agent; it
is assumed that shorter times require greater investment of some kind of cognitive resources
(these could range from short-term attention to the long-term devotion of specialized neural
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pathways), but are also of benefit to the agent in comprehension. This sets up a cost-benefit
tradeoff between, on the one hand, investment of resources in the possible inputs that could
be encountered in a sentence, and on the other hand, the uncertain payoff obtained from
greater processing efficiency on the input that is actually encountered. When this tradeoff is
combined with a scale-free assumption that the optimal cost-benefit balance is independent
of the granularity (e.g., at the level of phrases, words, or syllables) at which investments are
made, it results in the prediction that the optimal resource allocation will lead to processing
times linear in the log-probability of the event.

CONFLICTING PREDICTIONS BETWEEN EXPECTATIONS
AND MEMORY

Because memory- and expectation-based approaches to comprehension difficulty are each
supported by deep intuition, theoretical formalization, and a range of empirical results, it
is of great interest to examine the degree of overlap in their empirical coverage. In many
types of syntactic configurations investigated in the sentence-processing literature, the two
approaches make similar predictions regarding differential processing difficulty. As just one
example, the pattern of garden-path disambiguation observed by Grodner et al. (2002) in
examples like (8) was explained under DLT as a stronger preference to avoid syntactically
complex analysis of new input (a reduced relative clause) when memory load is already high
(inside a relative clause) than when memory load is lower (inside a sentential complement).
This pattern turns out to be predicted under expectation-based disambiguation accounts
such as surprisal for two reasons. First, in English RC postmodifiers of embedded-clause
subjects (the walley in (8)) are simply less common when the embedded clause itself is
an RC (the conditional probabilities are less than 0.5% versus 1-2% respectively based on
estimates from the Penn Treebank). This consideration leads to the same predictions as do
memory-based theories for processing of these structures. Second, the head noun (valley)
in the RC structure creates a source of expectation for the embedded-clause verb, but in
this case the expectation is violated in the RC variant relative to the SC variant (in essence,
captured is not the verb one expects to have both river as its object and valley as its subject).
Hence captured is especially surprising in the ambiguous variant of (8a), which could account
for the processing difficulty observed by Grodner et al. (2002).'? More generally, syntactic
configurations which place a heavy load on working memory according to the theories covered
in the section on Memory limitations, locality, and interference seem to be rare—especially
in English (Gildea and Temperley, 2007)—so expectation-based theories predict that they
are surprising and thus hard to process.

120ne weakness of this second account for the data of Grodner et al. is that it predicts a processing difficulty
reversal further downstream: the greater implausibility of the finite-verb analysis for the RC context should
guide the comprehender toward a reduced-relative analysis, which would lighten the processing burden at
the disambiguating region by the enemy. However, no such processing reversal was found by Grodner et al..
Under surprisal, it is possible that the first consideration (the structural-frequency difference) could eliminate
this difficulty reversal. Grodner et al. (2011) present further data bearing on these issues.
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Constrained syntactic contexts

But there are also situations where the two approaches can be put into fairly stark conflict.
Particular attention has been paid in this regard to SYNTACTICALLY CONSTRAINED CON-
TEXTS. These are contexts which allow a comprehender to infer that a grammatical event
of some type X will occur at some point in future input, but the comprehender is uncertain
about exactly when X will occur, and by what surface input (e.g., which word) X will be
instantiated. This situation is schematized in Figure 5. Consider a situation with more
dependents preceding X (Figure 5b), as compared with a situation with fewer dependents
preceding X (Figure 5a). For memory-based theories, processing of X should be more dif-
ficult in the case with more dependents, due to the greater number of integrations, greater
distance from X of early dependents and/or potential interference among dependents during
retrieval. For expectation-based theories, on the other hand, the additional information ob-
tained from more preceding dependents implies that the expectations of the comprehender
regarding when X will be encountered and what input will instantiate it will generally be
sharper and more accurate; thus there should on average be less processing difficulty at X
than in the situation with fewer preceding dependents. By looking at processing behavior
(e.g., reading times) when the comprehender reaches X, we can hope to gain insight into
the relative roles of expectations and memory in online language comprehension.

However, experimental work on such syntactically constrained contexts using different
languages and different construction types has not yielded a fully consistent picture: in
some cases, the picture looks like that predicted by expectation-based accounts; in other
cases, it looks like that predicted by memory-based accounts. Let us begin with some of
the clearest evidence of expectation-based processing patterns. In obligatorily head-final
language/construction combinations such as the verbal dependency structure of Japanese,
Hindi, and German (excepting in the last case main-clause finite verbs), there is little to no
evidence that adding preverbal dependents makes processing of the final verb more difficult—
rather, these additional dependents seem to make the final verb easier to process! To take one
example, Konieczny and Doring (2003) examined obligatorily verb-final German subordinate
clauses such as in (19) below.

(19) a. ...dass [der Freund] [dem Kunden| [das Auto] [aus Freude] verkaufte ...
... that [the friend.NOM] [the client.DAT] [the car.Acc] [from joy|]  bought
“The insight that the friend bought the client car out of joy...”
b. ...dass [der Freund] [des Kunden| [das Auto] [aus Plastik] verkaufte ...
... that [the friend.NOM] [the client.GEN] [the car.AcC] [from plastic] bought
“The insight that the friend of the client bought the plastic car...”

In this elegant study, the two variants of the sentence differ only in a single letter, but
this character determines whether the second NP of the subordinate clause is dative and
thus a dependent of an as-yet-unseen verb (19a) or is genitive and thus a postmodifier of
the immediately preceding noun (19b). Regression-path durations on the clause final verb
verkaufte (“bought”) were reliably longer in the genitive-NP variant, suggesting that the
dative NP facilitated processing of the verb (see also Konieczny, 1996, 2000 and Levy and

Roger Levy— Corrected version of 4 October 2015 Page 161



Keller, 2013 for additional related experimental data; and Levy, 2008a for surprisal-based
analysis). Similar qualitative effects have been found in Hindi (Vasishth and Lewis, 2006)
and Japanese (Nakatani and Gibson, 2008, 2010).

At the same time, there are situations where it seems that it is the predictions of memory-
based theories, not expectation-based theories, which are borne out. Postnominal relative
clauses with overt relative pronouns are in general syntactically constrained contexts, because
the comprehender knows that an RC verb must appear. Levy et al. (ress), for example,
parametrically varied the number of intervening constituents between a relative pronoun
and the verb in subject-extracted RCs in Russian, such as:

(20) a. ...ofitsant, kotoryj zabyl prinesti bljudo iz teljatiny posetitelju v
... waiter, who.NOM forgot to_bring dish.Acc of veal customer.DAT in
chernom kostjume. ..

black  suit...
“...the waiter, who forgot to bring the veal dish to the customer in the black suit...”

b. ...ofitsant, kotoryj bljudo iz teljatiny zabyl prinesti posetitelju v

... waiter, who.NOM dish.ACC of veal forgot to_bring customer.DAT in
chernom kostjume. . .
black  suit...
c. ...ofitsant, kotoryj bljudo iz teljatiny posetitelju = v chernom kostjume
... waiter, who.NOM dish.ACC of veal customer.DAT in black  suit

zabyl prinesti. ..
forgot to_bring. ..

Because Russian clause structure has free word order—all logically possible orderings of
subject, verb, object, and indirect object are acceptable under some circumstances (Krylova
and Khavronina, 1988, inter alia)—all three linear orderings in (20) retain the same basic
truth-conditional meaning. In (20a), the RC verb complex (forgot to bring) immediately
follows the relative pronoun; in (20b) the direct object (the dish of veal) precedes it; in (20c)
both the direct object and the indirect object (the customer in the black suit) precede it.
Hence expectation-based theories predict that each additional intervener should increase the
sharpness of the comprehender’s expectations regarding the RC verb complex’s argument
structure and identity—there are fewer things that a waiter can do to a dish of veal that
a waiter can do in general, and even fewer things that a waiter can do to a dish of veal
that implicate a customer as an indirect object. Yet there is no trace of expectation-based
facilitation at the verb in these cases: instead, reading times at the RC verb complex increase
monotonically with the number of intervening constituents. (Levy et al. did find expectation-
based effects at the processing of the accusative NP, dish of veal, which was read more slowly
in the RC-initial position, which is a rare position for an accusative NP in Russian RCs, than
in the postverbal position, which is a more common position in corpora.) Similar results
were obtained for French in a less exhaustive manipulation of RC-internal word order by
Holmes and O’Regan (1981).

Finally, let us return to the best-studied syntactically-constrained context of all: English
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subject- and object-extracted RCs with a full, definite RC-internal NP:

a. The reporter that the senator attacked admitted the error.
21 Th ter that th t ttacked admitted th
b. The reporter that attacked the senator admitted the error.

Using a small PCFG, Hale (2001) showed that surprisal predicts greater overall difficulty
for the ORC due to the lower frequency in general of ORCs. Under surprisal, however,
this greater difficulty should in principle show up as soon as the possibility that the RC
is subject-extracted is ruled out—at the onset of the RC subject the senator. At the RC
verb, in contrast, one would expect the ORC to have the advantage, given that the RC
verb’s argument structure and identity are more tightly constrained than for the SRC. The
empirical facts in this respect are worth careful attention. It is quite clear from self-paced
reading studies that the ORC verb is the site of considerable processing difficulty (Grodner
and Gibson, 2005). At the same time, however, Staub (2010) has recently shown that the
onset of the ORC is also the site of processing difficulty, by comparing sentences like (21)
with similar complement-clause sentences such as (22) below:

(22) The reporter hoped that the senator attacked the chairman of the committee.

In eye-tracking studies, Staub replicated the well-established finding that processing is dis-
rupted at the ORC verb relative to the SRC verb; but at the same time, he also found more
regressive eye movements from the very first word of the ORC—the word the—than from the
same word in the complement clause of (22). Surprisal predicts this effect because a compre-
hender’s expectation for an NP initiating a complement clause is considerably stronger than
that for an NP initiating a relative clause, since the majority of RCs are subject-extracted.
Thus we find some suggestion that effects of both expectation and memory can be observed
even in this well-studied construction.

Broad-coverage evaluation of surprisal and DLT

A critical new development over the past several years is BROAD-COVERAGE EVALUATIONS
of both expectation-based and memory-based theories by a number of researchers, through
analysis of word-by-word reading-time datasets collected using eye-tracking or self-paced
reading (Boston et al., 2008; Demberg and Keller, 2008; Frank, 2009; McDonald and Shill-
cock, 2003; Roark et al., 2009; Smith and Levy, 2008). These broad-coverage evaluations
differ from traditional controlled studies in that the materials being read are complete texts
rather than the isolated sentences typically used in sentence-processing research, they are
naturalistic (the texts are not constructed for the experiment but are everyday reading ma-
terials such as newspaper articles), the potential reading-behavior predictors of theoretical
interest are therefore not balanced, and the datasets to be analyzed are typically much larger,
since every word in every sentence has a conditional probability and (according to most lin-
guistic theories) must be integrated into a syntactic representation. These datasets therefore
pose special challenges both in quantifying the processing difficulty predicted by a given
theory and in analyzing the predictive value of each such quantification. Nevertheless, these
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efforts have been consistent in finding significant contributions of surprisal as a predictor
in multiple-regression analysis of reading times, even when correlated factors widely known
to affect reading behavior such as word length and word frequency (Mitchell, 1984; Rayner,
1998, inter alia) are included as controls. Several of these efforts tested specifically syntax-
based estimates of surprisal (Boston et al., 2008; Demberg and Keller, 2008); Frank and
Bod (2011) compared surprisal estimates based on PCFGs (specifically, the limited-parallel
implementation of Roark 2001, 2004) with those based on simple recurrent networks (SRNs;
Elman, 1990) and, based on the result that the estimates given by the SRN achieved greater
predictive accuracy of word-by-word reading times than those given by the PCFG, suggested
that SRNs better describe human sentence-processing performance. Since the estimation of
high-quality PCFGs is an open research problem to which a large amount of effort in the
field of computational linguistics continues to be devoted, it is clear that an answer to the
important question of which models are most psychologically faithful-—as assessed by their
fit to human reading-time and other comprehension data—is only in its infancy (see Fossum
and Levy, 2012; Fernandez Monsalve et al., 2012 for related analyses illustrating that the
picture remains incomplete). Demberg and Keller (2008) also constructed a broad-coverage
variant of DLT and found that it had predictive value for reading times at nouns and at
auxiliary verbs, though curiously not for other words, including open-class verbs. Another
broad-coverage analysis, by Smith and Levy (2008, ), posed a different question: what is
the shape of the relationship between conditional word probability and reading time? Sur-
prisal theory assumes a log-linear relationship—that is, reading times should be linear in log
probabilities, so that a difference between word probabilities of 0.0001 and 0.0099 should
have the same effect as that between word probabilities of 0.01 and 0.99. Traditional psy-
cholinguistic practice, on the other hand, implicitly assumes something closer to a linear
relationship, with words with in-context Cloze probabilities above 0.6 to 0.7 thought of
as “predictable” and those below roughly 0.01 to 0.05 are uniformly categorized as “un-
predictable”. In non-parametric multiple regression analyses, Smith and Levy; Smith and
Levy recovered a reliable log-linear effect of conditional word probability on reading times
in both eye-tracking and self-paced reading datasets, over six orders of magnitude—ranging
from probability 1 to 0.000001. In addition to its theoretical value, this result has crucial
methodological ramifications, since predictability differences well below 0.01—which could
not be reliably recovered from traditional Cloze studies with participants numbering in the
dozens—could have large effects on real-time comprehension behavior.

CONCLUSION

This overview of memory and surprisal in human sentence comprehension both sheds light on
a wide variety of sentence-processing phenomena and highlights some outstanding questions
which require further research. To illustrate what we have learned, turn back to the opening
example of the chapter, sentence (1). As I said before, you probably found this sentence most
confusing at two places: around the word admired and around the phrase was concerned.
The first source of confusion can be understood as a memory-based integration effect like
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those discussed in the section on Applications beyond center-embedding difficulty: to process
admired, you need to simultaneously integrate it with g¢irl and teacher, neither of which
is adjacent to admired and both of which share many relevant retrieval cues. The second
source of confusion can be understood as an expectation-based surprisal effect like the one we
saw in the section on Surprisal and garden-path disambiguation: you probably placed your
syntactic bets on her mother being the object of call and thus were surprised to discover, as
was indicates, that her mother was actually the main-clause subject. Thus the two theories
we have covered in this chapter resolve the mysteries of why a typical reader finds sentence (1)
difficult where she does.

On the other hand, many open questions remain. Why, for example, do we see the
discrepancies in incremental processing costs in syntactically constrained contexts across
language and construction type described in the section on Conflicting predictions between
expectations and memory? It is notable that the cases in which the evidence for memory-
based processing costs and against expectation-based costs is clearest involves relativization,
which as we saw quite early on in this chapter have long been considered to be the basis
for canonical examples demonstrating the limitations of human memory capacity in online
language comprehension. It is also notable that the clearest evidence for expectation-based
patterning in verbal processing comes from obligatorily verb-final languages, in which the
comprehender presumably has much more experience with long-distance dependency inte-
grations (see also the comparisons of dependency distances between English and German by
Gildea and Temperley, 2010 and Park and Levy, 2009 for more evidence in this connection).
Some researchers have taken initial steps toward constructing models which integrate no-
tions of expectation and memory limitation. Demberg and Keller (2009) have introduced an
incremental parsing model that contains both prediction and verification components, which
respectively yield surprisal-like and DLT-like processing difficulty gradients. In addition, the
model of Lewis and Vasishth (2005) can achieve some types of expectation-derived processing
benefits, as processing of multiple preceding dependents can boost the activation level of a
governor before it is encountered (see Vasishth and Lewis, 2006 for more discussion).

It is clear that considerably more work—both empirical and theoretical—mneeds to be
done before we have any definitive answers. On the empirical side, coverage of a wider
variety of languages and syntactic construction types is required to expand the fundamental
knowledge base on which we build theories. On the theoretical side, a number of questions
remain outstanding. First, why do we see expectation-based patterning in some situations
and memory-based patterns in others? What features of the language, construction type, and
potentially even comprehension task induce each type of pattern? Second, what features of
context are used—and how, and why—to determine a comprehender’s expectations in online
comprehension? This has been referred to as the GRAIN-SIZE problem (Mitchell et al., 1995),
and while we know that the answer is in general “potentially very fine-grained”, we are still
a long way from truly precise answers. Finally: expectation-based models can be understood
as the consequence of optimization in comprehension, situating them within frameworks of
RATIONAL cognition (Shepard, 1987; Anderson, 1990; Tenenbaum and Griffiths, 2001; see
also the section on Theoretical justifications for surprisal). To what extent can memory-
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based models be understood in a similar light?

ACKNOWLEDGMENTS

I would like to express my gratitude to Ted Gibson, Rick Lewis, and Shravan Vasishth for
numerous conversations over the past several years that have improved my understanding of
the memory-oriented theories of syntactic complexity described here. All remaining mistakes
remain my own, of course; and with luck, I have not misrepresented these theories too badly.

Thanks as well to Mark Johnson for pointing out a mistake in Example 19 that has been
corrected in this version of the paper.

References

Adams, B. C.; C. Clifton, Jr., and D. C. Mitchell (1998). Lexical guidance in sentence
processing? Psychonomic Bulletin €& Review 5(2), 265-270.

Altmann, G. T. and Y. Kamide (1999). Incremental interpretation at verbs: restricting the
domain of subsequent reference. Cognition 73(3), 247-264.

Anderson, J. R. (1990). The Adaptive Character of Human Thought. Hillsdale, NJ: Lawrence
Erlbaum.

Arcuri, S. M., S. Rabe-Hesketh, R. G. Morris, and P. K. Mcguire (2001). Regional variation
of Cloze probabilities for sentence contexts. Behavior Research Methods, Instruments, &
Computers 33(1), 80-90.

Attneave, F. (1959). Applications of Information Theory to Psychology: A summary of basic
concepts, methods and results. New York: Holt, Rinehart and Winston.

Bever, T. (1970). The cognitive basis for linguistic structures. In J. Hayes (Ed.), Cognition
and the Development of Language, pp. 279-362. New York: John Wiley & Sons.

Bicknell, K. and R. Levy (2009, 31 May-5 June). A model of local coherence effects in
human sentence processing as consequences of updates from bottom-up prior to posterior
beliefs. In Proceedings of the North American Chapter of the Association for Compu-

tational Linguistics—Human Language Technologies (NAACL-HLT) conference, Boulder,
Colorado, USA.

Bicknell, K. and R. Levy (2010, 11-16 July). A rational model of eye movement control
in reading. In Proceedings of the Annual Meeting of the Association for Computational
Linguistics, Uppsala, Sweden, pp. 1168-1178.

Bicknell, K. and R. Levy (2012, 1-4 August). Word predictability and frequency effects in
a rational model of reading. In Proceedings of the 34th Annual Meeting of the Cognitive
Science Conference, Sapporo, Japan.

Roger Levy— Corrected version of 4 October 2015 Page 166



Bock, K. and C. A. Miller (1991). Broken agreement. Cognitive Psychology 23, 45-93.

Booth, T. L. (1969, October). Probabilistic representation of formal languages. In IEEE
Conference Record of the 1969 Tenth Annual Symposium on Switching and Automata
Theory, pp. 74-81.

Boston, M. F., J. T. Hale, R. Kliegl, U. Patil, and S. Vasishth (2008). Parsing costs as
predictors of reading difficulty: An evaluation using the Potsdam sentence corpus. Journal
of Eye Movement Research 2(1), 1-12.

Charniak, E. (1996). Tree-bank grammars. Technical report, Department of Computer
Science, Brown University.

Chen, E., E. Gibson, and F. Wolf (2005). Online syntactic storage costs in sentence com-
prehension. Journal of Memory and Language 52, 144-169.

Chomsky, N. (1956). Three models for the description of language. IRE Transactions on
Information Theory 2(3), 113-124.

Chomsky, N. (1957). Syntactic Structures. The Hague: Mouton.
Chomsky, N. (1965). Aspects of the Theory of Syntaxr. Cambridge, MA: MIT Press.
Chomsky, N. (1981). Lectures on Government and Binding. Dordrecht: Foris Publishers.

Chomsky, N. and G. A. Miller (1963). Introduction to the formal analysis of natural lan-
guages. See Luce et al. (1963), pp. 269-321.

Christiansen, M. H. and M. C. MacDonald (2009). A usage-based approach to recursion in
sentence processing. Language Learning 51 (Suppl. 1), 126-161.

Clifton, Jr., C. (1993). Thematic roles in sentence parsing. Canadian Journal of Experimental
Psychology 47(2), 224-246.

Cover, T. and J. Thomas (1991). Elements of Information Theory. New York: Wiley.

Cowper, E. A. (1976). Constraints on Sentence Complezity: A Model for Syntactic Process-
ing. Ph. D. thesis, Brown University, Providence, RI.

Crocker, M. and T. Brants (2000). Wide-coverage probabilistic sentence processing. Journal
of Psycholinguistic Research 29(6), 647-669.

DeLong, K. A., T. P. Urbach, and M. Kutas (2005). Probabilistic word pre-activation during
language comprehension inferred from electrical brain activity. Nature Neuroscience 8,
1117-1121.

Demberg, V. and F. Keller (2008). Data from eye-tracking corpora as evidence for theories
of syntactic processing complexity. Cognition 109(2), 193-210.

Roger Levy— Corrected version of 4 October 2015 Page 167



Demberg, V. and F. Keller (2009, 29 July—1 August). A computational model of predic-
tion in human parsing: Unifying locality and surprisal effects. In Proceedings of CogSci,
Amsterdam, Netherlands.

Eberhard, K. M. (1999). The accessibility of conceptual number to the processes of subject-
verb agreement in English. Journal of Memory and Language 41, 560-578.

Eberhard, K. M., J. C. Cutting, and K. Bock (2005). Making syntax of sense: Number
agreement in sentence production. Psychological Review 112(3), 531-559.

Ehrlich, S. F. and K. Rayner (1981). Contextual effects on word perception and eye move-
ments during reading. Journal of Verbal Learning and Verbal Behavior 20, 641-655.

Elman, J. (1990). Finding structure in time. Cognitive Science 14, 179-211.

Engbert, R., A. Nuthmann, E. M. Richter, and R. Kliegl (2005). SWIFT: a dynamical model
of saccade generation during reading. Psychological Review 112(4), 777-813.

Fernandez Monsalve, 1., S. L. Frank, and G. Vigliocco (2012, 23-27 April). Lexical surprisal
as a general predictor of reading time. In Proceedings of the 13th Conference of the
FEuropean Chapter of the Association for Computational Linguistics, Avignon, France.

Ferreira, F. and J. Henderson (1990). Use of verb information in syntactic parsing: evi-
dence from eye movements and word-by-word self-paced reading. Journal of Fxperimental
Psychology: Learning, Memory, & Cognition 16(4), 555—68.

Ford, M. (1983). A method for obtaining measures of local parsing complexity throughout
sentences. Journal of Verbal Learning and Verbal Behavior 22, 203-218.

Fossum, V. and R. Levy (2012, 7 June). Sequential vs. hierarchical syntactic models of
human incremental sentence processing. In Proceedings of the 3rd Annual Workshop on
Cognitive Modeling and Computational Linguistics, Montreal, Quebec.

Franck, J., G. Vigliocco, and J. Nicol (2002). Subject-verb agreement errors in French and
English: The role of syntactic hierarchy. Language & Cognitive Processes 17(4), 371-404.

Frank, S. L. (2009, 29 July—1 August). Surprisal-based comparison between a symbolic and a
connectionist model of sentence processing. In Proceedings of the 31st Annual Conference
of the Cognitive Science Society, Amsterdam, Netherlands, pp. 1139-1144.

Frank, S. L. and R. Bod (2011). Insensitivity of the human sentence-processing system to
hierarchical structure. Psychological Science 22(6), 829-834.

Frazier, L. and K. Rayner (1982). Making and correcting errors during sentence compre-
hension: Eye movements in the analysis of structurally ambiguous sentences. Cognitive
Psychology 14, 178-210.

Roger Levy— Corrected version of 4 October 2015 Page 168



Gibson, E. (1991). A computational theory of human linguistic processing: memory limita-
tions and processing breakdown. Ph. D. thesis, Carnegie Mellon.

Gibson, E. (1998). Linguistic complexity: Locality of syntactic dependencies. Cognition 68,
1-76.

Gibson, E. (2000). The dependency locality theory: A distance-based theory of linguistic
complexity. In A. Marantz, Y. Miyashita, and W. O'Neil (Eds.), Image, Language, Brain,
pp. 95-126. Cambridge, MA: MIT Press.

Gibson, E., T. Desmet, D. Grodner, D. Watson, and K. Ko (2005). Reading relative clauses
in English. Language & Cognitive Processes 16(2), 313-353.

Gibson, E. and J. Thomas (1997). Processing load judgements in English: Evidence for the
Syntactic Prediction Locality Theory of syntactic complexity. Manuscript, MIT, Cam-
bridge, MA.

Gibson, E. and J. Thomas (1999). The perception of complex ungrammatical sentences as
grammatical. Language & Cognitive Processes 14 (3), 225-248.

Gildea, D. and D. Temperley (2007, 23-30 June). Optimizing grammars for minimum depen-
dency length. In Proceedings of the Annual Meeting of the Association for Computational
Linguistics, Prague, Czech Republic.

Gildea, D. and D. Temperley (2010). Do grammars minimize dependency length? Cognitive
Science 34, 286-310.

Gordon, P. C.; R. Hendrick, and M. Johnson (2001). Memory interference during language
processing. Journal of Experimental Psychology: Learning, Memory, & Cognition 27,
1411-1423.

Gordon, P. C.; R. Hendrick, and M. Johnson (2004). Effects of noun phrase type on sentence
complexity. Journal of Memory and Language 51 (1), 97-114.

Grodner, D., K. Comer, and E. Gibson (2011). Non-local syntactic influences in structural
ambiguity resolution. In preparation.

Grodner, D. and E. Gibson (2005). Some consequences of the serial nature of linguistic
input. Cognitive Science 29(2), 261-290.

Grodner, D., E. Gibson, and S. Tunstall (2002). Syntactic complexity in ambiguity resolution.
Journal of Memory and Language 46, 267-295.

Hale, J. (2001, 2-7 June). A probabilistic Earley parser as a psycholinguistic model. In
Proceedings of the Second Meeting of the North American Chapter of the Association for
Computational Linguistics, Pittsburgh, Pennsylvania, pp. 159-166.

Roger Levy— Corrected version of 4 October 2015 Page 169



Holmes, V. M. and J. K. O’Regan (1981). Eye fixation patterns during the reading of
relative-clause sentences. Journal of Verbal Learning and Verbal Behavior 20, 417-430.

Hsiao, F. and E. Gibson (2003). Processing relative clauses in Chinese. Cognition 90(11),
3-27.

Humboldt, W. (1988/1836). On Language. Cambridge: Cambridge University Press. Trans-
lated from the German by Peter Heath. Originally published as Uber die Verschienheit
des Menschlichen Sprachbaues, 1836, Berlin.

Jelinek, F. and J. D. Lafferty (1991). Computation of the probability of initial substring
generation by stochastic context free grammars. Computational Linguistics 17(3), 315—
323.

Jurafsky, D. (1996). A probabilistic model of lexical and syntactic access and disambiguation.
Cognitive Science 20(2), 137-194.

Jurafsky, D. and J. H. Martin (2008). Speech and Language Processing: An Introduction to
Natural Language Processing, Computational Linguistics, and Speech Recognition (Second
ed.). Prentice-Hall.

Kimball, J. and J. Aissen (1971). I think, you think, he think. Linguistic Inquiry 2, 241-246.

King, J. and M. A. Just (1991). Individual differences in syntactic processing: The role of
working memory. Journal of Memory and Language 30(5), 580—602.

Konieczny, L. (1996). Human sentence processing: a semantics-oriented parsing approach.
Ph. D. thesis, Universitat Freiburg.

Konieczny, L. (2000). Locality and parsing complexity. Journal of Psycholinguistic Re-
search 29(6), 627-645.

Konieczny, L. and P. Déring (2003, 13-17 July). Anticipation of clause-final heads: Evi-
dence from eye-tracking and SRNs. In Proceedings of the ICCS/ASCS Joint International
Conference on Cognitive Science, Sydney, Australia.

Krylova, O. and S. Khavronina (1988). Word Order in Russian. Moscow, USSR: Russky
Yazyk Publishers.

Kutas, M. and S. A. Hillyard (1980). Reading senseless sentences: Brain potentials reflect
semantic incongruity. Science 207(4427), 203-205.

Kutas, M. and S. A. Hillyard (1984). Brain potentials during reading reflect word expectancy
and semantic association. Nature 307, 161-163.

Kucera, H. and W. N. Francis (1967). Computational Analysis of Present-day American
English. Providence, RI: Brown University Press.

Roger Levy— Corrected version of 4 October 2015 Page 170



Laming, D. R. J. (1968). Information Theory of Choice-Reaction Times. London: Academic
Press.

Levy, R. (2008a). Expectation-based syntactic comprehension. Cognition 106, 1126-1177.

Levy, R. (2008b, 25-27 October). A noisy-channel model of rational human sentence com-
prehension under uncertain input. In Proceedings of the 13th Conference on Empirical
Methods in Natural Language Processing, Waikiki, Honolulu, pp. 234-243.

Levy, R., K. Bicknell, T. Slattery, and K. Rayner (2009). Eye movement evidence that
readers maintain and act on uncertainty about past linguistic input. Proceedings of the
National Academy of Sciences 106(50), 21086-21090.

Levy, R., E. Fedorenko, and E. Gibson (In Press). The syntactic complexity of Russian
relative clauses. Journal of Memory and Language.

Levy, R. and F. Keller (2013). Expectation and locality effects in German verb-final struc-
tures. Journal of Memory and Language 68(2), 199-222.

Lewis, R. L. and S. Vasishth (2005). An activation-based model of sentence processing as
skilled memory retrieval. Cognitive Science 29, 1-45.

Lewis, R. L., S. Vasishth, and J. Van Dyke (2006). Computational principles of working
memory in sentence comprehension. Trends in Cognitive Science 10(10), 447-454.

Luce, R. D., R. R. Bush, and E. Galanter (Eds.) (1963). Handbook of Mathematical Psy-
chology, Volume II. New York: John Wiley & Sons, Inc.

MacDonald, M. C. (1993). The interaction of lexical and syntactic ambiguity. Journal of
Memory and Language 32, 692-715.

Manning, C. D. and H. Schiitze (1999). Foundations of Statistical Natural Language Pro-
cessing. Cambridge, MA: MIT Press.

Marcus, M. P., B. Santorini, and M. A. Marcinkiewicz (1994). Building a large annotated
corpus of English: The Penn Treebank. Computational Linguistics 19(2), 313-330.

Marks, L. and G. A. Miller (1964). The role of semantic and syntactic constraints in the
memorization of English sentences. Journal of Verbal Learning and Verbal Behavior 3,
1-5.

Marslen-Wilson, W. (1975). Sentence perception as an interactive parallel process. Sci-
ence 189(4198), 226-228.

McDonald, S. A. and R. C. Shillcock (2003). Low-level predictive inference in reading: The
influence of transitional probabilities on eye movements. Vision Research 43, 1735-1751.

Roger Levy— Corrected version of 4 October 2015 Page 171



McRae, K., M. J. Spivey-Knowlton, and M. K. Tanenhaus (1998). Modeling the influence of
thematic fit (and other constraints) in on-line sentence comprehension. Journal of Memory
and Language 38(3), 283-312.

Miller, G. A. and N. Chomsky (1963). Finitary models of language users. See Luce et al.
(1963), pp. 419-491.

Miller, G. A. and S. Isard (1963). Some perceptual consequences of linguistic rules. Journal
of Verbal Learning and Verbal Behavior 2, 217-228.

Mitchell, D. C. (1984). An evaluation of subject-paced reading tasks and other methods for
investigating immediate processes in reading. In D. Kieras and M. A. Just (Eds.), New
methods in reading comprehension. Hillsdale, NJ: Earlbaum.

Mitchell, D. C. (1987). Lexical guidance in human parsing: Locus and processing character-
istics. In M. Coltheart (Ed.), Attention and Performance XII: The psychology of reading.
London: Erlbaum.

Mitchell, D. C., F. Cuetos, M. Corley, and M. Brysbaert (1995). Exposure-based models
of human parsing: Evidence for the use of coarse-grained (nonlexical) statistical records.
Journal of Psycholinguistic Research 24, 469-488.

Nakatani, K. and E. Gibson (2008). Distinguishing theories of syntactic expectation cost in
sentence comprehension: Evidence from Japanese. Linguistics 46(1), 63-87.

Nakatani, K. and E. Gibson (2010). An on-line study of Japanese nesting complexity. Cog-
nitive Science 34 (1), 94-112.

Narayanan, S. and D. Jurafsky (1998, 1-4 August 2012). Bayesian models of human sentence
processing. In Proceedings of the Twelfth Annual Meeting of the Cognitive Science Society,
Madison, Wisconsin.

Narayanan, S. and D. Jurafsky (2002, 3-8 December 2001). A Bayesian model predicts
human parse preference and reading time in sentence processing. In Advances in Neural
Information Processing Systems, Volume 14, Vancouver, British Columbia, Canada, pp.
59-65.

Norris, D. (2006). The Bayesian Reader: Explaining word recognition as an optimal Bayesian
decision process. Psychological Review 113(2), 327-357.

Norris, D. (2009). Putting it all together: A unified account of word recognition and reaction-
time distributions. Psychological Review 116(1), 207-219.

Park, Y. A. and R. Levy (2009, 31 May-5 June 2009). Minimal-length linearizations for
mildly context-sensitive dependency trees. In Proceedings of the North American Chap-

ter of the Association for Computational Linguistics — Human Language Technologies
(NAACL-HLT) conference, Boulder, Colorado, USA.

Roger Levy— Corrected version of 4 October 2015 Page 172



Pearlmutter, N., S. Garnsey, and K. Bock (1999). Agreement processes in sentence compre-
hension. Journal of Memory and Language 41, 427-456.

Pickering, M. J. and M. J. Traxler (1998). Plausibility and recovery from garden paths: An
eye-tracking study. Journal of Ezperimental Psychology: Learning, Memory, €& Cogni-
tion 24(4), 940-961.

Pollard, C. and 1. Sag (1994). Head-Driven Phrase Structure Grammar. Chicago: University
of Chicago Press and Stanford: CSLI Publications.

Rayner, K. (1998). Eye movements in reading and information processing: 20 years of
research. Psychological Bulletin 124 (3), 372-422.

Reichle, E. D.; A. Pollatsek, D. L. Fisher, and K. Rayner (1998). Toward a model of eye
movement control in reading. Psychological Review 105(1), 125-157.

Reilly, R. G. and R. Radach (2006). Some empirical tests of an interactive activation model
of eye movement control in reading. Cognitive Systems Research 7, 34-55.

Roark, B. (2001). Probabilistic top-down parsing and language modeling. Computational
Linguistics 27(2), 249-276.

Roark, B. (2004). Robust garden path parsing. Natural Language Engineering 10(1), 1-24.

Roark, B., A. Bachrach, C. Cardenas, and C. Pallier (2009, 6-7 August). Deriving lexical
and syntactic expectation-based measures for psycholinguistic modeling via incremental
top-down parsing. In Proceedings of the Conference on Empirical Methods in Natural
Language Processing, Singapore.

Shepard, R. N. (1987). Toward a universal law of generalization for psychological science.
Science 237(4820), 1317-1323.

Smith, N. J. and R. Levy. The effect of word predictability on reading time is logarithmic.
Cognition. In press.

Smith, N. J. and R. Levy (2008, 23-26 July). Optimal processing times in reading: a
formal model and empirical investigation. In Proceedings of the 30th Annual Meeting of
the Cognitive Science Society, Washington, DC.

Spivey, M. J. and M. K. Tanenhaus (1998). Syntactic ambiguity resolution in discourse:
Modeling the effects of referential content and lexical frequency. Journal of FExperimental
Psychology: Learning, Memory, & Cognition 24(6), 1521-1543.

Staub, A. (2007). The parser doesn’t ignore intransitivity, after all. Journal of Experimental
Psychology: Learning, Memory, € Cognition 33(3), 550-569.

Staub, A. (2010). Eye movements and processing difficulty in object relative clauses. Cog-
nition 116, 71-86.

Roger Levy— Corrected version of 4 October 2015 Page 173



Stolcke, A. (1995). An efficient probabilistic context-free parsing algorithm that computes
prefix probabilities. Computational Linguistics 21(2), 165-201.

Stone, M. (1960). Models for choice-reaction times. Psychometrika 25(3), 251-260.

Sturt, P., M. J. Pickering, and M. W. Crocker (1999). Structural change and reanalysis
difficulty in language comprehension. Journal of Memory and Language 40, 136-150.

Tabor, W., B. Galantucci, and D. Richardson (2004). Effects of merely local syntactic
coherence on sentence processing. Journal of Memory and Language 50(4), 355-370.

Tabor, W. and M. K. Tanenhaus (1999). Dynamical models of sentence processing. Cognitive
Science 23(4), 491-515.

Tanenhaus, M. K., M. J. Spivey-Knowlton, K. Eberhard, and J. C. Sedivy (1995). Integration
of visual and linguistic information in spoken language comprehension. Science 268, 1632—
1634.

Taylor, W. L. (1953). A new tool for measuring readability. Journalism Quarterly 30, 415.

Tenenbaum, J. B. and T. L. Griffiths (2001). Generalization, similarity, and Bayesian infer-
ence. Behavioral €& Brain Sciences 24, 629-640.

Traxler, M. J., R. K. Morris, and R. E. Seely (2002). Processing subject and object relative
clauses: Evidence from eye movements. Journal of Memory and Language 47, 69-90.

Traxler, M. J., M. J. Pickering, and C. Clifton (1998). Adjunct attachment is not a form of
lexical ambiguity resolution. Journal of Memory and Language 39, 558-592.

Trueswell, J. C., M. K. Tanenhaus, and S. M. Garnsey (1994). Semantic influences on
parsing: Use of thematic role information in syntactic ambiguity resolution. Journal of
Memory and Language 33, 285-318.

Van Berkum, J. J. A.; C. M. Brown, P. Zwitserlood, V. Kooijman, and P. Hagoort (2005).
Anticipating upcoming words in discourse: Evidence from ERPs and reading times. Jour-
nal of Experimental Psychology: Learning, Memory, & Cognition 31(3), 443-467.

Van Dyke, J. A. (2007). Interference effects from grammatically unavailable constituents
during sentence processing. Journal of Experimental Psychology: Learning, Memory, &
Cognition 33(2), 407-430.

Van Dyke, J. A. and R. L. Lewis (2003). Distinguishing effects of structure and decay
on attachment and repair: A retrieval interference theory of recovery from misanalyzed
ambiguities. Journal of Memory and Language 49(3), 285-316.

van Gompel, R. P. G. and M. J. Pickering (2001). Lexical guidance in sentence processing:
A note on Adams, Clifton, and Mitchell (1998). Psychonomic Bulletin € Review 8(4),
851-857.

Roger Levy— Corrected version of 4 October 2015 Page 174



van Gompel, R. P. G., M. J. Pickering, J. Pearson, and S. P. Liversedge (2005). Evidence
against competition during syntactic ambiguity resolution. Journal of Memory and Lan-
quage 52, 284-307.

van Gompel, R. P. G., M. J. Pickering, and M. J. Traxler (2001). Reanalysis in sentence
processing: Evidence against current constraint-based and two-stage models. Journal of
Memory and Language 45, 225-258.

Vasishth, S. and R. L. Lewis (2006). Argument-head distance and processing complexity:
Explaining both locality and anti-locality effects. Language 82(4), 767-794.

Vasishth, S., K. Suckow, R. L. Lewis, and S. Kern (2010). Short-term forgetting in sentence
comprehension: Crosslinguistic evidence from verb-final structures. Language & Cognitive
Processes 25(4), 533-567.

Vigliocco, G. and J. Nicol (1998). Separating hierarchical relations and word order in lan-
guage production: is proximity concord syntactic or linear? Cognition 68(1), B13-B29.

Wagers, M. W., E. F. Lau, and C. Phillips (2009). Agreement attraction in comprehension:
Representations and processes. Journal of Memory and Language 61, 206-237.

Wanner, E. and M. Maratsos (1978). An ATN approach to comprehension. In M. Halle,
J. Bresnan, and G. A. Miller (Eds.), Linguistic Theory and Psychological Reality. Cam-
bridge, MA: MIT Press.

Warren, T. and E. Gibson (2002). The influence of referential processing on sentence com-
plexity. Cognition 85(1), 79-112.

Wicha, N. Y. Y., E. M. Moreno, and M. Kutas (2004). Anticipating words and their gender:
An event-related brain potential study of semantic integration, gender expectancy, and
gender agreement in Spanish sentence reading. Journal of Cognitive Neuroscience 16(7),
1272-1288.

Yngve, V. (1960). A model and an hypothesis for language structure. Proceedings of the
American Philosophical Society 104, 444—466.

Roger Levy— Corrected version of 4 October 2015 Page 175



1.0
1.0

Decision threshold Decision threshold

0.8
0.8

0.6
0.6

z
5 s
: g
[
< | z <
o o
2 bits
~ | N
o o
4 bits
o | o 6 bits — 8 bits
o o
T T T T T T T T T T T T T
0 10 20 30 40 50 60 0 10 20 30 40 50
Time step Time step
(a) Single instance of a random walk (b) Average posterior probability

0.08
|

P(t)

0.00
|

0 10 20 30 40 50

Time steps t to threshold

(c) Distribution of times to decision threshold

Figure 4: Surprisal as optimal perceptual discrimination. As time accrues and the word-
recognition system accrues more perceptual samples from the current word, the probability
of the correct word rises gradually until a decision threshold is reached; changes to raw
posterior log-probability accrue more slowly when far from the decision boundary (a). A
word’s average posterior probability follows a smooth curve (b), and increase in mean (c,
dashed lines) time to recognition is nearly constant in the word’s surprisal. Note that since
recognition times are skewed (c, solid lines), mean recognition time is greater than modal
time.
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Figure 5: Syntactically constrained contexts with preceding dependents.

Roger Levy— Corrected version of 4 October 2015 Page 177



