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Abstract

Arbitrariness of the sign—the notion that
the forms of words are unrelated to their
meanings—is an underlying assumption
of many linguistic theories. Two lines of
research have recently challenged this as-
sumption, but they produce differing char-
acterizations of non-arbitrariness in lan-
guage. Behavioral and corpus studies
have confirmed the validity of localized
form-meaning patterns manifested in lim-
ited subsets of the lexicon. Meanwhile,
global (lexicon-wide) statistical analyses
instead find diffuse form-meaning system-
aticity across the lexicon as a whole.

We bridge the gap with an approach that
can detect both local and global form-
meaning systematicity in language. In
the kernel regression formulation we in-
troduce, form-meaning relationships can
be used to predict words’ distributional
semantic vectors from their forms. Fur-
thermore, we introduce a novel metric
learning algorithm that can learn weighted
edit distances that minimize kernel regres-
sion error. Our results suggest that the
English lexicon exhibits far more global
form-meaning systematicity than previ-
ously discovered, and that much of this
systematicity is focused in localized form-
meaning patterns.

1 Introduction

Arbitrariness of the sign refers to the notion that
the phonetic/orthographic forms of words have no
relationship to their meanings (de Saussure, 1916).
It is a foundational assumption of many theories
of language comprehension, production, acquisi-
tion, and evolution. For instance, Hockett's (1960)

influential enumeration of the design features of
human language ascribes a central role to arbi-
trariness in enabling the combination and recom-
bination of phonemic units to create new words.
Gasser (2004) uses simulations to show that for
large vocabularies, arbitrary form-meaning map-
pings may provide an advantage in acquisition.
Meanwhile, modular theories of language compre-
hension rely upon the duality of patterning to sup-
port the independence of the phonetic and seman-
tic aspects of language comprehension (Levelt et
al., 1999). Quantifying the extent to which the ar-
bitrariness principle actually holds is important for
understanding how language works.

Language researchers have long noted excep-
tions to arbitrariness. Most of these are patterns
that occur in some relatively localized subset of
the lexicon. These patterns are sub-morphemic
because, unlike conventional morphemes, they
cannot combine reliably to produce new words.
Phonaesthemes (1930) are one example. A
phonaestheme is a phonetic cluster that recurs in
many words that have related meanings. One no-
table phonaestheme is the onset gl-, which occurs
at the beginning of at least 38 English words re-
lating to vision: glow, glint, glaze, gleam, etc.
(Bergen, 2004). At least 46 candidate phonaes-
themes have been posited in the linguistics liter-
ature, according to a list compiled by Hutchins
(1998). Iconicity is another violation of arbitrari-
ness that can lead to non-arbitrary local regular-
ities. Iconicity occurs when the form of a word
is transparently motivated by some perceptual as-
pect of its referent. Consequently, when several
referents share perceptual features, their associ-
ated word-forms would tend to be similar as well
(to the extent that they are iconic). For instance,
Ohala (1984) conjectures that vowels with high
acoustic frequency tend to associate with smaller
items while vowels with low acoustic frequency
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tend to associate with larger items, due to the
experiential link between vocalizer size and fre-
quency. Systematic iconicity is also manifested
in sets of onomatopoeic words that echo similar
sounds (e.g., clink, clank). Although these excep-
tions to non-arbitrariness differ, in each case, spe-
cific form-meaning relationships emerge in a sub-
set of the lexicon. We will refer to all such specific
localized form-meaning patterns as phonoseman-
tic sets.

In recent decades, behavioral and corpus stud-
ies have empirically confirmed the psychological
reality and statistical reliability of many phonose-
mantic sets that had previously been identified
by intuition and observation. Various candidate
phonaesthemes have significant effects on reaction
times during language processing tasks (Hutchins,
1998; Magnus, 1998; Bergen, 2004). Sagi and
Otis (2008) test the statistical significance of the
46 candidates in Hutchins’s (1998) list, and find
that 27 of them exhibit more within-category dis-
tributional semantic coherence than expected by
chance. These results have been replicated using
other corpora and distributional semantic models
(Abramova et al., 2013). Klink (2000) shows that
sound-symbolic attributes such as those proposed
by Ohala (1984) are associated with human judg-
ments about nonwords’ semantic attributes, such
as smallness or beauty. Using a statistical corpus
analysis and WordNet semantic features, Mon-
aghan et al. (2014a) examine a similar hypothesis
space of sound-symbolic phonological and seman-
tic attributes, and reach similar conclusions.

While these localized studies support the exis-
tence of some islands of non-arbitrariness in lan-
guage, their results do not address how pervasive
non-arbitrariness is at the global level—that is, in
the lexicon of a language as a whole. After all,
some seemingly non-arbitrary local patterns can
be expected to emerge merely by chance. How
can we measure whether local phonosemantic pat-
terning translates into global phonosemantic sys-
tematicity–that is, strong, non-negligible lexicon-
wide non-arbitrariness? Shillcock et al. (2001) in-
troduce the idea of measuring phonosemantic sys-
tematicity by analyzing the correlation between
phonological edit distances and distributional se-
mantic distances. In a lexicon of monomor-
phemic and monosyllabic English words, they find
a small but statistically significant correlation be-
tween these two distance measures. Monaghan et

al. (2014b) elaborate on this methodology, show-
ing that the statistical effect is robust to different
choices of form-distance and semantic-distance
metrics. They also look at the effect of leaving
out each word in the lexicon on the overall corre-
lation measure; from this, they derive a phonose-
mantic systematicity measure for each word. In-
terestingly, they find that systematicity is diffusely
distributed across the words in English in a pattern
indistinguishable from random chance. Hence,
they conclude that “systematicity in the vocab-
ulary is not a consequence of small clusters of
sound symbolism.” This line of work provides a
proof-of-concept that it is possible to detect the
phonosemantic systematicity of a language, and
confirms that English exhibits significant phonose-
mantic systematicity.

Broadly speaking, both the localized tests of in-
dividual phonosemantic sets and the global anal-
yses of phonosemantic systematicity challenge
the arbitrariness of the sign. However, they at-
tribute responsibility for non-arbitrariness differ-
ently. The local methods reveal dozens of specific
phonosemantic sets that have strong, measurable
behavioral effects and statistical signatures in cor-
pora. Meanwhile, the global methods find small
and diffuse systematicity. How can we reconcile
this discrepancy?

Original Contributions. We attempt to bridge
the gap with a new approach that builds off of
previous lexicon-wide analyses, making two inno-
vations. The first addresses the concern that the
lexicon-wide methods currently in use may not
be well suited to finding local regularities such
as phonosemantic sets, because they make the as-
sumption that systematicity exists only in the form
of a global correlation between distances in form-
space and distances in meaning-space. Instead, we
model the problem using kernel regression, a non-
parametric regression model. Crucially, in kernel
regression the prediction for a point is based on
the predictions of neighboring points; this enables
us to conduct a global analysis while still cap-
turing local, neighborhood effects. As in previ-
ous work, we represent word-forms by their or-
thographic strings, and word-meanings by their
semantic vector representations as produced by a
distributional semantic vector space model. The
goal of the regression is then to learn a mapping
from string-valued predictor variables to vector-
valued target variables that minimizes regression
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error in the vector space. Conveniently, our model
allows us to produce predictions of the semantic
vectors associated with both words and nonwords.

Previous work may also underestimate system-
aticity in that it weights all edits (substitutions,
insertions, and deletions) equally in determining
edit distance. A priori, there is no reason to be-
lieve this is the case—indeed, the work on in-
dividual phonosemantic sets suggests that some
orthographic/phonetic attributes are more impor-
tant than others for non-arbitrariness. To address
this, we introduce String-Metric Learning for Ker-
nel Regression (SMLKR), a metric-learning algo-
rithm that is able to learn a weighted edit distance
metric that minimizes the prediction error in ker-
nel regression.

We find that SMLKR enables us to recover
more systematicity from a lexicon of monomor-
phemic English words than reported in previous
global analyses. Using SMLKR, we propose a
new measure of per-word phonosemantic system-
aticity. Our analyses using this systematicity mea-
sure indicate that specific phonosemantic sets do
contribute significantly to the global phonoseman-
tic systematicity of English, in keeping with previ-
ous local-level analyses. Finally, we evaluate our
systematicity measure against human judgments,
and find that it accords with raters’ intuitions about
what makes a word’s form well suited to its mean-
ing.

2 Background & Related Work

2.1 Previous Approaches to Finding
Lexicon-Wide Systematicity

Measuring Form, Meaning, and Systematicity.
To our knowledge, all previous lexicon-level anal-
yses of phonosemantic systematicity have used
variations of the method of Shillcock et al. (2001).
The inputs for this method are form-meaning tu-
ples (yi, si) for each word i in the lexicon, where
yi is the vector representation of the word in a dis-
tributional semantic model, and si is the string rep-
resentation of the word (phonological, phonemic,
or orthographic). Semantic distances are mea-
sured as cosine distances between the vectors of
each pair of words. Shillcock et al. (Shillcock et
al., 2001) and Monaghan et al. (Monaghan et al.,
2014b) measure form-distances in terms of edit
distance between each pair of strings. In addi-
tion Monaghan et al. (2014b) and Tamariz (2006)
study distance measures based on a selected set

binary phonological features, with similar results.
Phonosemantic systematicity is then measured as
the correlation between all the pairwise semantic
distances and all the pairwise string distances.

Hypothesis Testing. In this line line of work,
statistical significance of the results is assessed
using the Mantel test, a permutation test of the
correlation between two sets of pairwise distances
(Mantel, 1967). The test involves randomly shuf-
fling the assignments of semantic vectors to word-
strings in the lexicon. We can think of each form-
meaning shuffle as a member of the set of all pos-
sible lexicons. Next, the correlation between the
semantic distances and the string distances is com-
puted under each reassignment. An empirical p-
value for the true lexicon is then derived by per-
forming many shufflings, and comparing the cor-
relation coefficients measured under the shuffles to
the correlation coefficient measured in the true lex-
icon. Under the null hypothesis that form-meaning
assignments are arbitrary, the probability of ob-
serving a form-meaning correlation of at least the
magnitude actually observed in the true lexicon is
asymptotically equal to the proportion of reassign-
ments that produce greater correlations than the
true lexicon.

Previous Findings. Shillcock et al. (2001) find
a statistically significant correlation between se-
mantic and phonological edit distances in a lex-
icon of the 1733 most frequent monosyllabic
monomorphemic words in the BNC. Tamariz
(2008) extends these results to Spanish data, look-
ing only at words with one of three consonant-
vowel (CV) structures (CVCV, CVCCV, and
CVCVCV). (2001), Monaghan et al. (2014b) de-
rive a list of 5138 monomorphemic monosyllabic
words and a list of 5604 monomorphemic poly-
syllabic from the CELEX database (Baayen et al.,
1996), and find significant form-meaning correla-
tions in both.

2.2 Kernel Regression
In contrast to previous studies, we study form-
meaning systematicity using a kernel regression
framework. Kernel regression is a nonparametric
supervised learning technique that is able to learn
highly nonlinear relationships between predictor
variables and target variables. Rather than assum-
ing any particular parametric relationship between
the predictor and target variables, kernel regres-
sion assumes only that the value of the target vari-
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able is a smooth function of the value of the pre-
dictors. In other words, given a new point in pre-
dictor space, the value of the target at that point
can reasonably be estimated by the value of the
targets at points that are nearby in the predictor
space. In this way, kernel regression is analo-
gous to an exemplar model. We performed ker-
nel regression on our lexicon using the Nadaraya-
Watson estimator (Nadaraya, 1964). Given a data
setD of vector-valued predictor variables {xi}Ni=1,
and targets {yi}Ni=1, the Nadaraya-Watson estima-
tor of the target for sample i is

ŷi = ŷ(xi) =

∑
j 6=i kijyj∑

j 6=i kij
, (1)

where kij is the kernel between point i and point j.
A commonly used kernel is the exponential kernel:

kij = k(xi,xj) = exp(−d(xi,xj)/h),

where d(·, ·) is a distance metric and h is a band-
width that determines the radius of the effective
neighborhood around each point that contributes
to its estimate. For our purposes we use the Lev-
enshtein string edit distance metric (Levenshtein,
1966). The Levenshtein edit distance between two
strings is the minimum number of edits needed to
transform one string into the other, where an edit
is defined as the insertion, deletion, or substitution
of a single character. Using this edit distance and
semantic vectors derived from a distributional se-
mantic model, the Nadaraya-Watson estimator can
estimate the position in the semantic vector space
for each word in the lexicon. The exponential edit
distance kernel has been useful for modeling be-
havior in many tasks involving word similarity and
neighborhood effects; see, for example the Gen-
eralized Context Model (Nosofsky, 1986), which
has been applied to word identification, recogni-
tion, and categorization, to inflectional morphol-
ogy, and to artificial grammar learning (Bailey and
Hahn, 2001).

2.3 Metric Learning for Kernel Regression

In kernel regression, the bandwidth h of the kernel
function must be fine-tuned by testing out many
different bandwidths. Moreover, for many tasks
there is no reason to assume that all of the dimen-
sions of a vector-valued predictor are equally im-
portant. This is problematic for conventional ker-
nel regression, as the quality of its predictions is

wholly reliant on the appropriateness of the given
distance metric.

Weinberger and Tesauro (2007) introduce met-
ric learning for kernel regression (MLKR), an al-
gorithm that can learn a task-specific Mahalanobis
(i.e., weighted Euclidean) distance metric over a
real-vector-valued predictor space, in which small
distances between two vectors imply similar target
values. They note that this metric induces a kernel
function whose parameters are set entirely from
the data. Specifically, MLKR can learn a weight
matrix W for a Mahalanobis metric that optimizes
the leave-one out mean squared error of kernel re-
gression (MSE), defined as:

L(D) =
1
N

N∑
i=1

L(ŷi,yi) =
1
N

N∑
i=1

‖ŷi − yi‖22,

where ŷi is estimated using ŷj for all i 6= j, as in
Eq. 1.

In MLKR, the weighted distance metric is
learned using stochastic gradient descent. As an
added benefit, MLKR is implicitly able to learn an
appropriate kernel bandwidth.

3 String-Metric Learning for Kernel
Regression (SMLKR)

Our novel contribution is an extension of MLKR
to situations where the predictor variables are not
real-valued vectors, but strings, and the distance
metric we wish to learn is a weighted Leven-
shtein edit distance. Vector-valued representa-
tions of the strings themselves would only ap-
proximately preserve edit distance. Fortunately, it
turns out that we do not need vector-valued rep-
resentations of the strings at all. Define the mini-
mum edit-distance path as the smallest-length se-
quence of edits that is needed to transform one
string into another. Observe that the weighted edit
distance between two strings si and sj can be rep-
resented as the weighted sum of all the edits that
must take place to transform one string into the
other along the minimum edit-distance path (Bel-
let et al., 2012). In turn, these edits can be rep-
resented by a vector νij constructed as in Fig 1,
while the weights can be represented by a vector
w = (w1, ..., wM )T :

dWL(si, sj) =
M∑

m=1

wmνijm = wT νij .
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Figure 1: Each element in νij (the vector at left)
represents a type of edit. The entry νijm represents
the number of edits of type m that occur as string
si (boot) is transformed into string sj (bee).

Each entry of νij corresponds to a particular type
of edit operation (e.g., substitution of character a
for character b). The value assigned to each entry
is the count of the total number of times that the
corresponding edit operation must be applied to
achieve transformation of string i to string j along
the minimum edit-distance path.

We note that νij does not admit a unique rep-
resentation, since there are multiple ways to trans-
form one string to another in the same number of
edits, using different edit operations. However, we
adopt the convention that some class of edit opera-
tions always takes priority over another—e.g., that
deletions always occur before substitutions. This
then enables us to specify νij uniquely. We also
adopt the convention that the weights for edit op-
erations are symmetric—e.g., that the weight for
substituting character a for character b is the same
as the weight for substituting character b for char-
acter a, so we represent every such pair of edit op-
erations by a single entry in νij .

As in MLKR, our goal is to minimize the leave-
one-out MSE,1 where kij = e−wT νij . The gradi-
ent of the regression error for MSE is

∂L(D)
∂w

=
2
N

N∑
i=1

(yi − ŷi)
∂ŷi

∂w

where
∂ŷi

∂w
=

∑
j 6=i(yj − ŷi)Tkijνij∑

j 6=i kij
.

Using this exact gradient, we can find the
edit weights that minimize the loss function.
We wish to constrain the weights to be non-
negative, since weighted edit distance only

1We attained similar results minimizing mean cosine er-
ror. The gradient for mean cosine error is

∂L(D)

∂w
=

1

N

N∑
i=1

(‖ŷi‖yi − L(yi, ŷi)ŷi)

‖ŷi‖2
∂ŷi

∂w
.

makes sense with nonnegative weights. Thus,
to minimize the loss we use the limited-
memory Broyden–Fletcher–Goldfarb–Shanno al-
gorithm for box constraints (L-BFGS-B) (Byrd
et al., 1995), a quasi-Newton method that
allows bounded optimization. We made a
Python implementation of SMLKR available at
http://bit.ly/25Hidqg/.

4 Experimental Setup

4.1 Data

Lexicon. A principal concern is the possibility
that our models may detect morphemes rather than
sub-morphemic units. To minimize this concern,
we adopted an approach similar to that of Shill-
cock et al. (2001), of training our model only
on monomorphemic words. Monomorphemic
words were selected by cross-referencing the mor-
phemic analyses contained in the CELEX lex-
ical database (Baayen et al., 1996) with the
morphemic analyses contained in the etymolo-
gies of the Oxford English Dictionary Online
(http://www.oed.com). Then, we went
through the filtered list and removed any remain-
ing polymorphemic words as well as place names,
demonyms, spelling variants, and proper nouns.
Finally, words that were not among the 40,000
most frequent non-filler word types in the corpus
were excluded. The final lexicon was composed
of 4,949 word types.

Corpus and Semantic Model. The corpus we
used to train our semantic model is a concate-
nation of the UKWaC, BNC, and Wikipedia cor-
pora (Ferraresi et al., 2008; BNC Consortium,
2007; Parker et al., 2011). We trained our vector-
space model on this corpus using the Word2Vec
(Mikolov et al., 2013), as instantiated in the GEN-
SIM package (Řehůřek and Sojka, 2010) for
Python using default parameters. We produced
100-dimensional word-embedding vectors using
the SkipGram algorithm of Word2Vec and normal-
ized the 100-dimensional vector for each word so
that its Euclidean norm was equal to 1.

4.2 Training

We trained SMLKR on the 100-dimensional
Word2Vec embeddings using L-BGFS-B, and
placing non-negativity constraints on the weights
w. We let SMLKR run until convergence, as de-
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termined by the following criterion:

|L(k−1) − L(k)|
max(|L(k−1)|, |L(k)|) = ε

where L(k) is the loss at the kth iteration of learn-
ing, and we set ε = 2 × 10−8. We randomly ini-
tialized the L-BGFS-B algorithm 10 times to avoid
poor local minima, and kept the solution with the
lowest loss.

5 Experiments

5.1 Model Analysis

Weighted Edit Distance Reveals More Non-
Arbitrariness. We first assessed whether the
structure found by kernel regression could arise
merely by arbitrary, random pairings of form and
meaning (i.e., strings and semantic vectors). We
adopt a Monte Carlo testing procedure similar to
the Mantel test of §2.1. We first randomly shuffled
the assignment of the semantic vectors of all the
words in the lexicon. We then trained SMLKR on
the shuffled lexicon just as we did on the true lex-
icon. We measured the mean squared error of the
SMLKR prediction. Out of 1000 reassignments,
none produced a prediction error as small as the
prediction error in the true lexicon (i.e., empirical
p-value of p < .001).

For comparison, we analyzed our corpus us-
ing the correlation method of Monaghan et al.
(2014b). In our implementation, we measured the
correlation between the pairwise cosine distances
produced by Word2Vec and pairwise orthographic
edit distances for all pairs of words in our lexicon.
The correlation between the Word2Vec semantic
distances and the orthographic edit distances in
our corpus was r = 0.0194, similar to the correla-
tion reported by Monaghan et al. of r = 0.016 be-
tween the phoneme edit distances and the seman-
tic distances in the monomorphemic English lexi-
con. We also looked at the correlation between the
weighted edit distances produced by SMLKR and
the Word2Vec semantic distances. The correlation
between these distances was r = 0.0464; thus,
the weighted edit distance captures more than 5.7
times as much variance as the unweighted edit dis-
tance. Further, using the estimated semantic vec-
tors produced by the SMLKR model, we can ac-
tually produce new estimates of the semantic dis-
tances between the words. The correlation be-
tween these estimated semantic distances and the

true semantic distances was r = 0.1028, reveal-
ing much more systematicity than revealed by the
simple linear correlation method. The Mantel test
with 1,000 permutations produced significant em-
pirical p-values for all correlations (p < .001).

Systematicity Not Evenly Distributed Across
Lexicon. What could be accounting for the
higher degree of systematicity detected with SM-
LKR? Applying a more expressive model could
result in a better fit simply because incidental but
inconsequential patterns are being captured. Con-
versely, SMLKR could be finding phonosemantic
sets which the correlation method of Monaghan
et al. (Monaghan et al., 2014b) is unable to de-
tect. We investigated further by determining what
was driving the better fit produced by SMLKR.
Monaghan et al. measure per-word systematicity
as the change in the lexicon-wide form-meaning
correlation that results from removing the word
from the lexicon. The more the correlation de-
creases from removing the word, the more sys-
tematic the word is, according to this measure.
They compared the distribution of this systematic-
ity measure across the words in the lexicon to the
distribution of systematicity in lexicons with ran-
domly shuffled form-meaning assignments, and
found that the null hypothesis that the distribu-
tions were identical could not be rejected. From
this, they conclude that the observed systematicity
of the lexicon is not a consequence only of small
pockets of sound symbolism, but is rather a feature
of the mappings from sound to meaning across the
lexicon as a whole. However, it is possible that
their methods may not be sensitive enough to find
localized phonosemantic sets.

We developed our own measure of per-word
systematicity by measuring the per-word regres-
sion error of the SMLKR model. We presume
words with lower regression errors to be more sys-
tematic. A list of the words with the lowest per-
word regression error in our corpus can be found
in Table 1. Notably, many of these words, such as
fluff, flutter, and flick, exhibit word beginnings or
word endings that have been previously identified
as phonaesthemes (Hutchins, 1998; Otis and Sagi,
2008). Others exhibit regular onomatopoeia, such
as clang and croak.

We decided to investigate the distribution of
systematicity across two-letter word-beginnings in
our lexicon using a permutation test. The goal of
the permutation test is to estimate a p-value for the
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SMLKR Correlation Random
gurgle emu tunic
tingle nexus decay
hoop asylum skirmish
chink ethic scroll
swirl odd silk
ladle slime prom
flick snare knob

wobble scarlet havoc
tangle deem irate

knuckle balustrade veer
glitter envoy wear
twig scrape phone
fluff essay surgeon
rasp ambit hiccup
quill echo bowel

flutter onus sack
whirl exam lens
croak pirouette hovel
squeal kohl challenge
clang chandelier box

Table 1: Left: Most systematic words according to
SMLKR. Center: Most systematic words accord-
ing to the leave-one-out correlation method pro-
posed by Monaghan et al. (2014b). Right: Ran-
domly generated list for comparison.

likelihood that each set of words sharing a word
beginning would exhibit the mean regression error
it exhibits, if systematicity is randomly distributed
across the lexicon. For each set Sω of words with
word-beginning ω, we measured the mean SM-
LKR regression error of the words in Sω. To get
an empirical p-value for each Sω with cardinality
greater than 5 (i.e., more than 5 word tokens), we
randomly chose 105 sets of words in the lexicon
with the same cardinality, and measured the mean
SMLKR regression error for each of these random
sets. If r of the randomly assembled sets had a
lower mean regression error than Sω did, we as-
sign an empirical p-value of r

105 to Sω. A his-
togram of empirical p-values is in Fig. 2. From
the figure, it seems clear that the p-values are not
uniformly distributed; instead, an inordinate num-
ber of word-beginnings exhibit mean errors that
are unlikely to occur if error is distributed arbitrar-
ily across word-beginnings.

We can confirm this observation statistically.
On the assumption that systematicity is arbitrarily
distributed across word-beginnings, the empirical
p-values of the permutation test should approxi-
mately conform to a Unif(0, 1) distribution. We
can test this hypothesis using a χ2 test on the nega-
tive logarithms of the p-values (Fisher, 1932). Us-
ing this test, we reject the hypothesis that the p-
values are uniformly distributed with p < .0001
(χ2

156 = 707.8). The particular word-beginnings

Figure 2: Histogram showing distribution of sys-
tematicity across two-letter word-beginnings, as
measured by permutation-test empirical p-value.

Onset p-value

fl- < 1× 10−4

sn- < 1× 10−4

sw- < 1× 10−4

tw- < 1× 10−4

gl- 1× 10−3

sl- 1× 10−3

bu- 1× 10−3

mu- 2× 10−3

wh- 2× 10−3

sc-/sk- 3× 10−3

Table 2: Word-beginnings with mean errors lower
than predicted by random distribution of errors
across lexicon. Bold are among the phonaes-
themes identified by Hutchins (1998). Italics were
identified by Otis and Sagi (2008).

with statistically significant empirical p-values
(p < .05 after Benjamini-Hochberg (1995) cor-
rection for multiple comparisons) are in Table
2. Eight of these ten features are among the 18
two-letter onsets posited to be phonaesthemes by
Hutchins (1998). For comparison, Otis and Sagi
(2008) identified eight of Hutchins’s 18 two-letter
word-beginning candidate phonaesthemes (and 12
two-letter word-beginnings overall) as statistically
significant, though they restricted their hypothe-
sis space to only 50 pre-specified word-beginnings
and word-endings. We are able to identify just as
many candidate phonaesthemes, but with a much
less restricted hypothesis space of candidates (225
rather than the 50 in Otis and Sagi’s analysis)
and with a general model not specifically attuned
to finding phonaesthemes in particular, but rather
systematicity in general.
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5.2 Behavioral Evaluation of Systematicity
Measure

We empirically tested whether the systematicity
measure based on SMLKR regression error ac-
cords with naı̈ve human judgments about how
well-suited a word’s form is to its meaning (its
“phonosemantic feeling”) (Stefanowitsch, 2002).
We recruited 60 native English-speaking partici-
pants through Mechanical Turk, and asked them to
judge the phonosemantic feeling of the 60 words
in Table 1 on a sliding scale from 1 to 5.2 We used
Cronbach’s α to measure inter-annotator reliabil-
ity at α = 0.96, indicating a high degree of inter-
annotator reliability (Cronbach, 1951; George,
2000). The results showed that the words in the
SMLKR list were rated higher for phonoseman-
tic feeling than the words in the Correlation and
Random lists. We fit a parametric linear mixed-
effects model to the phonosemantic feeling judg-
ments (Baayen et al., 2008), as implemented in
the lme4 library for R. As fixed effects, we en-
tered the list identity (SMLKR, Correlation, Ran-
dom), the word length, and the log frequency of
the word in our corpus. Our random effects struc-
ture included a random intercept for word, and
random subject slopes for all fixed effects, with
all correlations allowed (a “maximal” random-
effects structure (Barr et al., 2013)). Including
list identity in the maximal mixed-effects model
significantly improved model fit (χ2

11 = 126.08,
p < 10−6). Post-hoc analysis revealed that the
SMLKR list elicited average suitability judgments
that were 0.49 points higher than the Random list
(p < 10−6) and 0.59 points higher than the Cor-
relation list (p < 10−6). Post-hoc analysis did
not find a significant difference in suitability judg-
ments between the Random and Correlation lists
(p > .16).3

6 Conclusion

In this paper, we proposed SMLKR, a novel algo-
rithm that can learn weighted string edit distances
that minimize kernel regression error. We succeed

2Participants were given the following guidance: “Your
job is to decide how well-suited each word is to what
it means. This is known as the ‘phonosemantic feel-
ing.’ Basically, most people feel like some of the words
in their native language sound right, given what they
mean.” Full instructions and experiment available at
http://goo.gl/Z6Lzlp

3Post hoc analyses were produced by comparing the items
in only two of the lists at a time, and fitting the same mixed-
effects model as above.

in applying this algorithm to the problem of find-
ing form-meaning systematicity in the monomor-
phemic English lexicon. Our algorithm offers im-
proved global predictions of word-meaning given
word-form at the lexicon-wide level. We show
that this improvement seems related to localized
pockets of form-meaning systematicity such as
those previously uncovered in behavioral and cor-
pus analyses. Unlike previous lexicon-wide anal-
yses, we find that form-meaning systematicity is
not randomly distributed throughout the English
lexicon. Moreover, the measure of systematicity
that we compute using SMLKR accords signifi-
cantly with human raters’ judgments about form-
meaning correspondences in English.

Future work may investigate to what extent the
SMLKR model can predict human intuitions about
form-meaning systematicity in language. We do
not know, for instance, if our model can predict
human semantic judgments of novel words that
have never been encountered. This is a question
that has received attention in the market research
literature, where new brand names are tested for
the emotions they elicit (Klink, 2000). We would
also like to investigate the degree to which our
statistical model predicts the behavioral effects
of phonosemantic systematicity during human se-
mantic processing that have been reported in the
psycholinguistics literature. Our model makes
precise quantitative predictions that should allow
us to address these questions.

While developing our model on preliminary
versions of the monomorphemic lexicon, we no-
ticed that the model detected high degrees of sys-
tematicity in words with suffixes such as -ate and
-tet (e.g., quintet, quartet). We removed such
words in the final analysis since they are poly-
morphemic, but this observation suggests that our
algorithm may have applications in unsupervised
morpheme discovery.

Finally, we would like to test our model us-
ing other representations of word-form and word-
meaning. We chose to use orthographic rather
than phonetic representations of words because of
the variance in pronunciation present in the di-
alects of English that are manifested in our cor-
pus. However, it would be interesting to verify our
results in a phonological setting, perhaps using a
monodialectal corpus. Moreover, previous local-
level analyses suggest that systematicity seems
to be concentrated in word-beginnings and word-
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endings. Thus, it may be worthwhile to augment
the representation of edit distance in our model by
making it context-sensitive. Future work could
also test whether a more interpretable meaning-
space representation such as that provided by bi-
nary WordNet feature vectors reveals patterns of
systematicity not found using a distributional se-
mantic space.
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