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Abstract—The problem of cross-modal retrieval from multimedia repositories is considered. This problem addresses the design of

retrieval systems that support queries across content modalities, for example, using an image to search for texts. A mathematical

formulation is proposed, equating the design of cross-modal retrieval systems to that of isomorphic feature spaces for different content

modalities. Two hypotheses are then investigated regarding the fundamental attributes of these spaces. The first is that low-level

cross-modal correlations should be accounted for. The second is that the space should enable semantic abstraction. Three new

solutions to the cross-modal retrieval problem are then derived from these hypotheses: correlation matching (CM), an unsupervised

method which models cross-modal correlations, semantic matching (SM), a supervised technique that relies on semantic

representation, and semantic correlation matching (SCM), which combines both. An extensive evaluation of retrieval performance is

conducted to test the validity of the hypotheses. All approaches are shown successful for text retrieval in response to image queries

and vice versa. It is concluded that both hypotheses hold, in a complementary form, although evidence in favor of the abstraction

hypothesis is stronger than that for correlation.

Index Terms—Multimedia, content-based retrieval, multimodal, cross-modal, image and text, retrieval model, semantic spaces, kernel

correlation, logistic regression
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1 INTRODUCTION

CLASSICAL approaches to information retrieval are of a
unimodal nature [1], [2], [3]. Text repositories are

searched with text queries, image databases with image
queries, and so forth. This paradigm is of limited use in the
modern information landscape, where multimedia content
is ubiquitous. Due to this, multimodal modeling, representa-
tion, and retrieval have been extensively studied in the
multimedia literature [4], [5], [6], [7], [8], [9], [10], [11]. In
multimodal retrieval systems, queries combining multiple
content modalities (e.g., images and sound of a music video
clip) are used to retrieve database entries with the same
combination of modalities (e.g., other music video clips).
These efforts have become increasingly widespread, due in
part to large-scale research and evaluation efforts, such as
TRECVID [12] and ImageCLEF [13], involving data sets that
span multiple data modalities. However, much of this work

has focused on the straightforward extension of methods
shown successful in the unimodal scenario. Typically, the
different modalities are fused into a representation that
does not allow individual access to any of them, for
example, some form of dimensionality reduction of a large
feature vector that concatenates measurements from images
and text. Classical unimodal techniques are then applied to
the low-dimensional representation.

In this work, we consider a richer interaction paradigm,
which is denoted cross-modal retrieval. The goal is to build
content models that enable interactivity with content across
modalities. Such models can then be used to design cross-
modal retrieval systems, where queries from one modality
(e.g., video) can be matched to database entries from
another (e.g., audio tracks). This form of retrieval can be
seen as a generalization of current content labeling systems,
where a primary modality is augmented with keywords,
which can be subsequently searched. Examples include
keyword-based image [14], [15], [16] and song [17], [18], [19]
retrieval systems.

A defining property of cross-modal retrieval is the
requirement that representations generalize across content
modalities. This implies the ability to establish cross-
modal links between the attributes (of different modal-
ities) characteristic of each document or document class.
Detecting these links requires deeper content understand-
ing than what is obtained by classical matching of
unimodal attributes. For example, while an image retrieval
system can retrieve images of roses by matching red
blobs, and a text retrieval system can retrieve texts about
roses by matching the “rose” word, a cross-modal
retrieval system must understand that the word “rose”
matches the visual attribute “red blob.” This is much
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closer to what humans do than simple color or word
matching. Hence, cross-modal retrieval is a better context
than unimodal retrieval for the study of the fundamental
hypotheses on multimedia modeling.

We exploit representations that generalize across content
modalities to study two hypotheses on the joint modeling of
images and text. The first, denoted the correlation hypothesis,
is that explicit modeling of low-level correlations between
the different modalities is important for the success of the
joint models. The second, denoted the abstraction hypothesis,
is that model benefits from semantic abstraction, i.e., the
representation of images and text in terms of semantic
(rather than low level) descriptors. These hypotheses are
partly motivated by previous evidence that correlation, for
example, correlation analysis on fMRI [20], and abstraction,
for example, hierarchical topic models for text clustering
[21] or hierarchical semantic representations for image
retrieval [22], improve performance on unimodal retrieval
tasks. Three joint image-text models that exploit low-level
correlation, denoted correlation matching (CM), semantic
abstraction, denoted semantic matching (SM), and both,
denoted semantic correlation matching (SCM), are introduced.

The correlation and abstraction hypotheses are then
tested by measuring the retrieval performance of these
models on two reciprocal cross-modal retrieval tasks: 1) the
retrieval of text documents in response to a query image,
and 2) the retrieval of images in response to a query text.
These are basic cross-modal retrieval problems, central to
many applications of practical interest, such as finding
pictures that effectively illustrate a given text (e.g., illustrate
a page of a story book), finding the texts that best match a
given picture (e.g., a set of vacation accounts about a given
landmark), or searching using a combination of text and
images. Model performance on these tasks is evaluated with
two data sets: TVGraz [23] and a novel data set based on
Wikipedia’s featured articles. These experiments show that
correlation modeling and abstraction yield independent
benefits. In particular, the best results are obtained by a
model that accounts for both low-level correlations—by
performing a kernel canonical correlation analysis (KCCA)
[24], [25]—and semantic abstraction—by projecting images
and texts into a common semantic space [22] designed with
logistic regression. This suggests that the hypotheses of
abstraction and correlation are complementary, each im-
proving the modeling in a different manner.

The paper is organized as follows. Section 2 discusses
previous work in multimodal and cross-modal multimedia
modeling. Section 3 presents a mathematical formulation
for cross-modal modeling and discusses the two funda-
mental hypotheses analyzed in this work. Section 4
introduces the models underlying correlation, semantic,
and semantic correlation matching. Section 5 summarizes
an extensive experimental evaluation designed to test the
hypotheses. Conclusions are presented in Section 6. A
preliminary version of this work appeared in [26].

2 PREVIOUS WORK

The problems of image and text retrieval have been the
subject of extensive research in the fields of information

retrieval, computer vision, and multimedia [2], [10], [12],
[27], [28].

Unimodal Retrieval. In all these areas, the emphasis has
been on unimodal approaches, where query and retrieved
documents share a single modality [1], [2], [10], [29], [30].
For example, in [29] a query text, and in [30] a query image
is used to retrieve similar text documents and images, based
on low-level text (e.g., words) and image (e.g., DCTs)
representations, respectively. However, this is not effective
for all problems. The existence of a well-known semantic
gap, between current image representations and those
adopted by humans, severely hampers the performance of
unimodal image retrieval systems [2].

Annotations. In general, successful retrieval from large-
scale image collections requires that the latter be augmented
with text metadata provided by human annotators. These
manual annotations are typically in the form of a few
keywords, a small caption, or a brief image description [12],
[13], [27]. When this metadata is available, the retrieval
operation tends to be unimodal and ignore the images—the
text metadata of the query image is simply matched to the
text metadata available for images in the database. Because
manual image labeling is labor-intensive, recent research
has addressed the problem of automatic image labeling.1

Labeling. A common assumption is that images can be
segmented into regions, which can be described by a small
word vocabulary. The focus is then on learning a prob-
ability model that relates image regions and words. This can
be done by learning a joint probability distribution for
words and visual features, for example, using latent
Dirichlet allocation (LDA) models [14], probabilistic latent
semantic analysis (LSA) [31], histograming methods [32], or
a combination of Bernoulli distributions for text and kernel-
based models for visual features [33], [34]. Alternatively, it
is possible to use categorized images to train a dictionary of
concept models, for example, Gaussian mixtures [16] or
two-dimensional hidden Markov models [35], in a weakly
supervised manner. The extent of association between
images and concepts or words is measured by the like-
lihood of each image under these models. All these methods
assume that each image or image region is associated with a
single word.

Semantic Space. An alternative representation, where
images are modeled as weighted combinations of concepts
in a predefined vocabulary, is proposed in [22]. Statistical
models of the distribution of low-level image features are
first learned for each concept. The posterior probability of
the features extracted from each image, under each of the
concept models, is then computed. The image is finally
represented by the vector of these posterior concept
probabilities. This can be interpreted as a vector of semantic
features, establishing a semantic feature space where each
dimension is associated with a vocabulary concept. Fig. 1
illustrates how this descriptor, denoted a semantic multi-
nomial (SMN), maps the image into the semantic space. All
standard image analysis/classification tasks can then be
conducted in the latter space, at a higher level of abstraction
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1. Although not commonly perceived as being cross-modal, these systems
support cross-modal retrieval, for example, by returning images in response
to explicit text queries.



than that supported by low-level feature spaces. For
example, image retrieval is formulated as retrieval by
semantic similarity, by combining the semantic space with a
suitable similarity function [22]. This allows assessments of
image similarity in terms of weighted combinations of
vocabulary words and substantially extends the range of
concepts that can effectively be retrieved. It also increases
the subjective quality of the retrieval results, even when the
retrieval system makes mistakes, since images are retrieved
by similarity of their content semantics rather than plain
visual similarity [36].

Multimodal Retrieval. In parallel with these develop-
ments, advances have been reported in multimodal
retrieval systems [8], [9], [10], [11], [12], [13], [27]. These
are extensions of the classic unimodal systems, where a
common retrieval system integrates information from
various modalities. This can be done by fusing features
from different modalities into a single vector [37], [38], [39],
or by learning different models for different modalities and
fusing their predictions [40], [41]. One popular approach is
to concatenate features from different modalities and rely
on unsupervised structure discovery algorithms, such as
latent semantic analysis, to find multimodal statistical
regularities. A good overview of these methods is given
in [39], which also discusses the combination of unimodal
and multimodal retrieval systems. Multimodal integration
has also been applied to retrieval tasks including audio-
visual content [42], [43]. In general, the inability to access
each data modality individually (after the fusion of
modalities) prevents the use of these systems for cross-
modal retrieval.

Cross-Modal Retrieval. Recently, there has been progress
toward cross-modal systems. This includes retrieval meth-
ods for corpora of images and text [8], [44], images and
audio [45], [46], text and audio [47], images, text, and audio
[46], [48], [49], [50], [51], or even other sources of data like
EEG and fMRI [52]. One popular approach is to rely on
manifold learning techniques [46], [48], [49], [50], [51], [52].
These methods learn a manifold from a matrix of distances
between multimodal objects. The multimodal distances are
formulated as a function of the distances between indivi-
dual modalities, which allows us to single out particular
modalities or ignore missing ones. Retrieval then consists of
finding the nearest document, on the manifold, to a
multimedia query (which can be composed of any subset
of modalities). The main limitation of these methods is the
lack of out-of-sample generalization. Since there is no
computationally efficient way to project the query into the

manifold, queries are restricted to the training set used to
learn the latter. Hence, all unseen queries must be mapped
to their nearest neighbors in this training set, defeating the
purpose of manifold learning.

An alternative is to learn correlations between modalities
[45], [53]. For example, Li et al. [45] compare canonical
correlation analysis (CCA) and cross-modal factor analysis
(CFA) in the context of audio-image retrieval. Both CCA
and CFA perform a joint dimensionality reduction that
extracts highly correlated features in the two data mod-
alities. A kernelized version of CCA was also proposed in
[53] to extract translation invariant semantics of text
documents written in multiple languages. It was later used
to model correlations between web images and correspond-
ing captions in [20]. Another approach is reranking:
unimodal retrieval is first performed using the query
modality, and a second modality is used to rerank the
results [54], [55].

Rich Annotation. Despite all these advances, current
approaches tend to rely on a limited textual representation,
in the form of keywords, captions, or small text snippets.
We refer to these as forms of lighter annotation. This is at
odds with the ongoing explosion of multimedia content on
the web, where it is now possible to collect large sets of
extensively annotated data. Examples include news ar-
chives, blog posts, or Wikipedia pages, where pictures are
related to complete text articles, not just a few keywords. We
refer to these data sets as richly annotated. While potentially
more informative, rich annotation establishes a much more
nuanced connection between images and text than light
annotation. While keywords tend to be explicit image
labels, many of the words in a rich text can be unrelated to
the image used to illustrate it. For example, Fig. 2 shows a
section of the Wikipedia article on the “Birmingham
campaign,” along with the associated image. Notice that,
although related to the text, the image is clearly not
representative of all the words in the article. The same is
true for the webpage in Fig. 2b, from the TVGraz data set
[23]. This is a course syllabus that, beyond the pictured
brain, includes course information and other unrelated
matters. A major long-term goal of modeling richly
annotated data is to recover this latent relationship between
the text and image components of a document, and exploit
it in benefit of practical applications.
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Fig. 1. Semantic space representation. An image is decomposed into a

bag-of-features and represented by the vector of its posterior

probabilities with respect to the concepts in a semantic vocabulary V.

Fig. 2. Two examples of image-text pairs: (a) section from the Wikipedia

article on the Birmingham campaign (“History” category), (b) part of a

Cognitive Science class syllabus from the TVGraz data set (“Brain”

category).



3 FUNDAMENTAL HYPOTHESES

In this section, we present a novel multimodal content
modeling framework, which is flexible and applicable to
rich content modalities. Although the fundamental ideas
are applicable to any combination of modalities, we restrict
the discussion to documents containing images and text.

3.1 The Problem

We consider the problem of information retrieval from a
database D ¼ fD1; . . . ; DjDjg of documents comprising image
and text components. Such documents can be quite diverse
from a single text complemented by one or more images
(e.g., a newspaper article) to documents containing multiple
pictures and text sections (e.g., a Wikipedia page). For
simplicity, we consider the case where each document
consists of a single image and its accompanying text, i.e.,
Di ¼ ðIi; TiÞ. Images and text are represented as vectors in
feature spaces <I and <T , respectively, as illustrated in
Fig. 3. In this way, documents establish a one-to-one
mapping between points in <I and <T . Given a text (image)
query Tq 2 <T ðIq 2 <IÞ, the goal of cross-modal retrieval is to
return the closest match in the image (text) space <I (<T ).

3.2 Multimodal Modeling

Whenever the image and text spaces have a natural
correspondence, cross-modal retrieval reduces to a classical
retrieval problem. Let

M : <T ! <I

be an invertible mapping between the two spaces. Given a
query Tq in <T , it suffices to find the nearest neighbor to
MðTqÞ in <I . Similarly, given a query Iq in <I , it suffices to
find the nearest neighbor toM�1ðIqÞ in <T . In this case, the
design of a cross-modal retrieval system reduces to the
design of an effective similarity function for determining
the nearest neighbors.

In general, however, different representations are adopted
for images and text, and there is no natural correspondence
between <I and <T . In this case, the mapping M has to be
learned from examples. In this work, we map the two
representations into intermediate spaces, VI and VT , that
have a natural correspondence. This consists of learning
two mappings

MI : <I ! VI MT : <T ! VT

from each of the image and text spaces to two isomorphic
spaces VI and VT , connected by an invertible mapping

M : VT ! VI :

Given a text query Tq in <T , cross-modal retrieval reduces to
finding the image Ir such that MIðIrÞ is the nearest
neighbor of

M�MT ðTqÞ

in VI . Similarly, given an image query Iq in <I , the goal is to
find text Tr such that MT ðTrÞ is the nearest neighbor of

M�1 �MIðIqÞ

in VT . Under this formulation, the main problem in the
design of a cross-modal retrieval system is the design of the
intermediate spaces VI and VT (and the corresponding
mappings MI and MT ).

3.3 The Fundamental Hypotheses

Since the goal is to design representations that generalize
across content modalities, the solution of this problem
requires some ability to derive a more abstract representa-
tion than the sum of the parts (low-level features) extracted
from each content modality. Given that such abstraction is
the hallmark of true image or text understanding, this
problem enables the exploration of some central questions
in multimedia modeling. Consider, for example, a query for
a “swan.” While 1) a unimodal image retrieval system can
successfully retrieve images of “swans” in that they are the
only white objects in a database, 2) a text retrieval system
can successfully retrieve documents about “swans” because
they are the only documents containing the word “swan,”
and 3) a multimodal retrieval system can simply match
“white” to “white” and “swan” to “swan,” a cross-modal
retrieval system cannot solve the task without under-
standing that “white is a visual attribute of swan.” Hence,
cross-modal retrieval is a more effective paradigm for
testing fundamental hypotheses in multimedia representa-
tion than unimodal or multimodal retrieval.

In this work, we exploit the cross-modal retrieval
problem to test two such hypotheses regarding the joint
modeling of images and text:

. H1 (correlation hypothesis). Low-level cross-modal
correlations are important for joint image-text
modeling.

. H2 (abstraction hypothesis). Semantic abstraction is
important for joint image-text modeling.

The hypotheses are tested by comparing three possibi-
lities for the design of the intermediate spaces VI and VT
of cross-modal retrieval. In the first case, two feature
transformations map <I and <T onto correlated d-dimen-
sional subspaces denoted as UI and UT , respectively, which
act as VI and VT . This maintains the level of semantic
abstraction of the representation while maximizing the
correlation between the two spaces. We refer to this
matching technique as correlation matching. In the second
case, a pair of transformations is used to map the image and
text spaces into a pair of semantic spaces SI and ST , which
then act as VI and VT . This increases the semantic
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Fig. 3. A document (Di) is a pair of an image (Ii) and a text (Ti)

represented as vectors in feature spaces <I and <T , respectively.

Documents establish a one-to-one mapping between points in <I
and <T .



abstraction of the representation without directly seeking
correlation maximization. The spaces SI and ST are made
isomorphic by using the same set of semantic concepts for
both modalities. We refer to this as semantic matching.
Finally, a third approach combines the previous two
techniques: project onto maximally correlated subspaces
UI and UT , and then project again onto a pair of semantic
spaces SI and ST , which act as VI and VT . We refer to this
as semantic correlation matching.

Table 1 summarizes which hypotheses hold for each of
the three approaches. The comparative evaluation of the
performance of these approaches on cross-modal retrieval
experiments provides indirect evidence for the importance
of the above hypotheses to the joint modeling of images and
text. The intuition is that a better cross-modal retrieval
performance results from a more effective joint modeling.

4 CROSS-MODAL RETRIEVAL

In this section, we present the three approaches in detail.

4.1 Correlation Matching

The design of a mapping from <T and <I to the correlated
spaces UT and UI requires a combination of dimensionality
reduction and some measure of correlation between the text
and image modalities. In both text and vision literature,
dimensionality reduction is frequently accomplished with
methods such as latent semantic indexing (LSI) [56] and
principal component analysis (PCA) [57]. These are
members of a broader class of learning algorithms, denoted
subspace learning, which are computationally efficient and
produce linear transformations that are easy to conceptua-
lize, implement, and deploy. Furthermore, because sub-
space learning is usually based on second-order statistics,
such as correlation, it can be easily extended to the
multimodal setting and kernelized. This has motivated a
number of multimodal subspace methods. In this work, we
consider cross-modal factor analysis, canonical correlation
analysis, and kernel canonical correlation analysis. All these

methods include a training stage, where the subspaces UI
and UT are learned, followed by a projection stage, where
images and text are projected into these spaces. Fig. 4
illustrates this process. Cross-modal retrieval is performed
in the low-dimensional subspaces.

4.1.1 Linear Subspace Learning

CFA seeks transformations that best represent coupled
patterns between different subsets of features (e.g., different
modalities) describing the same objects [45]. It finds the
orthonormal transformations �I and �T that project the two
modalities onto a shared space, UI ¼ UT ¼ U, where the
projections have minimum distance

kXI�I �XT�Tk2
F : ð1Þ

XI and XT are matrices containing corresponding features
from the image and text domains, and k � k2

F is the
Frobenius norm. It can be shown that this is equivalent to
maximizing

traceðXI�I�
0
TX

0
T Þ; ð2Þ

and the optimal matrices �I ;�T can be obtained by a
singular value decomposition of the matrix X0IXT , i.e.,

X0IXT ¼ �I��T ; ð3Þ

where � is the matrix of singular values of X0IXT [45].
CCA [58] learns the d-dimensional subspaces UI � <I

(image) and UT � <T (text), where the correlation between
the two data modalities is maximal. It is similar to
principal components analysis, in the sense that it learns
a basis of canonical components, directions wi 2 <I and
wt 2 <T , but seeks directions along which the data are
maximally correlated

max
wi 6¼0; wt 6¼0

w0i�ITwtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w0i�Iwi

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w0t�Twt

p ; ð4Þ

where �I and �T are the empirical covariance matrices for

images fI1; . . . ; IjDjg and text fT1; . . . ; TjDjg, respectively,

and �IT ¼ �0TI the cross covariance between them. Re-

peatedly solving (4) for directions that are orthogonal to all

previously obtained solutions provides a series of canoni-

cal components. It can be shown that the canonical

components in the image space can be found as the

eigenvectors of �
�1=2
I �IT��1

T �TI�
�1=2
I , and in the text space

as the eigenvectors of �
�1=2
T �TI�

�1
I �IT�

�1=2
T . The first d
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TABLE 1
Taxonomy of Proposed Approaches to Cross-Modal Retrieval

Fig. 4. Correlation matching. Text (<T ) and images (<I ) are projected onto two maximally correlated isomorphic subspaces UT and UI , respectively.



eigenvectors fwi;kgdk¼1 and fwt;kgdk¼1 define a basis of the

subspaces UI and UT .

4.1.2 Nonlinear Subspace Learning

CCA and CFA can only model linear dependences
between image and text features. This limitation can be
avoided by mapping these features into high-dimensional
spaces, with a pair of nonlinear transformations �T : <T !
F T and �I : <I ! F I . Application of CFA or CCA in these
spaces can then recover complex patterns of dependence
in the original feature space. As is common in machine
learning, the transformations �T ð�Þ and �Ið�Þ are computed
only implicitly by the introduction of two kernel functions
KT ð�; �Þ and KIð�; �Þ, specifying the inner products in
F T and F I , i .e., KT ðTm; TnÞ ¼ h�T ðTmÞ; �T ðTnÞi and
KIðIm; InÞ ¼ h�IðImÞ; �IðInÞi, respectively.

KCCA [24], [25] implements this type of extension for
CCA, seeking directions wi 2 F I and wt 2 F T , along which
the two modalities are maximally correlated in the
transformed spaces. The canonical components can be
found by solving

max
�i 6¼0; �t 6¼0

�0iKIKT�t
V ð�i;KIÞV ð�t;KT Þ

; ð5Þ

where V ð�;KÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� �Þ�0K2�þ ��0K�

q
, � 2 ½0; 1�, is a

regularization parameter, and KI and KT are the kernel

matrices of the image and text representations, for example,

ðKIÞmn ¼ KIðIm; InÞ. Given optimal �i and �t for (5), wi and

wt are obtained as linear combinations of the training

examples f�IðIkÞgjDjk¼1, and f�T ðTkÞgjDjk¼1, with �i and �t as

weight vectors, i.e., wi ¼ �IðXIÞT�i and wt ¼ �T ðXT ÞT�t,
where �IðXIÞð�T ðXT ÞÞ is the matrix whose rows contain

the high-dimensional representation of the image (text)

features. To optimize (5), we solve a generalized eigenvalue

problem using the software package of [25]. The first d

generalized eigenvectors, where 1 � d � jDj, are the d

weight vectors f�i;kgdk¼1 and f�t;kgdk¼1 that define the

bases fwi;kgdk¼1 and fwt;kgdk¼1 of the two maximally

correlated d-dimensional subspaces UI � F I and UT � F T .

4.1.3 Image and Text Projections

Images and text are represented by their projections pI and
pT onto the subspaces UI and UT , respectively. pI (pT )
is obtained by computing the dot products between the
vector representing the image (text) I 2 <IðT 2 <T Þ and
the image (text) basis vectors spanning UIðUT Þ. For CFA, the
basis vectors are the columns of �I and �T , respectively. For
CCA, they are fwi;kgdk¼1 and fwt;kgdk¼1. In the case of KCCA,
an image I 2 <I is first mapped into F I and subsequently
projected onto fwi;kgdk¼1, i.e., pI ¼ PIð�IðIÞÞ with

pI;k ¼ h�IðIÞ; wi;ki
¼ h�IðIÞ; ½�IðI1Þ; . . . ; �IðIjDjÞ��i;ki
¼ ½KIðI; I1Þ; . . . ;KIðI; IjDjÞ��i;k;

ð6Þ

where k ¼ 1; . . . ; d. Analogously, a text T 2 <T is mapped
into F T and then projected onto fwt;kgdk¼1, i.e., pT ¼
PT ð�T ðT ÞÞ, using KT ð: ; :Þ.

4.1.4 Correlation Matching

For all methods, a natural invertible mapping between the
projections onto UI and UT follows from the correspon-
dence between the d-dimensional bases of the subspaces, as
wi;1 $ wt;1; . . . ; wi;d $ wt;d. This results in a compact, effi-
cient representation of both modalities, where vectors pI
and pT are coordinates in two isomorphic d-dimensional
subspaces, as shown in Fig. 4. Given an image query I with
projection pI , the text T 2 <T that most closely matches it is
that for which pT minimizes

DðI; T Þ ¼ dðpI; pT Þ; ð7Þ

for some suitable distance measure dð�; �Þ in a d-dimensional
vector space. Similarly, given a query text T with projection
pT , the closest image match I 2 <I is that for which pI
minimizes dðpI; pT Þ. An illustration of cross-modal retrieval
using CM is given in Fig. 5.

4.2 Semantic Matching

An alternative to subspace learning is to map images and
text to representations at a higher level of abstraction, where
a natural correspondence can be established. This is
obtained by augmenting the database D with a vocabulary
V ¼ fv1; . . . ; vKg of semantic concepts. These can be generic
or application dependent, ranging from generic document
attributes, such as “Long” or “Short,” to specific topics such
as “History” or “Biology,” or any other categories that are
deemed relevant. Individual documents are grouped into
these semantic concepts. Two mappings LT and LI are then
implemented using classifiers of text and images, respec-
tively. LT maps a text T 2 <T into a vector �T of posterior
probabilities PV jT ðvjjT Þ; j 2 f1; . . . ; Kg with respect to each
of the concepts in V. The space ST of these vectors is
referred to as the semantic space for text, and the probabilities
in �T as the semantic text features. Similarly, LI maps an
image I into a vector �I of semantic image features in a
semantic space for images SI .

Semantic representations have two advantages for cross-
modal retrieval. First, they provide a higher level of
abstraction. While features in <T and <I frequently have
no obvious interpretation (e.g., image features tend to be
edges, edge orientations or frequency bases), the features in
ST and SI are (semantic) concept probabilities (e.g., the
probability that the image belongs to the “History” or
“Biology” document classes). Previous work has shown that
increased feature abstraction can lead to substantially better
generalization for tasks such as image retrieval [22]. Second,
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Fig. 5. Example of cross-modal retrieval using CM. Here, CM is used to

find the images that best match a query text.



the semantic spaces ST and SI are isomorphic, since both
images and text are represented as vectors of posterior
probabilities with respect to the same set of semantic
concepts. Hence, the spaces can be treated as being the
same, i.e., ST ¼ SI , leading to the representation of Fig. 6.

4.2.1 Learning

Many classification techniques can be used to learn the
mappings LT and LI . In this work, we consider three
popular methods. Logistic regression computes the poster-
ior probability of a particular class by fitting image (text)
features to a logistic function. Parameters are chosen to
minimize the loss function,

min
w

1

2
w0wþ C

X
i

logð1þ expð�yiw0xiÞÞ; ð8Þ

where yi is the class label, xi the feature vector in the input
space, and w a vector of parameters. A multiclass logistic
regression can be learned for the image and text modalities,
by making xi the image and text representation, I 2 <I and
T 2 <T , respectively. In our implementation, this is done
with the Liblinear software package [59].

Support vector machines (SVMs) learn the separating
hyperplane of largest margin between two classes, using

min
w;b;�

1

2
w0wþ C

X
i

�i

s:t: yiðw0xi þ bÞ � 1� �i; 8i
�i � 0;

ð9Þ

where w and b are the hyperplane parameters, yi the class
label, xi input feature vectors, �i slack variables that allow
outliers, and C > 0 a penalty on the number of outliers.
Although the SVM output does not have a probabilistic
interpretation, a sigmoidal transformation of the SVM
scores yiw

0xi is often taken as a proxy for the posterior
class probabilities. This is, for example, supported by the
LibSVM [60] package, which we use in our implementation.

Boosting methods combine weak learners into a strong
decision rule. Many boosting algorithms have been pro-
posed in the literature. In this work, we adopt the multiclass
boosting method of [61]. This is based on multidimensional
codewords (yk) and predictors (f). Each class k is mapped to
a distinct class label yk, and the strong classifier, F ðxÞ, is a
mapping from examples xi 2 X into class labels yk

F ðxÞ ¼ arg max
k
ykf	ðxÞ; ð10Þ

where f	ðxÞ : X ! IR is the continuous valued predictor

that maximizes the classification margin. Posterior class

probabilities can then be recovered by applying a nonlinear

transformation to the classifier output. In our implementa-

tion, this is done with recourse to the multiclass boosting

software package of [61].

4.2.2 Retrieval

Given a query image I (text T ), represented by �I 2
SI ð�T 2 ST Þ, SM-based cross-modal retrieval returns the

text T (image I), represented by �T 2 ST ð�I 2 SIÞ, that

minimizes

DðI; T Þ ¼ dð�I; �T Þ; ð11Þ

for some suitable distance measure d between probability

distributions. An illustration of cross-modal retrieval using

SM is given in Fig. 7.

4.3 Semantic Correlation Matching

CM and SM are not mutually exclusive. In fact, a corollary

to the two hypotheses discussed above is that there may be

a benefit in combining CM and SM. CM extracts maximally

correlated features from <T and <I . SM builds semantic

spaces using original features to gain semantic abstraction.

When the two are combined by building semantic spaces

using the feature representation produced by correlation

maximization, it may be possible to improve on the

individual performances of both CM and SM. To combine

the two approaches, the maximally correlated subspaces UI
and UT are first learned and the projections ðpI; pT Þ of each

image-text pair ðI; T Þ computed, as discussed in Section 4.1.

The transformations LI and LT are then learned in each of

these subspaces to produce the semantic spaces SI and ST ,

respectively. Retrieval is finally based on the image-text

distance DðI; T Þ of (11), based on the semantic mappings

�I ¼ LIðpIÞ and �T ¼ LT ðpT Þ.

5 EXPERIMENTS

In this section, we describe an extensive experimental

evaluation of the proposed cross-modal retrieval framework.
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Fig. 6. Semantic matching. Text and images are mapped into a common semantic space, using the posterior class probabilities produced by a

multiclass text or image classifier.



5.1 Experimental Setup

We start with a brief review of the adopted data sets,
performance metrics, and image and text representations.

5.1.1 Data Sets

The performance of cross-modal retrieval was evaluated
with two data sets that pair pictures and text: TVGraz and
Wikipedia. TVGraz is a collection of webpages compiled by
Khan et al. [23]. Google image search was used to retrieve
1,000 webpages for each of the 10 categories of the Caltech-
256 [62] data set listed in the second column of Table 7. This
data set is provided as a list of URLs, which we used to
collect 2,058 image-text pairs (defunct URLs and webpages
without at least 10 words and one image were discarded).
The median text length, per webpage, is 289 words. A
random split was used to produce 1,558 training and 500
test documents.

Wikipedia is a novel data set, assembled from the
“Wikipedia featured articles.” The latter are divided into
30 categories. Since some of these contain very few entries,
we considered only articles from the 10 top most populated
ones, which are listed in the second column of Table 8. Since
the featured articles tend to have multiple images and span
multiple topics, each article was split into sections, based
on its section headings. Each image was assigned to the
section in which it was placed by the author(s). This
produced 7,114 sections, which are internally more coherent
and usually contain a single picture. The data set was then
pruned, by keeping only sections with exactly one image
and at least 70 words. The final corpus contains a total of
2,866 documents. The median text length is 200 words. A
random split was used to produce a training set of 2,173
documents and a test set of 693 documents.

The two data sets have different properties. TVGraz
images are archetypal members of the categories. The data
set is eminently visual, since its categories (e.g., “Harp,”
“Dolphin”) are specific objects or animals. The texts are
small and can be less representative of the categories. In
Wikipedia, on the other hand, category membership is
mostly driven by text. Texts are mostly of good quality and
representative of the category, while the image categoriza-
tion is more ambiguous. For example, a portrait of a
historical figure can appear in the class “War.” The
Wikipedia categories (e.g., “History,” “Biology”) are more

abstract concepts and have much broader scope. Individu-

ally, the images can be difficult to classify, even for a

human. Together, the two data sets illustrate the potential

diversity of cross-modal retrieval, applications where there

is more uniformity of text than images, and vice versa.

5.1.2 Performance Metrics

Two tasks were considered: text retrieval from an image

query, and image retrieval from a text query. All text

queries were based on full-text documents. Retrieval

performance was evaluated using 11-point interpolated

precision-recall (PR) curves [63]. These were then used to

compute mean average precision (MAP) scores. The MAP

score is the average precision at the ranks where recall

changes. The set of classes used to evaluate precision and

recall is denoted ground-truth semantics. Unless otherwise

noted, this is the set of classes that make up each data set, as

listed in the second column of Tables 7 and 8. All results

were compared to a baseline established by a recently

published cross-modal retrieval approach, the Text-To-

Image (TTI) translator of [44]. This was implemented with

code provided by its authors.

5.1.3 Image and Text Representation

For both modalities, the base representation is a bag-of-

words (BOW). Text words (extracted by stemming the text

with the Python Natural Language Toolkit2) were fit by a

latent Dirichlet allocation [21] model, using the implemen-

tation of [64]. For images, a bag of SIFT descriptors was first

extracted per training image3 and a visual word codebook

learned with K-means clustering. SIFT descriptors extracted

from each image were finally vector quantized with this

codebook to produce a vector of visual word counts.

5.2 Preliminary Experiments

Various preliminary experiments were conducted to iden-

tify the best parameter configurations for the cross-modal

retrieval architecture. They were based on a random 80/20

split of the training sets: 1,245 training and 313 validation

examples on TVGraz, 1,738 training and 435 validation on

Wikipedia. The validation sets were used to determine the

best parameter configurations. When a semantic represen-

tation is used, the semantic vocabulary V used to design the

semantic spaces SI and ST consists of the ground-truth

semantics.

5.2.1 Distance Measures

A number of distance measures, listed in Table 2, were

considered for the evaluation of (7) and (11): Kullback-

Leibler divergence (KL), ‘1 and ‘2 norms, normalized

correlation (NC), and centered normalized correlation

(NCc). KL was not used in correlation matching because

this technique does not produce a probability simplex.

Table 2 presents the MAP scores achieved with each

measure. Since NCc had the best average performance in

nearly all experiments, it was adopted as distance measure.
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2. http://www.nltk.org/.
3. SIFT from https://lear.inrialpes.fr/people/dorko/downloads.html.

Fig. 7. An example of cross-modal retrieval using SM. Here, SM is used

to find the texts that best match a query image.



5.2.2 Correlation Matching

A set of experiments was performed to compare the
performance of CFA, CCA, and KCCA. In all cases, the
number of canonical components was validated in each
retrieval experiment. As shown in Table 3, KCCA had the
top performance. Best results were achieved with a chi-
square radial basis function kernel4 for images, a histogram
intersection kernel for text [65], [66], and regularization
constants � ¼ 10% on TVGraz and � ¼ 50% on Wikipedia.
To verify the importance of modeling correlations, we
considered two alternative representations. The first im-
plemented dimensionality reduction but no correlation
modeling. The two modalities were independently pro-
jected into subspaces of the same dimension, learned with
PCA. The second investigated the benefits of complement-
ing correlation with discriminant modeling, by introducing
a linear discriminant analysis on the correlated subspaces
discovered by KCCA. It is denoted linear discriminant kernel
canonical correlation analysis (LD-KCCA). As shown in
Table 3, neither alternative improved on the average MAP
scores of KCCA. This shows that there are benefits to
correlation matching beyond dimensionality reduction and
that further gains are not trivial to achieve, supporting the
hypothesis that correlation modeling is important for cross-
model retrieval. Given its good performance, KCCA was
used in all remaining CM experiments.

5.2.3 Semantic Matching

A set of experiments was performed to evaluate the impact
of the classification architecture used to design the semantic
space on retrieval accuracy. Three architectures were
compared: logistic regression, boosting, and SVMs. As
shown in Table 4, the semantic space obtained with logistic
regression performed best for both cross-modal retrieval
tasks. It was, thus, chosen to implement SM in all remaining
experiments.

5.2.4 Optimization

The experiments above lead to a retrieval architecture that

combines KCCA for learning correlated subspaces, logistic

regression to learn the semantic space, and the centered

normalized correlation NCc distance measure to evaluate
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4. Kðx; yÞ ¼ expðd�2 ðx; yÞ
� Þ, where d�2 ðx; yÞ is the chi-square distance

between x and y, and � is the average chi-square distance among training
points.

TABLE 2
MAP Scores (Validation Set) of Different Distance Measures

	p and 	q are the sample averages for p and q, respectively.

TABLE 3
MAP Scores (Validation Set) under the CM Hypothesis

TABLE 4
MAP Scores (Validation Set) under the SM Hypothesis



(7) and (11). Using this architecture, a final round of

experiments was used to determine the best combination of

1) BOW codebook size for image representation, 2) number

of LDA topics for text representation, and 3) number of

KCCA components, for each of the CM, SM, and SCM

retrieval regimes and data set. Table 5 summarizes the

optimal parameter configuration, which was used in the

remaining experiments.

5.3 Testing the Fundamental Hypotheses

This architecture was used on a set of experiments aimed to

test the fundamental hypotheses of Section 3. In these

experiments, MAP scores were measured on the test set.

5.3.1 Overall Performance

Table 6 compares the scores of cross-modal retrieval with

CM, SM, SCM, and the baseline TTI method. The table

provides evidence in support of the two hypotheses of

Section 3.3, both joint dimensionality reduction and

semantic abstraction are beneficial for multimodal model-

ing, leading to a nontrivial improvement over TTI. For

example, in TVGraz, the average MAP score of CM is more

than double that of TTI. For SM, the improvement is more

than threefold. Overall, the best performance is achieved by

SCM. Similar conclusions can be drawn for Wikipedia,

although the average gains of SCM are slightly lower than

in TVGraz. This is not surprising, since the retrieval scores

are generally lower on Wikipedia than on TVGraz. As

discussed in Section 5.1, this is explained by the broader

scope of the Wikipedia categories.
Fig. 8 presents a more detailed analysis of the retrieval

performance, in the form of PR curves. CM, SM, and SCM

again achieve large improvements over TTI. These im-

provements tend to occur at all levels of recall, indicating

better generalization, and often involve substantial in-

creases in precision, indicating higher accuracy. Overall,

these results suggest that the contributions of cross-modal

correlation and semantic abstraction are complementary: not

only is there an independent benefit to both correlation

modeling and abstraction, but the best performance is achieved

when the two are combined.

5.3.2 Per-Class Performance

Fig. 8 shows the per-class MAP scores of all methods. SCM
has higher MAP than CM and SM on all classes of TVGraz
and is either comparable to or better than CM and SM on
the majority of Wikipedia classes. TTI does very poorly in
general and seems biased toward one class. This is evident
from Figs. 8c and 8f, where it achieves a very high score on
one class—“Frog” on TVGraz and “Warfare” on Wikipe-
dia—and very low scores in the remaining. In both cases,
the favored class has a large number of training examples.

Two examples of text queries and corresponding
retrieval results, using SCM, are shown in Fig. 10. The text
query is presented along with its probability vector �T and
the ground-truth image. The top five image matches are
shown below the text, along with their probability vectors
�I . Finally, Fig. 11 shows some examples of image-to-text
retrieval. Since displaying the retrieved texts would require
too much space, we present the associated ground-truth
images instead. The query images are framed in the left
column, and the images associated with the four best text
matches are shown on the right.

5.4 Robustness

The previous experiments indicate that semantic spaces
are beneficial for cross-modal retrieval. However, in each
experiment, the semantic space was designed with a
vocabulary V identical to the ground-truth semantics. This
could be argued to give an unfair advantage to SM and
SCM. To evaluate this possibility, we performed a
number of additional experiments that evaluated the
robustness of SM to mismatches between semantic
vocabulary and ground-truth semantics. Two classes of
experiments were performed.

5.4.1 Extended Semantics

This set of experiments tested the impact of the size of the
vocabulary V on SM performance. It was based on an
extended vocabulary V0, which was shared by the two data sets.
This contained the 10 classes from TVGraz, the 10 classes of
Wikipedia, the 20 classes of Wikipedia featured articles that
were not used in the Wikipedia data set, and 20 categories
from the Pascal-Sentences [67] data set (50 image/text pairs
per class). Overall, V0 contained 60 classes. The ground-
truth semantics were as before, i.e., the classes in the second
column of Tables 7 and 8.
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TABLE 5
Optimal Parameters (Validation Set) for

Best Retrieval Architecture

TABLE 6
MAP Scores (Test Set) of CM, SM, SCM, and TTI,

on TVGraz and Wikipedia



To evaluate the impact of the composition of the
semantic space on retrieval scores, we repeated the retrieval
experiment using multiple subsets of V0 as vocabulary V.
Starting with V containing the 10 ground-truth classes, we
sequentially added one of the remaining classes in V0 to V.
This produced a sequence of semantic spaces with between
11 and 60 dimensions. To introduce randomness, the whole
experiment was repeated five times, using a sequence of
randomly selected classes to add at each step. Fig. 9
presents the MAP scores as a function of the vocabulary
size, for image and text queries on the two data sets. The
straight horizontal lines are the scores obtained when V
contained the 10 original classes. The image query task
appears to be slightly more affected than its text counter-
part; this is a natural consequence of the noisier semantic

descriptor of images when compared to that of texts [68].

While there is some degradation of performance as the

vocabulary grows, the effect is small. This indicates that

the performance of SM is fairly insensitive to the size of

the vocabulary V.

5.4.2 Alternative Semantics

In the previous experiments, the vocabulary V always

included the ground-truth semantics. To further test the

robustness of SM to the make-up of the semantic space, a

final set of experiments was performed with ground-truth

semantics that are only loosely related to the vocabulary V.

For this, we defined a new set of ground-truth semantics for

each data set, according to Tables 7 and 8. In all
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Fig. 8. PR curves of cross-modal retrieval using both text (a), (d) and image (b), (e) queries on TVGraz (top) and Wikipedia (bottom). Average

(across image and text queries) per-class MAP scores also shown in (c) and (f).

TABLE 7
TVGraz Semantics

TABLE 8
Wikipedia Semantics



experiments, the vocabulary V consisted of the original data

set classes, also shown in the tables.
Table 9 presents a comparison of the average MAP scores

achieved with the alternative ground-truth semantics of

Tables 7 and 8 (denoted “alt. semantics”) and with the

original data set classes (denoted “vocabulary”). Since there

are fewer classes in the alternative semantics, the retrieval

performance is expected to improve. However, the fact that

these classes are more abstract could also lead to a

degradation. The two behaviors are visible in the table.

On Wikipedia, where the original classes are already quite

abstract, all methods have improved performance under the

alternative semantics. On TVGraz, where the alternative

semantics are much more abstract than the vocabulary

classes, performance decreases for SM and SCM. Note,
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Fig. 9. MAP scores under SM. The solid horizontal line is the score

obtained with the 10 original data set categories.

TABLE 9
Average MAP Scores (Test Set) under the Original

(“Vocabulary”) and Alternative Semantics

Fig. 10. Two examples of text-based cross-modal retrieval using SCM. The first example is from TVGraz and the second example from Wikipedia.

The query text, associated probability vector, and ground-truth image are shown on the top; retrieved images are presented at the bottom.



however, that these variations do not affect the relative
performance of the different methods. In both cases, CM
and SM achieve significant improvements over TTI and the
best overall performance is obtained when they are
combined (SCM). In summary, this experiment confirms
all the conclusions reached above.

6 CONCLUSION

The increasing availability of multimodal information

demands novel representations for content-based retrieval.

In this work, we proposed models applicable to cross-

modal retrieval. This entails the retrieval of database

entries from one content modality in response to queries

from another. While the emphasis was on cross-modal

retrieval of images and rich text, the proposed models

support many other content modalities. By requiring

representations that can generalize across modalities,

cross-modal retrieval establishes a suitable context for the

objective investigation of fundamental hypotheses in

multimedia modeling.

We have considered two such hypotheses, regarding the

importance of low-level cross-modal correlations and

semantic abstraction in multimodal modeling. The hypoth-

eses were objectively tested by comparing the performance

of three methods: 1) CM, based on the correlation

hypothesis, 2) SM, based on the abstraction hypothesis,

and 3) SCM, based on the combination of the two. All of

these map objects from different native spaces (e.g., rich text

and images) to a pair of isomorphic spaces, where a natural

correspondence can be established for cross-modal retrieval

purposes. The retrieval performance of the three solutions

was tested on two data sets, “Wikipedia” and “TVGraz,”

which combine images and rich text, and compared to a

state-of-the-art cross-modal retrieval method (TTI).
While the two fundamental hypotheses were shown to

hold for the two data sets, where both CM and SM achieved

significant improvements over TTI, SM achieved overall

better performance than CM. This implies stronger evi-

dence for the abstraction than for the correlation hypothesis.

However, the two hypotheses were also found to be

complementary, with SCM achieving the best results of all

methods considered.

ACKNOWLEDGMENTS

This work was funded by FCT graduate Fellowship SFRH/

BD/40963/2007 and US National Science Foundation grant

CCF-0830535. The authors would like to thank Malcolm

Slaney for helpful discussions.

REFERENCES

[1] G. Salton and M. McGill, Introduction to Modern Information
Retrieval. McGraw-Hill, 1983.

[2] A. Smeulders, M. Worring, S. Santini, A. Gupta, and R. Jain,
“Content-Based Image Retrieval at the End of the Early Years,”
IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 22, no. 12,
pp. 1349-1380, Dec. 2000.

[3] B. Logan and A. Salomon, “A Music Similarity Function Based on
Signal Analysis,” Proc. IEEE Int’l Conf. Multimedia and Expo,
pp. 745-748, 2001.

[4] S. Sclaroff, M. Cascia, S. Sethi, and L. Taycher, “Unifying Textual
and Visual Cues for Content-Based Image Retrieval on the World
Wide Web,” J. Computer Vision and Image Understanding, vol. 75,
no. 1, pp. 86-98, 1999.

[5] C. Frankel, M. Swain, and V. Athitsos, “Webseer: An Image Search
Engine for the World Wide Web,” technical report, Computer
Science Dept., Univ. of Chicago, 1996.

[6] W. Li, K. Candan, and K. Hirata, “SEMCOG: An Integration of
SEMantics and COGnition-Based Approaches for Image Retrie-
val,” Proc. ACM Symp. Applied Computing, pp. 136-143, 1997.

[7] K. Barnard and D. Forsyth, “Learning the Semantics of Words and
Pictures,” Proc. IEEE Int’l Conf. Computer Vision, vol. 2, pp. 408-415,
2001.

[8] L. Denoyer and P. Gallinari, “Bayesian Network Model for Semi-
Structured Document Classification,” Information Processing and
Management, vol. 40, no. 5, pp. 807-827, 2004.

[9] C. Snoek and M. Worring, “Multimodal Video Indexing: A
Review of the State-of-the-Art,” J. Multimedia Tools and Applica-
tions, vol. 25, no. 1, pp. 5-35, 2005.

[10] R. Datta, D. Joshi, J. Li, and J. Wang, “Image Retrieval: Ideas,
Influences, and Trends of the New Age,” ACM Computing Surveys,
vol. 40, no. 2, pp. 1-60, 2008.

[11] J. Iria, F. Ciravegna, and J. Magalhães, “Web News Categorization
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