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Abstract

Some of the most robust effects of linguis-
tic variables on eye movements in reading are
those of word length. Their leading explana-
tion states that they are caused by visual acu-
ity limitations on word recognition. However,
Bicknell (2011) presented data showing that a
model of eye movement control in reading that
includes visual acuity limitations and models
the process of word identification from visual
input (Bicknell & Levy, 2010) does not pro-
duce humanlike word length effects, provid-
ing evidence against the visual acuity account.
Here, we argue that uncertainty about word
length in early word identification can drive
word length effects. We present an extension
of Bicknell and Levy’s model that incorpo-
rates word length uncertainty, and show that it
produces more humanlike word length effects.

1 Introduction

Controlling the eyes while reading is a complex
task, and doing so efficiently requires rapid deci-
sions about when and where to move the eyes 3–
4 times per second. Research in psycholinguistics
has demonstrated that these decisions are sensitive
to a range of linguistic properties of the text be-
ing read, suggesting that the eye movement record
may be viewed as a detailed trace of the timecourse
of incremental comprehension. A number of cog-
nitive models of eye movement control in read-
ing have been proposed, the most well-known of
which are E-Z Reader (Reichle, Pollatsek, Fisher, &
Rayner, 1998; Reichle, Rayner, & Pollatsek, 2003)

and SWIFT (Engbert, Longtin, & Kliegl, 2002; En-
gbert, Nuthmann, Richter, & Kliegl, 2005). These
models capture a large range of the known proper-
ties of eye movements in reading, including effects
of the best-documented linguistic variables on eye
movements: the frequency, predictability, and length
of words.

Both models assume that word frequency, pre-
dictability, and length affect eye movements in read-
ing by affecting word recognition, yet neither one
models the process of identifying words from visual
information. Rather, each of these models directly
specifies the effects of these variables on exoge-
nous word processing functions, and the eye move-
ments the models produce are sensitive to these
functions’ output. Thus, this approach cannot an-
swer the question of why these linguistic variables
have the effects they do on eye movement behav-
ior. Recently, Bicknell and Levy (2010) presented a
model of eye movement control in reading that di-
rectly models the process of identifying the text from
visual input, and makes eye movements to max-
imize the efficiency of the identification process.
Bicknell and Levy (2012) demonstrated that this
rational model produces effects of word frequency
and predictability that qualitatively match those of
humans: words that are less frequent and less pre-
dictable receive more and longer fixations. Because
this model makes eye movements to maximize the
efficiency of the identification process, this result
gives an answer for the reason why these variables
should have the effects that they do on eye move-
ment behavior: a model that works to efficiently
identify the text makes more and longer fixations on
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words of lower frequency and predictability because
it needs more visual information to identify them.

Bicknell (2011) showed, however, that the ef-
fects of word length produced by the rational model
look quite different from those of human readers.
Because Bicknell and Levy’s (2010) model imple-
ments the main proposal for why word length effects
should arise, i.e., visual acuity limitations, the fact
that the model does not reproduce humanlike word
length effects suggests that our understanding of the
causes of word length effects may be incomplete.

In this paper, we argue that this result arose be-
cause of a simplifying assumption made in the ra-
tional model, namely, the assumption that the reader
has veridical knowledge about the number of char-
acters in a word being identified. We present an ex-
tension of Bicknell and Levy’s (2010) model which
does not make this simplifying assumption, and
show in two sets of simulations that effects of word
length produced by the extended model look more
like those of humans. We argue from these results
that uncertainty about word length is a necessary
component of a full understanding of word length
effects in reading.

2 Reasons for word length effects

The empirical effects of word length displayed by
human readers are simple to describe: longer words
receive more and longer fixations. The major rea-
son proposed in the literature on eye movements in
reading for this effect is that when fixating longer
words, the average visual acuity of all the letters in
the word will be lower than for shorter words, and
this poorer average acuity is taken to lead to longer
and more fixations. This intuition is built into the ex-
ogenous word processing functions in E-Z Reader
and SWIFT. Specifically, in both models, the word
processing rate slows as the average distance to the
fovea of all letters in the word increases, and this
specification of the effect of length on word process-
ing rates is enough to produce reasonable effects of
word length on eye movements: both models make
more and longer fixations on longer words – similar
to the pattern of humans – across a range of mea-
sures (Pollatsek, Reichle, & Rayner, 2006; Engbert
et al., 2005) including the duration of the first fixa-
tion on a word (first fixation duration), the duration

of all fixations on a word prior to leaving the word
(gaze duration), the rate at which a word is not fix-
ated prior to a fixation on a word beyond it (skip
rate), and the rate with which a word is fixated more
than once prior to a word beyond it (refixation rate).

There are, however, reasons to believe that this ac-
count may be incomplete. First, while it is the case
that the average visual acuity of all letters in a fixated
word must be lower for longer words, this is just be-
cause there are additional letters in the longer word.
While these additional letters pull down the aver-
age visual acuity of letters within the word, each ad-
ditional letter should still provide additional visual
information about the word’s identity, an argument
suggesting that longer words might require less – not
more – time to be identified. In fact, in SWIFT, the
exogenous word processing rate function slows as
both the average and the sum of the visual acuities of
the letters within the word decrease, but E-Z Reader
does not implement this idea in any way. Addi-
tionally, a factor absent from both E-Z Reader and
SWIFT, is that the visual neighborhoods of longer
words (at least in English) appear to be sparser,
when considering the number of words formed by
a single letter substitution (Balota, Cortese, Sergent-
Marshall, Spieler, & Yap, 2004), or the average or-
thographic Levenshtein distance of the most simi-
lar 20 words (Yarkoni, Balota, & Yap, 2008). Be-
cause reading words with more visual neighbors is
generally slower (Pollatsek, Perea, & Binder, 1999),
this argument gives another reason to expect longer
words to require less – not more – time to be read.

So while E-Z Reader and SWIFT produce rea-
sonable effects of word length on eye movement
measures (in which longer words receive more and
longer fixations) by assuming a particular effect of
visual acuity, it is less clear whether a visual acu-
ity account can yield reasonable word length effects
in a model that also includes the two opposing ef-
fects mentioned above. Determining how these dif-
ferent factors should interact to produce word length
effects requires a model of eye movements in read-
ing that models the process of word identification
from disambiguating visual input (Bicknell & Levy,
in press). The model presented by Bicknell and Levy
(2010) fits this description, and includes visual acu-
ity limitations (in fact, identical to the visual acuity
function in SWIFT). As already mentioned, how-
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ever, Bicknell (2011) showed that the model did
not yield a humanlike length effect. Instead, while
longer words were skipped less often and refixated
more (as for humans), fixation durations generally
fell with word length – the opposite of the pattern
shown by humans. This result suggests that visual
acuity limitations alone cannot explain the positive
effect of word length on fixation durations in the
presence of an opposing force such as the fact that
longer words have smaller visual neighborhoods.

We hypothesize that the reason for this pattern
of results relates to a simplifying assumption made
by Bicknell and Levy’s model. Specifically, while
visual input in the model yields noisy information
about the identities of letters, it gives veridical in-
formation about the number of letters in each word,
for reasons of computational convenience. There are
theoretical and empirical reasons to believe that this
simplifying assumption is incorrect, that early in the
word identification process human readers do have
substantial uncertainty about the number of letters
in a word, and further, that this may be especially
so for long words. For example, results with masked
priming have shown that recognition of a target word
is facilitated by a prime that is a proper subset of
the target’s letters (e.g., blcn–balcon; Peressotti &
Grainger, 1999; Grainger, Granier, Farioli, Van Ass-
che, & van Heuven, 2006), providing evidence that
words of different length have substantial similarity
in early processing. For these reasons, some recent
models of isolated word recognition (Gomez, Rat-
cliff, & Perea, 2008; Norris, Kinoshita, & van Cast-
eren, 2010) have suggested that readers have some
uncertainty about the number of letters in a word
early in processing.

If readers have uncertainty about the length of
words, we may expect that the amount of uncertainty
would grow proportionally to length, as uncertainty
is proportional to set size in other tasks of num-
ber estimation (Dehaene, 1997). This would agree
with the intuition that an 8-character word should
be more easily confused with a 9-character word
than a 3-character word with a 4-character word. In-
cluding uncertainty about word length that is larger
for longer words would have the effect of increas-
ing the number of visual neighbors for longer words
more than for shorter words, providing another rea-
son (in addition to visual acuity limitations) that

longer words may require more and longer fixations.

In the remainder of this paper, we describe an
extension of Bicknell and Levy’s (2010) model in
which visual input provides stochastic – rather than
veridical – information about the length of words,
yielding uncertainty about word length, and in which
the amount of uncertainty grows with length. We
then present two sets of simulations with this ex-
tended model demonstrating that it produces more
humanlike effects of word length, suggesting that
uncertainty about word length may be an important
component of a full understanding of the effects of
word length in reading.

3 A rational model of reading

In this section, we describe our extension of Bicknell
and Levy’s (2010) rational model of eye movement
control in reading. Except for the visual input sys-
tem, and a small change to the behavior policy to
allow for uncertainty about word length, the model
is identical to that described by Bicknell and Levy.
The reader is referred to that paper for further com-
putational details beyond what is described here.

In this model, the goal of reading is taken to be
efficient text identification. While it is clear that this
is not all that readers do – inferring the underly-
ing structural relationships among words in a sen-
tence and discourse relationships between sentences
that determine text meaning is a fundamental part of
most reading – all reader goals necessarily involve
identification of at least part of the text, so text iden-
tification is taken to be a reasonable first approxima-
tion. There are two sources of information relevant
to this goal: visual input and language knowledge,
which the model combines via Bayesian inference.
Specifically, it begins with a prior distribution over
possible identities of the text given by its language
model, and combines this with noisy visual input
about the text at the eyes’ position, giving the likeli-
hood term, to form a posterior distribution over the
identity of the text taking into account both the lan-
guage model and the visual input obtained thus far.
On the basis of the posterior distribution, the model
decides whether or not to move its eyes (and if so
where to move them to) and the cycle repeats.
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3.1 Formal problem of reading: Actions

The model assumes that on each of a series of
discrete timesteps, the model obtains visual input
around the current location of the eyes, and then
chooses between three actions: (a) continuing to fix-
ate the currently fixated position, (b) initiating a sac-
cade to a new position, or (c) stopping reading. If
the model chooses option (a), time simply advances,
and if it chooses option (c), then reading immedi-
ately ends. If a saccade is initiated (b), there is a lag
of two timesteps, representing the time required to
plan and execute a saccade, during which the model
again obtains visual input around the current posi-
tion, and then the eyes move toward the intended
target. Because of motor error, the actual landing po-
sition of the eyes is normally distributed around the
intended target with the standard deviation in char-
acters given by a linear function of the intended dis-
tance d (.87+ .084d; Engbert et al., 2005).1

3.2 Language knowledge

Following Bicknell and Levy (2010), we use very
simple probabilistic models of language knowledge:
word n-gram models (Jurafsky & Martin, 2009),
which encode the probability of each word condi-
tional on the n−1 previous words.

3.3 Formal model of visual input

Visual input in the model consists of noisy informa-
tion about the positions and identities of the charac-
ters in the text. Crucially, in this extended version
of the model, this includes noisy information about
the length of words. We begin with a visual acuity
function taken from Engbert et al. (2005). This func-
tion decreases exponentially with retinal eccentric-
ity ε , and decreases asymmetrically, falling off more
slowly to the right than the left.2 The model obtains
visual input from the 19 character positions with the
highest acuity ε ∈ [−7,12], which we refer to as
the perceptual span. In order to provide the model
with information about the current fixation position
within the text, the model also obtains veridical in-

1In the terminology of the literature, the model has only ran-
dom motor error (variance), not systematic error (bias). Follow-
ing Engbert and Krügel (2010), systematic error may arise from
Bayesian estimation of the best saccade distance.

2While we refer to this function as visual acuity, it is clear
from its asymmetric nature that it has an attentional component.

formation about the number of word boundaries to
the left of the perceptual span.

Visual information from the perceptual span con-
sists of stochastic information about the number of
characters in the region and their identities. We make
the simplifying assumption that the only characters
are letters and spaces. Formally, visual input on a
given timestep is represented as a string of symbols,
each element of which has two features. One fea-
ture denotes whether the symbol represents a space
([+SPACE]) or a letter ([−SPACE]), an important dis-
tinction because spaces indicate word boundaries.
Symbols that are [+SPACE] veridically indicate the
occurrence of a space, while [−SPACE] symbols pro-
vide noisy information about the letter’s identity.
The other feature attached to each symbol speci-
fies whether the character in the text that the symbol
was emitted from was being fixated ([+FIX]) or not
([−FIX]). The centrally fixated character has special
status so that the model can recover the eyes’ posi-
tion within the visual span.

This visual input string is generated by a pro-
cess of moving a marker from the beginning to the
end of the perceptual span, generally inserting a
symbol into the visual input string for each char-
acter it moves across (EMISSION). To provide only
noisy information about word length, however, this
process is not always one of EMISSION, but some-
times it inserts a symbol into the visual input string
that does not correspond to a character in the text
(INSERTION), and at other times it fails to insert
a symbol for a character in the text (SKIPPING).
Specifically, at each step of the process, a deci-
sion is first made about INSERTION, which occurs
with probability δ . If INSERTION occurs, then a
[−SPACE] identity for the character is chosen ac-
cording to a uniform distribution, and then noisy vi-
sual information about that character is generated in
the same way as for EMISSION (described below).
If a character is not inserted, and the marker has al-
ready moved past the last character in the perceptual
span, the process terminates. Otherwise, a decision
is made about whether to emit a symbol into the vi-
sual input string from the character at the marker’s
current position (EMISSION) or whether to skip out-
putting a symbol for that character (SKIPPING). In
either case, the marker is advanced to the next char-
acter position. If the character at the marker’s cur-
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Figure 1: The expectation for the posterior distribution
over the length of a word for actual lengths 1–10 after the
model has received 1, 2, or 3 timesteps of visual input
about the word, for two levels of length uncertainty: δ ∈
{.05, .1}. These calculations use as a prior distribution
the empirical distribution of word length in the BNC and
assume no information about letter identity.

rent position is [+SPACE] or [+FIX], then EMISSION

is always chosen, but if it is any other character, then
SKIPPING occurs with probability δ .

A [−SPACE] symbol (produced through EMIS-
SION or INSERTION) contains noisy information
about the identity of the letter that generated it, ob-
tained via sampling. Specifically, we represent each
letter as a 26-dimensional vector, where a single el-
ement is 1 and the others are zeros. Given this rep-
resentation, a [−SPACE] symbol contains a sample
from a 26-dimensional Gaussian with a mean equal
to the letter’s true identity and a diagonal covariance
matrix Σ(ε) = λ (ε)−1I, where λ (ε) is the visual
acuity at eccentricity ε . We scale the overall process-
ing rate by multiplying each rate by Λ, set to 8 for
the simulations reported here.

Allowing for INSERTION and SKIPPING means
that visual input yields noisy information about the
length of words, and this noise is such that uncer-
tainty is higher for longer words. Figure 1 gives a
visualization of this uncertainty. It shows the expec-
tation for the posterior distribution over the length
of a word for a range of actual word lengths, after
the model has received 1, 2, or 3 timesteps of visual
input about the word, at two levels of uncertainty.
This figure demonstrates two things: first, that there
is substantial uncertainty about word length even af-
ter three timesteps of visual input, and second, that
this uncertainty is larger for longer words.

(a) m = [.6, .7, .6, .4, .3, .6]: Keep fixating (3)
(b) m = [.6, .4, .9, .4, .3, .6]: Move back (to 2)
(c) m = [.6, .7, .9, .4, .3, .6]: Move forward (to 6)
(d) m = [.6, .7, .9, .8, .7, .7]: Stop reading

Figure 2: Values of m for a 6 character text under which
a model fixating position 3 would take each of its four
actions, if α = .7 and β = .5.

3.4 Inference about text identity

The model’s initial beliefs about the identity of
the text are given by the probability of each pos-
sible identity under the language model. On each
timestep, the model obtains a visual input string as
described above and calculates the likelihood of gen-
erating that string from each possible identity of the
text. The model then updates its beliefs about the
text via standard Bayesian inference: multiplying the
probability of each text identity under its prior be-
liefs by the likelihood of generating the visual input
string from that text identity and normalizing. We
compactly represent all of these distributions using
weighted finite-state transducers (Mohri, 1997) us-
ing the OpenFST library (Allauzen, Riley, Schalk-
wyk, Skut, & Mohri, 2007), and implement be-
lief update with transducer composition and weight
pushing.

3.5 Behavior policy

The model uses a simple policy with two parame-
ters, α and β , to decide between actions based on
the marginal probability m of the most likely char-
acter c in each position j,

m( j) = max
c

p(w j = c)

where w j indicates the character in the jth posi-
tion. A high value of m indicates relative confidence
about the character’s identity, and a low value rel-
ative uncertainty. Because our extension has uncer-
tainty about the absolute position of its eyes within
the text, each position j is now defined relative to the
centrally fixated character.

Figure 2 illustrates how the model decides among
four possible actions. If the value of m( j) for the cur-
rent position of the eyes is less than the parameter
α , the model continues fixating the current position
(2a). Otherwise, if the value of m( j) is less than the
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parameter β for some leftward position, the model
initiates a saccade to the closest such position (2b).
If no such positions exist to the left, the model initi-
ates a saccade to n characters past the closest posi-
tion to the right for which m( j) < α (2c).3 Finally,
if no such positions exist, the model stops reading
(2d). Intuitively, then, the model reads by making a
rightward sweep to bring its confidence in each char-
acter up to α , but pauses to move left to reread any
character whose confidence falls below β .

4 Simulation 1: full model

We now assess the effects of word length produced
by the extended version of the model. Following
Bicknell (2011), we use the model to simulate read-
ing of a modified version of the Schilling, Rayner,
and Chumbley (1998) corpus of typical sentences
used in reading experiments. We compare three lev-
els of length uncertainty: δ ∈ {0, .05, .1}. The first
of these (δ = 0) corresponds to Bicknell and Levy’s
(2010) model, which has no uncertainty about word
length. We predict that increasing the amount of
length uncertainty will make effects of word length
more like those of humans, and we compare the
model’s length effects to those of human readers of
the Schilling corpus.

4.1 Methods
4.1.1 Model parameters and language model

Following Bicknell (2011), the model’s language
knowledge was an unsmoothed bigram model using
a vocabulary set consisting of the 500 most frequent
words in the British National Corpus (BNC) as well
as all the words in the test corpus. Every bigram in
the BNC was counted for which both words were in
vocabulary, and – due to the intense computation re-
quired for exact inference – this set was trimmed by
removing rare bigrams that occur less than 200 times
(except for bigrams that occur in the test corpus), re-
sulting in a set of about 19,000 bigrams, from which
the bigram model was constructed.

4.1.2 Optimization of policy parameters
We set the parameters of the behavior policy

(α,β ) to values that maximize reading efficiency.
3The role of n is to ensure that the model does not center

its visual field on the first uncertain character. For the present
simulations, we did not optimize this parameter, but fixed n = 3.

We define reading efficiency E to be an interpolation
of speed and accuracy, E = (1−γ)L−γT , where L is
the log probability of the true identity of the text un-
der the model’s beliefs at the end of reading, T is the
number of timesteps before the model stopped read-
ing, and γ gives the relative value of speed. For the
present simulations, we use γ = .1, which produces
reasonably accurate reading. To find optimal values
of the policy parameters α and β for each model, we
use the PEGASUS method (Ng & Jordan, 2000) to
transform this stochastic optimization problem into
a deterministic one amenable to standard optimiza-
tion algorithms, and then use coordinate ascent.

4.1.3 Test corpus
We test the model on a corpus of 33 sentences

from the Schilling corpus slightly modified by
Bicknell and Levy (2010) so that every bigram oc-
curred in the BNC, ensuring that the results do not
depend on smoothing.

4.1.4 Analysis
With each model, we performed 50 stochastic

simulations of the reading of the corpus. For each
run, we calculated the four standard eye movement
measures mentioned above for each word in the cor-
pus: first fixation duration, gaze duration, skipping
probability, and refixation probability. We then av-
eraged each of these four measures across runs for
each word token in the corpus, yielding a single
mean value for each measure for each word.

Comparing the fixation duration measures to hu-
mans required converting the model’s timesteps into
milliseconds. We performed this scaling by multi-
plying the duration of each fixation by a conversion
factor set to be equal to the mean human gaze du-
ration divided by the mean model gaze duration for
words with frequencies higher than 1 in 100, mean-
ing that the model predictions exactly match the hu-
man mean for gaze durations on these words.

4.2 Results

Figure 3 presents the results for all four measures
of interest. Looking first at the model with no un-
certainty, we see that the results replicate those of
Bicknell (2011): while there is a monotonic effect
of word length on skip rates and refixation rates in
the same direction as humans, longer words receive
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Figure 3: Effects of word length in three version of the
full model with δ = 0 (red), δ = 0.05 (green), and δ =
0.1 (blue) on first fixation durations, gaze durations, skip
rates, and refixation rates compared with the empirical
human data for this corpus (purple). Estimates obtained
via loess smoothing and plotted with standard errors.

shorter fixations in the model, opposite to the pattern
found in human data. As predicted, adding length
uncertainty begins to reverse this effect: as uncer-
tainty is increased, the effect of word length on fixa-
tion durations becomes less negative.

However, while these results look more like those
of humans, there are still substantial differences. For
one, even for the model with the most uncertainty,
the effect of word length – while not negative – is
also not really positive. Second, the effect appears
rather non-monotonic. We hypothesize that these
two problems are related to the aggressive trimming
we performed of the model’s language model. By re-
moving low frequency words and bigrams, we artifi-
cially trimmed especially the visual neighborhoods
of long words, since frequency and length are nega-
tively correlated. This could have led to another in-
verse word length effect, which even adding more
length uncertainty was unable to fully overcome. In
effect, extending the visual neighborhoods of long
words (by adding length uncertainty) may not have
much effect if we have removed all the words that
would be in those extended neighborhoods. In ad-
dition, the aggressive trimming could have been re-
sponsible for the non-monotonicities apparent in the
model’s predictions. We performed another set of

simulations using a language model with substan-
tially less trimming to test these hypotheses.

5 Simulation 2: model without context

In this simulation, we used a unigram language
model instead of the bigram language model used
in Simulation 1. Since this model cannot make use
of linguistic context, it will not show as robust ef-
fects of linguistic variables such as word predictabil-
ity (Bicknell & Levy, 2012), but since here our fo-
cus is on effects of word length, this limitation is
unlikely to concern us. Crucially, because of the
model’s simpler structure, it allows for the use of
a substantially larger vocabulary than the bigram
model used in Simulation 1. In addition, using this
model avoids the problems mentioned above associ-
ated with trimming bigrams. We predicted that this
language model would allow us to obtain effects of
word length on fixation durations that were actu-
ally positive (rather than merely non-negative), and
that there would be fewer non-monotonicities in the
function.

5.1 Methods
Except the following, the methods were identical
to those of Simulation 1. We replaced the bigram
language model with a unigram language model.
Training was performed in the same manner, except
that instead of including only the most common 500
words in the BNC, we included all words that occur
at least 200 times (corresponding to a frequency of
2 per million; about 19,000 words). Because of the
greater computational complexity for the two mod-
els with non-zero δ , we performed only 20 simula-
tions of the reading of the corpus instead of 50.

5.2 Results
Figure 4 presents the results for all four measures
of interest. Looking at the model with no uncer-
tainty, we see already that the predictions are a sub-
stantially better fit to human data than was the full
model. The skipping and refixation rates look sub-
stantially more like the human curves. And while
the word length effect on first fixation duration is
still negative, it is already non-negative for gaze du-
ration. This supports our hypotheses that aggres-
sive trimming were partly responsible for the full
model’s negative word length effect.
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Figure 4: Effects of word length in three version of the
model without context (unigram model) with δ = 0 (red),
δ = 0.05 (green), and δ = 0.1 (blue) on first fixation dura-
tions, gaze durations, skip rates, and refixation rates com-
pared with the empirical human data for this corpus (pur-
ple). Estimates obtained via loess smoothing and plotted
with standard errors.

Moving on to the models with uncertainty, we see
that predictions are still in good agreement with hu-
mans for skip rates and refixation rates. More in-
terestingly, we see that adding length uncertainty
makes both durations measures relatively positive
functions of word length. While the overall size of
the effect is incorrect for first fixation durations, we
see striking similarities between the models predic-
tions and human data on both duration measures.
For first fixations, the human pattern is that dura-
tions go up from word lengths 1 to 2, down from 2
to 3 (presumably because of ‘the’), and then up to 5,
after which the function is relatively flat. That pat-
tern also holds for both models with uncertainty. For
gaze duration, both models more or less reproduce
the human pattern of a steadily-increasing function
throughout the range, and again match the human
function in dipping for word length 3. For gaze du-
rations, even the overall size of the effect produced
by the model is similar to that of humans. These
results confirm our original hypothesis that adding
length uncertainty would lead to more humanlike
word length effects. In addition, comparing the re-
sults of Simulation 2 with Simulation 1 reveals the
importance to this account of words having realis-

tic visual neighborhoods. When the visual neighbor-
hoods of (especially longer) words were trimmed to
be artificially sparse, adding length uncertainty did
not allow the model to recover the human pattern.

6 Conclusion

In this paper, we argued that the success of major
models of eye movements in reading to reproduce
the (positive) human effect of word length via acuity
limitations may be a result of not including oppos-
ing factors such as the negative correlation between
visual neighborhood size and word length. We de-
scribed the failure of the rational model presented
in Bicknell and Levy (2010) to obtain humanlike ef-
fects of word length, despite including all of these
factors, suggesting that our understanding of word
length effects in reading is incomplete. We proposed
a new reason for word length effects – uncertainty
about word length that is larger for longer words –
and noted that this reason was not implemented in
Bicknell and Levy’s model because of a simplifying
assumption. We presented an extension of the model
relaxing this assumption, in which readers obtain
noisy information about word length, and showed
through two sets of simulations that the new model
produces effects of word length that look more like
those of human readers. Interestingly, while adding
length uncertainty made both models more human-
like, it was only in Simulation 2 – in which words
had more realistic visual neighborhoods – that all
measures of the effect of word length on eye move-
ments showed the human pattern, underscoring the
importance of the structure of the language for this
account of word length effects.

We take these results as evidence that word length
effects cannot be completely explained through lim-
itations on visual acuity. Rather, they suggest that a
full understanding of the reasons underlying word
length effects on eye movements in reading should
include a notion of uncertainty about the number of
letters in a word, which grows with word length.
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