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Abstract
While the major models of eye movement control in reading
propose very different mechanisms for the generation of sac-
cades to previous words, there has been relatively little em-
pirical data to distinguish these hypotheses. Here we provide
a systematic statistical analysis of the factors that elicit these
saccades in a corpus of eye movements. We show that the re-
sults are contrary to the predictions of a number of accounts,
and provide new evidence to discriminate among the models.
Keywords: eye movements; reading; regressive saccades; lo-
gistic regression

Introduction
The control of the eyes during reading is one of the most com-
plex everyday tasks humans face, as efficient performance
requires the rapid integration of complex information from
visual, motor, and linguistic sources. In recent decades, our
knowledge of the determinants of how readers select saccade
targets and decide how long to fixate particular locations has
grown immensely (for reviews see Rayner, 1998, 2009). The
focus of this work has been on understanding the most com-
mon ways in which the eyes move through the text: progres-
sive saccades to a word further in the text and refixations of
the current word. As such, our understanding of instances
in which the eyes move back to a previous word (between-
word regressions) is still one of the most poorly developed
facets of theories of eye movement control in reading. While
not the most common type of saccade, between-word regres-
sions are still a regular property of the eye movement record,
consistently occurring on between 1 in 10 and 1 in 20 sac-
cades (and as high as 30% of all saccades for some read-
ers, Radach & McConkie, 1998). Thus, it is a striking state
of affairs that the major models of eye movement control in
reading (e.g., Pollatsek, Reichle, & Rayner, 2006; Engbert,
Nuthmann, Richter, & Kliegl, 2005) propose very different
reasons for making between-word regressions, each of which
is intimately tied to the model’s view of the nature of eye
movements in reading. One of the best ways to tease apart
the various models of eye movement control, then, is to gain
a better understanding of between-word regressions. To date,
however, there has been relatively little empirical data analy-
sis to distinguish these various theories of why a reader would
move their eyes to a previous word. Thus, the present work
seeks to remedy this situation by providing a systematic anal-
ysis of the factors that elicit between-word regressions, and in
so doing to provide a new source of evidence distinguishing
among models of eye movement control in reading.

While there are many proposals as to why a reader would
regress to a previous word, it is a common belief among re-
searchers who have diverse opinions on the primary cause

of between-word regressions (e.g., Reichle, Warren, & Mc-
Connell, 2009; Engbert et al., 2005) that some proportion of
them are made in response to overshooting a target word due
to motor error, and making a between-word regression to re-
turn to the originally targeted word. Supporting this view is
evidence that between-word regressions increase following
word skipping (Vitu & McConkie, 2000). Thus, to better dis-
tinguish between competing theories of between-word regres-
sions, we focus our discussion here only on cases in which the
target of the between-word regression was not skipped (about
half of all between-word regressions in the dataset we exam-
ine below). The question for the theories then becomes one of
why a reader would regress to a previously fixated word.

Theories of between-word regressions

We consider here five classes of theories of the causes of
between-word regressions to unskipped words. For each the-
ory, we highlight the predictions it makes for which variables
will influence the rate of between-word regressions. For con-
creteness, we discuss these predictions for the case of a re-
gression from the nth word in a given sentence (word n) to
the previous word n− 1. We can group the factors to which
regressions are predicted to be sensitive into three categories:
(a) properties of word n (i.e., its length, frequency, or pre-
dictability), (b) those same properties of word n− 1, and (c)
motor properties (i.e., length of the previous saccade or the
position of the eyes on word n or previously on word n−1).

Corrective One possibility for most theories is that some
between-word regressions (even when word n− 1 was not
skipped) could still be corrective. This could happen if the
saccade that landed on word n was intended to be a refixation
of word n−1. This is quite plausible since the most common
pattern of refixations is that first a word’s beginning is fixated
and then its end (Rayner, Sereno, & Raney, 1996).

This account predicts that properties of word n−1 should
be relevant, since there should be more regressions when re-
fixations are more likely (lower frequency or predictability,
longer length of word n− 1). In addition, motor properties
should be relevant: regressions should be more likely when
the eyes land closer to the beginning of word n−1 (since re-
fixations are more likely) and closer to the beginning of word
n (since that is where failed refixations would land). Proper-
ties of word n are not predicted to matter, except insofar as
they correlate with properties of the preceding input.

Oculomotor strategy Another possibility is that regressive
saccades could be initiated as part of an oculomotor strategy
(O’Regan & Lévy-Schoen, 1987; Yang & McConkie, 2001).
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On this account, readers have learned that it is generally ben-
eficial to launch a regression in response to a particular con-
figuration of visuomotor variables. For example, a strategy
could be to regress after a particularly long saccade, or af-
ter skipping a word. While the precise details of these strate-
gies have not been well worked out for cases in which a word
was not skipped, the crucial prediction is that regressions pro-
duced by an oculomotor strategy cannot be influenced by lin-
guistic properties like frequency and predictability.1

Incomplete lexical processing A range of models argue
that regressions can sometimes be produced by incomplete
lexical processing (in reading, generally taken to be synony-
mous with word recognition). There are two possible ac-
counts of how this could happen. In a serial word process-
ing model, in which readers attend a single word at a time, it
could occur when a reader accidentally moves their eyes away
from a word too early, and then moves them back to con-
tinue processing it more efficiently (Vitu, McConkie, & Zola,
1998).2 However, it is in attention gradient models, in which
readers attend multiple words simultaneously, that this ac-
count has been better developed (Engbert, Longtin, & Kliegl,
2002; Engbert et al., 2005; Reilly & Radach, 2006). There,
if the processing of the previous word was too short (relative
to the word’s length, frequency, and predictability), then its
activation can become higher than that of the current word or
future words, which can trigger a between-word regression.

Both of these accounts predict that factors that increase the
difficulty of word n− 1 (longer length, lower frequency and
predictability) should increase the number of regressions (for
a given fixation duration on word n−1). In addition, the atten-
tion gradient models predict that regressions should be more
likely when word n is easier (shorter length, higher frequency
and predictability), since its activation level will thus be less
of a competitor. The serial model predicts that linguistic prop-
erties of word n will not have an effect.

Integration failure It has been well documented that
strong garden path sentences (i.e., sentences with temporar-
ily ambiguous words or syntactic structures, which are ini-
tially strongly biased towards the incorrect interpretation) of-
ten elicit between-word regressions at the disambiguating re-
gion (Frazier & Rayner, 1982). A common explanation for
this finding is that integration of the disambiguating word into
prior context fails, and readers must regress to previous words
for reprocessing. Although most evidence for regressions in
this situation comes from experimental manipulations with
strong, artificial garden path sentences, it may be that weaker
garden paths (which are not consciously perceptible) never-

1Of course, in models such as Yang and McConkie (2001),
higher level language processing can sometimes intervene, so that
not all regressions in this model would be produced by an oculo-
motor strategy. For these cases however, the regression must be pro-
duced by one of the other accounts described.

2Note however that in the most well developed serial model of
eye movements in reading, E-Z Reader (Reichle et al., 2009), this
could not happen because a saccade is only initiated to leave a word
after all visual processing is completed.

theless sometimes cause integration failure and elicit regres-
sions through this mechanism. It should be noted, however,
that a large number of such garden paths would be required
to produce between-word regressions on 5-10% of saccades.

Since the difficult disambiguation region in a garden path
is by definition unpredictable, this account predicts more re-
gressions when word n is less predictable (the opposite of
the prediction made by the attention gradient incomplete lex-
ical access account). In addition, it has often been found that
garden path regressions occur on following words, thus this
account also predicts more regressions on word n when word
n− 1 is less predictable. It would not obviously predict the
length of either word or the eyes’ landing position on either
word to be relevant.

Confidence falling The final theory of between-word re-
gressions we discuss here was suggested recently by Bicknell
and Levy (2010). In this account, readers maintain uncer-
tainty about the identities of previous words and update that
uncertainty as input from new words further downstream be-
comes available (Levy, 2008), a proposition that has some
recent empirical support (Levy, Bicknell, Slattery, & Rayner,
2009). The model proposes that when a new word fits rela-
tively poorly with what the reader believed the prior context
to be, and relatively better with an alternative visually similar
possibility, the reader’s confidence in the identity of the prior
context will be reduced. In this situation, it becomes useful to
get more visual information about the prior context, and thus
make a between-word regression.

The predictions of this account combine predictions of
the incomplete lexical processing and integration failure ac-
counts. Confidence is more likely to fall about words whose
confidence was lower to begin with, which predicts that fac-
tors that slow processing of word n−1 (longer length, lower
predictability) will increase regressions, as in the incomplete
lexical processing account. Like the integration failure ac-
count, however, this account predicts that an unpredictable
word n (since it fits poorly with the prior context) will be
more likely to cause confidence to fall, and the word’s length
should be irrelevant. The prediction for predictability is actu-
ally more subtle, however, since not every word that is unpre-
dictable given a particular context will be more predictable
given some other context. We will return to this point later.

Previous empirical evidence

There is relatively little empirical evidence regarding which
factors between-word regressions are sensitive to in the case
that the regression target word was not skipped. Most of the
existing work (which has not generally controlled for skip-
ping) has looked for effects of linguistic properties of the
targets of regressions. For example, readers were found to
regress more to words of low predictability with no signifi-
cant additional effect of frequency (Rayner, Ashby, Pollatsek,
& Reichle, 2004; Kliegl, Grabner, Rolfs, & Engbert, 2004).
However, these studies failed to control for skipping, and thus
the results could be confounded, if, for example, regressions
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are triggered more towards words that were unintentionally
skipped. The one study that has investigated the effects of
properties of word n−1 on between-word regressions specif-
ically in the case in which word n− 1 wasn’t skipped found
that there were more between-word regressions when word
n− 1 was lower frequency and longer (Vitu & McConkie,
2000). However, Vitu and McConkie did not have predictabil-
ity in their model, and thus could not distinguish between
effects of predictability and frequency. More crucially, how-
ever, their analysis could not determine whether there were
independent effects of frequency and length (since longer
words are also generally less frequent). Thus, while there is
good evidence that some properties of the regression target
are implicated for the case in which the regression target was
not skipped, it is not clear whether it is the length, frequency,
or predictability of the word that attracts regressions.

Evidence about whether properties of word n make regres-
sions more likely is still more scarce. The one reported result
is that Kliegl et al. (2004) found that words that were of lower
frequency and lower predictability were more likely to have
a regressive saccade begin on them. However, to the best of
our understanding Kliegl et al. did not control for whether a
word was fixated at all, and thus these results are confounded
with word skipping, since a word that was skipped could by
definition not have a regression begin on it.

The evidence to date for effects of motor properties on
between-word regressions also comes from Vitu and Mc-
Conkie (2000). They found that, contrary to the overall ten-
dency for regressions to be more likely following longer sac-
cades (Buswell, 1920; Vitu et al., 1998), in the case that word
n−1 was not skipped, regression rates decrease with follow-
ing longer saccades. In addition, Vitu and McConkie reported
an non-significant trend for regressions to decrease as word
n−1 was fixated further from its beginning.

Thus, while Vitu and McConkie’s (2000) results demon-
strate that cases in which word n−1 was not skipped pattern
very differently from cases in which it was, it is presently
far from clear what the determinants of between-word regres-
sions are in this condition. There is evidence that properties of
word n−1 are relevant, but it is unclear which ones, and we
know almost nothing about whether properties of word n are
relevant. As noted above, many of the theories of regressions
make predictions for factors such as the position of the eyes
in word n−1 or word n, yet a reliable effect of such variables
has not been found. As a result, all five classes of theories
mentioned above are still quite tenable explanations for mak-
ing a regression to an unskipped word. Finally, as pointed out
by Vitu and McConkie, it is important to realize that many
of these factors are highly correlated with one another (for
example, the landing position within a word and its length
and frequency), and thus strong evidence that a variable is
relevant for regressions can only be made using a model con-
trolling for effects of correlated factors. Thus, the goal of the
analysis reported in this paper was to simultaneously and sys-
tematically test for effects of a range of variables – including

properties of words n and n− 1 as well as motor variables –
on the rate of between-word regressions in cases in which the
regression target had not been skipped.

Method
Corpus and dataset
In this analysis we modeled the rate of between-word re-
gressions in a large corpus of eye movements in reading,
the Dundee corpus (Kennedy & Pynte, 2005). This corpus
is comprised of the eye movement record of 10 individuals
each reading 50,000 words of British newspaper editorials.
In order to have a more controlled dataset, we focus only on
predicting regressions from word n to the previous word n−1
(which account for about 70% of between-word regressions
in our dataset), so that no other words intervene, and (for rea-
sons mentioned above) only in the case that word n− 1 was
not initially skipped. Specifically, we predict whether each
saccade that originated on some word n was a regression or
not, in the case that (a) the previous saccade originated on
word n− 1, (b) neither words n nor n− 1 were previously
fixated, (c) no word beyond n was previously fixated (i.e.,
first pass reading), (d) neither the previous fixation (on word
n− 1) nor the next fixation following the saccade in ques-
tion were the first or last on a line nor detected as a blink,
and (e) the saccade was not a regression going back further
than word n− 1. Each saccade meeting these criteria was
thus categorized as a regression if it went to word n−1, or a
non-regression if was a refixation of word n or a progressive
between-word saccade. Finally, we excluded cases in which
words n or n−1 were not in the British National Corpus (see
below), had punctuation (including all non-alphabetic char-
acters), or were the first or last words in a line, as well as any
case in which the fixation on word n or n−1 had been on the
space preceding the word. This resulted in a dataset of 33569
saccades, of which 1362 or 4% were regressions.3

Analysis
We fit a generalized linear mixed-effects regression with a
logit link function (Pinheiro & Bates, 2000; Agresti, 2002)
to the data using the lme4 package (Bates & Maechler,
2010). The fixed effects in the model included the factors
discussed above: properties of words n and n− 1 (their log-
transformed frequency, predictability, and length) as well as
motor properties (the log-transformed length of the previ-
ous saccade and the landing positions on both words).4 In
addition, the model included fixed effects for the length of

3This is lower than the overall rate of 5-10% mentioned previ-
ously because of the exclusion of between-word regressions going
back further than word n−1.

4The length of word n−1, the landing positions on both words,
and the saccade length form a linearly dependent set such that the
fourth is completely determined given the values of the other three,
and thus including these four variables in a single model directly
would be impossible. In our case, this is not a problem because three
of the four are log-transformed, removing the linear dependence.
The fact that multi-collinearity still exists between them, however,
means that the estimates of their effects may be conservative.
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Figure 1: Marginal effects of length, frequency, and predictability of words n and n− 1 on proportion of regressions to word
n−1, shown for the middle 95% of the range of each variable. Proportion of regressions was estimated using Gaussian kernel
regression with standard deviation equal to 1/15th of this range. The 95% confidence intervals are hierarchically bootstrapped
from 1000 dataset replicates (Efron & Tibshirani, 1993).

the fixations on both words and random intercepts, but not
random slopes, for each participant. (Models including ran-
dom slopes for the nine predictors of interest failed to con-
verge.) Frequency and predictability were estimated by uni-
gram and trigram language models trained on the British Na-
tional Corpus, smoothed with modified Kneser-Ney smooth-
ing (Chen & Goodman, 1998). Because coefficient estimates
in models without random slopes for participants can be
anti-conservative for datasets in which there is real between-
participant variability in effect sizes, we performed statistical
tests by bootstrapping instead of using the standard normal-
theory statistics (Efron & Tibshirani, 1993).5 Specifically, we
obtained p-values and 95% confidence intervals for each co-
efficient from 2500 replicates of hierarchical bootstrapping,
clustered by participant (Davison & Hinkley, 1997).6

Results
The marginal effects of the properties of words n and n− 1
are plotted in Figure 1. The results of the regression reveal
significant effects of all three properties of word n−1: regres-
sions were more frequent when it was longer, more frequent,
and less predictable (ps < .0008). Regressions also increased

5Bootstrapping in this case also avoids the potential problems
that normal-theory statistics are not completely valid when using the
Laplace approximation to the model likelihood surface and that the
Wald test becomes conservative when the data are very near to 0 or
1, as is the case for our dataset.

6We denote by p < .0008 cases in which the estimate of a coef-
ficient in all bootstrap replicates is on the same side of zero, since if
a single replicate had been on the other side of zero, the probability
would be one half of 1/2500, or .0008.

when word n was less predictable (p < .0008), but were not
sensitive to its length or frequency (ps > .3). Finally, regres-
sions were less likely as the length of the previous saccade
increased (p < .02) and as the landing position on word n−1
was further from the beginning (p < .01). The relative contri-
butions of each of these factors to the likelihood of a regres-
sion in the full model is visualized in Figure 2.

Additional analysis
Prior to discussing the implications of these results for the
theories under discussion, we note that having frequency and
predictability effects in opposite directions for word n− 1
(i.e., increased regressions for less predictable but more fre-
quent words) is not an obvious prediction of any theory. The
graphs in Figure 1, however, show that the marginal effects of
frequency and predictability for both words are in the same
direction (increased regressions for less predictable and less
frequent words) when not both in the model together. This
pattern appears in the marginal effects because of the high
correlations between frequency and predictability (r = .89
and r = .73 for words n−1 and n). Despite this, the regression
model reports highly significant effects of the predictability
and frequency of word n−1 in opposite directions.

This pattern of opposite effects of frequency and pre-
dictability may be well understood in terms of the confidence
falling account. As noted above, this account predicts that
not every unpredictable word should cause more regressions,
but only unpredictable words which are more predictable
for alternate possible contexts, since they cause confidence
about the true context to fall. Thus, one rough measure of
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Figure 2: Estimates and 95% confidence intervals of the pre-
dictor coefficients, standardized to be on the same scale to
visualize the relative contributions of each factor to the full
model. (Standardization was performed by multiplying the
actual coefficient by the standard deviation of the predictor.)

the amount by which a word causes a reader’s confidence
to change about the preceding context (denoted ∆c) is the
change in log probability of the true context after seeing the
word, relative to the context’s overall likelihood:

∆c = log p(c|w)− log p(c)

Thus, we analyzed a new model in which we replaced pre-
dictability for both words with this measure of the change
in confidence about the prior context given each word. It
turns out, in fact, that this measure is equivalent to the dif-
ference between the word’s log-transformed frequency and
predictability

∆c = log p(c|w)− log p(c) = log
p(w|c)p(c)

p(w)
− log p(c)

= log p(w|c)− log p(w)

and because of this relationship, the new model is simply a
reparameterization of the former model (i.e., the fit and pre-
dictions will be identical), in which the coefficient for ∆c is
identical to the previous coefficient for predictability and the
new coefficient for the additional effect of frequency is the
sum of the previous coefficients for predictability and fre-
quency, as can be seen in the following equation (where f
and p denote frequency and predictability):

β1 p+β2 f = β1(p− f )+(β1 +β2) f

(All other coefficient values will remain the same.)
In this new model, the effect of ∆c is such that there are

significantly more regressions the further confidence falls on
either word (ps < .0008).7 There are no additional effects of
the frequency of either word (ps > .1), providing support to
the notion that confidence falling may be a useful way to un-
derstand the opposite effects of predictability and frequency.

Discussion
We discuss the implications of this pattern of results for each
of the five classes of theories separately.

Corrective It seems unlikely that corrective saccades are
driving any effects for this dataset because of the directional-
ity of the effect of landing position on word n− 1. As men-
tioned above, landing positions closer to the beginning of
word n−1 should result in more attempted refixations of the
word’s end, and thus more unintentional fixations on the early
part of word n. Furthermore, of course, the corrective account
could not predict the effect of the predictability of word n.

Oculomotor strategy It is similarly unclear how an ocu-
lomotor strategy could account for these findings, since the
linguistic properties of both words have strong effects. Also,
we note that the particular strategy of making regressions af-
ter especially long saccades directly conflicts with our data.

Incomplete lexical processing The incomplete lexical pro-
cessing account correctly predicts the effects in our data of
predictability and length of word n−1. As noted above, how-
ever, these accounts predict either that regressions should not
be sensitive to properties of word n (serial models) or that
they should increase when word n is easier (gradient mod-
els). Thus, the finding that regressions increase when word n
is less predictable poses a problem for these accounts.

Integration failure The integration failure account is sup-
ported by the fact that more regressions are made as either
word becomes less predictable. The fact that the length of
word n− 1 also had a significant effect is problematic. One
possible explanation for this is that some portion of the effect
we obtained may be an artifact of the way we constructed our
dataset. Specifically, by considering only between-word re-
gressions made to word n− 1, we may have excluded more
regressions which targeted word n−1 but which landed on a
word prior to n−1 in the case that word n−1 was shorter.8

Confidence falling The confidence falling account cor-
rectly predicts the effects of the predictability of words n and
n−1 as well as the effect of the length of word n−1. As re-
vealed by the additional analysis including ∆c, the pattern of

7This is of course necessarily the case, since ∆c has the same
coefficient as predictability had previously.

8To investigate this possibility, we performed a similar analy-
sis predicting all intra-line between-word regressions, and not only
those to word n− 1. The results showed the effect of the length of
word n−1 to be marginal (p = .07), supporting the notion that our
censored dataset may be responsible for a large part of the effect, but
still hinting that the relationship may exist apart from censoring.
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predictability and frequency effects that was found can be in-
terpreted as some evidence that the amount by which a word
makes confidence fall is a key determinant in whether a reader
will make a regressive saccade.

Conclusion
We distinguished five classes of models of regressions to pre-
viously fixated words, and tested these accounts by perform-
ing a systematic statistical analysis of such regressions in a
large eye movement corpus. The results of our analysis pro-
vide some of the clearest evidence to date about the variables
contributing to between-word regressions. The analysis re-
veals strong effects of linguistic properties, and thus are hard
to accommodate in purely corrective or oculomotor strategy
accounts. In addition, the fact that there are more regressions
to the previous word when the current word is less predictable
is counter to the predictions of incomplete lexical processing
models. Both integration failure and confidence falling ac-
counts are consistent with the present data, but the facts that
(1) the length of the previous word appears to matter and that
(2) the opposing effects of frequency and predictability can be
understood as falling confidence, suggest that the confidence
falling account may find more support in the present data.

More generally, our results demonstrate that obtaining
more detailed knowledge of the factors contributing to
between-word regressions can distinguish between models of
eye movements in reading which otherwise make very simi-
lar predictions for progressive saccades. Specifically, SWIFT
(Engbert et al., 2005) makes regressions via the incomplete
lexical processing account, which appears to make the wrong
predictions for our results, while E-Z Reader 10 (Reichle et
al., 2009) makes use of integration failures, which is consis-
tent with our data. Finally, we note that the empirical success
of the confidence falling account, which follows from a very
different class of reading model than the others considered,
suggests that gaining a better understanding of regressions
may have important consequences for our understanding of
eye movement control in reading in general.
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