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Abstract

While there exist a range of sophisticated models of eye move-
ments in reading, it remains an open question to what ex-
tent human eye movement behavior during reading is adaptive
given the demands of the task. In this paper, we help to an-
swer this question by presenting a model of reading that cor-
rects two problems with a rational model of the task, Mr. Chips
(Legge, Klitz, & Tjan, 1997). We show that the resulting model
is closer to human performance across two measures, support-
ing the idea that many components of eye movement behavior
in reading can be well understood as a rational response to the
demands of the task.

Keywords: computational modeling; rational analysis; eye
movements; reading

Introduction
Choosing when and where to move one’s eyes during reading
is one of the most complicated skilled tasks humans perform.
While there are a number of computational models achiev-
ing good numerical fits on eye movement data from read-
ing (e.g., Reichle, Pollatsek, & Rayner, 2006; Engbert, Nuth-
mann, Richter, & Kliegl, 2005), it is still unclear to what ex-
tent the complex behaviors observed are rational responses
to the demands of the problem itself and to what extent they
arise from the idiosyncrasies and restrictions of human cog-
nition. Legge, Klitz, and Tjan (1997) started to answer this
question with Mr. Chips, a model which predicts eye move-
ments that approximate an optimal solution to one formaliza-
tion of the task of reading. Legge et al. pointed out that their
model’s behavior exhibits a number of patterns also found in
human reading, providing evidence for understanding those
behaviors as rational responses to the task. Despite its suc-
cess, however, the Mr. Chips model oversimplifies two im-
portant aspects of the problem of reading, and also has empir-
ical problems accounting for human reading behavior in two
domains. In this paper, we propose a model extending Mr.
Chips that removes these two oversimplifications to make the
model’s task more similar to that faced by humans. We show
that the resulting model also remedies the two empirical defi-
ciencies in Mr. Chips, further supporting the notion that many
aspects of human reading behavior can be explained as ratio-
nal responses to the demands of reading.

The essentials of the problem of making eye movements
in reading are determining how long to leave the eyes in
a given spot and – when a reader decides to move them –
where to go. These decisions are made sequentially to pro-
duce the alternating sequence of fixations (relatively stable
periods) and saccades (movements) that characterizes the eye

movement record. The past 30 years have seen a prolifera-
tion of experimental studies investigating this topic, which
have answered a number of low-level questions such as the
nature of the perceptual span and constraints on saccade la-
tency as well as questions concerning the relationship be-
tween eye movements and higher-level cognitive processes
such as the effect of word frequency and predictability (see
Rayner, 1998 for an overview). Sophisticated computational
models have been developed based on these findings, the
most well-known of which are E-Z Reader (Reichle, Pollat-
sek, Fisher, & Rayner, 1998; Reichle et al., 2006) and SWIFT
(Engbert et al., 2005). Both E-Z Reader and SWIFT assume
that lexical processing (or word recognition) is the primary
driver for eye-movements in reading, and both have enjoyed
considerable success, in large part because they achieve very
good fits to eye movement data from reading in a number of
contexts, using a relatively small number of parameters. De-
spite their empirical strength, they fail to illuminate the rea-
son why human reading behavior looks the way it does in one
crucial respect – the extent to which it resembles a rational
response to the problem posed by reading.

One leading approach for answering such questions is that
of rational analysis (Anderson, 1990), a paradigm in which
one formalizes the goals and cognitive and physical con-
straints relevant to a problem and develops a model of optimal
behavior under those condition. To the extent that the behav-
ior of the model is similar to that of humans, this provides
a new way of understanding the reason why human behavior
looks the way it does – it is the best way to solve the problem.
The relationship between rational models and models such as
E-Z Reader and SWIFT is well understood in terms of Marr’s
(1982) levels of analysis. Marr distinguishes three levels of
mutually-constraining analyses that can be performed on cog-
nitive processes: the computational level, which specifies the
nature of the computation being performed, the information
relevant to solving it, and the way to combine that information
to solve it; the algorithmic level, which specifies the represen-
tation for the input and output and the algorithm by which the
agent goes about solving it; and the implementational level,
which specifies how the representations and algorithm are re-
alized neurally. In these terms, rational models generally pro-
vide answers at the computational level of analysis. Models
such as E-Z Reader and SWIFT help us to understand the al-
gorithmic level, but cannot answer questions about the extent
to which human reading is rational.

Legge et al. (1997) presented a computational level analy-
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sis of reading, formalizing the central task – as in E-Z Reader
and SWIFT – as one of serial word identification. They pre-
sented the Mr. Chips model, which approximates optimal be-
havior under their formalization, and shows a number of sim-
ilarities with human reading behavior. Here, we point out two
problems with their model of reading. First, their model takes
the task to be to identify a string of independent words rather
than a coherent sequence, i.e., their model does not make use
of linguistic context, which experimental work suggests that
humans use (McDonald & Shillcock, 2003). Second, it as-
sumes that the task of the reader is to identify each word with
complete certainty, yet recent evidence suggests that readers
maintain uncertainty as to the identities of previous words
(Levy, Bicknell, Slattery, & Rayner, 2009). In addition to
these problems in their model’s design, the model also makes
incorrect predictions for two relatively basic measures of eye
movements in reading: saccade sizes and word skipping rates.
The model we present fixes these two design problems by
including linguistic context and using a flexible word iden-
tification criterion, and results in improved performance in
accounting for human saccade sizes and word skipping rates.

The plan of the remainder of the paper is as follows. First,
we describe the details of the Mr. Chips model, along with its
empirical successes and failures. Next, we describe our exten-
sion of the Mr. Chips model, and finally present two experi-
ments showing that fixing each of the two design problems
results in performance more like humans.

Mr. Chips
The task of reading in the Mr. Chips model (Legge et al.,
1997) is one of planning saccades for serial word identifica-
tion. That is, the model works by gathering visual input from
the current fixation location and using that visual input to plan
a saccade. That saccade is then executed (with some motor er-
ror), visual input is obtained from the new location, and the
cycle repeats. When one word is identified with 100% confi-
dence, identification of the next word begins. Thus, the only
decision the model makes is where to move the eyes next.
There are just three sources of information relevant to mak-
ing that decision. Visual input and knowledge of the language
are combined to identify words, and knowledge of the mo-
tor error in the system assists in the planning problem. Since
it forms the basis for our model, we describe the Mr. Chips
model here in detail, discussing in turn each of the sources of
information and then the algorithm by which the model com-
bines them to choose saccades. To match the description of
our model later, we use a notation a bit different than Legge
et al. to describe Mr. Chips.

Information sources
Visual input The visual input in Mr. Chips consists of the
veridical identities of the nine characters centered on the fix-
ated character (representing the visual fovea), as well as par-
tial information about the four characters on either side of
this range (representing the visual periphery). This partial in-
formation is simply word boundary information, indicating

whether each character is part of a word or not (e.g., a space).
The number of characters in each of these ranges was chosen
to be representative of the perceptual span for readers of En-
glish, known to be around 17–19 characters (Rayner, 1998).

Language knowledge The model’s knowledge of language
consists of simply word frequency information, i.e., a uni-
gram model. Note that this means the model cannot make use
of the linguistic context to aid in word identification.

Motor error The final component of the model’s knowl-
edge of the task is that of motor error, the distribution of a
saccade’s landing position given the intended target position
the model chooses. In Mr. Chips, the ith landing position `i is
normally distributed around the ith intended target position ti
with a standard deviation of 30% of the intended distance1

`i ∼ N
(
ti,(0.3 · |ti− `i−1|)2) . (1)

Model
We now give the algorithm that the Mr. Chips model uses to
select the intended target for the next saccade. First, note that
given the visual input obtained by the model from the first to
the ith fixation I i

1 and the word frequency information, the
model can calculate the posterior probability of any possible
identity of a word w that is consistent with the visual input by
normalizing its probability from the language model by the
total probability of all visually consistent identities,

p(w|I i
1) =

χ(I i
1,w)p(w)

∑
w′

χ(I i
1,w
′)p(w′)

(2)

where χ(I,w) is an indicator function with a value of 1 if w is
consistent with the visual input I and 0 otherwise, and p(w)
is the probability of w under the language model.

To identify a given word, the model selects the saccade tar-
get t̂i that, on average, will minimize the entropy in this dis-
tribution, i.e., that is expected to give the most information
about the word’s identity

t̂i = argmin
ti

E
[
H(w|I i

1)|ti,I i−1
1

]
(3)

= argmin
ti

∑
Ii

H(w|I i
1)p(Ii|ti,I i−1

1 ). (4)

That is, the minimum can be found by calculating the condi-
tional entropy produced by each possible new input sequence
and weighting those entropies by the probability of getting
that input sequence given a choice of target location. In infor-
mation theory (Cover & Thomas, 2006), conditional entropy
is standardly defined as

H(w|I i
1) =−∑

w
p(w|I i

1) log p(w|I i
1). (5)

1In the terminology of the literature, this model has only ‘ran-
dom’ motor error (variance) and not ‘systematic’ motor error (bias),
under the assumption that an optimal model would just compensate
for any systematic problems with its motor control system.
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The second term in the formula for t̂i, the probability of a par-
ticular visual input given a target location and previous input,
is given by marginalizing over possible landing positions

p(Ii|ti,I i−1
1 ) = ∑

`i

p(`i|ti)p(Ii|`i,I i−1
1 ) (6)

and then possible words

p(Ii|`i,I i−1
1 ) = ∑

w
p(Ii|`i,w)p(w|I i−1

1 ). (7)

Putting these together, we have that t̂i is selected as

argmin
ti

∑
Ii

H(w|I i
1)∑

`i

p(`i|ti)∑
w

p(Ii|`i,w)p(w|I i−1
1 ). (8)

That is, we can calculate the expected conditional entropy for
each possible value of ti by summing over all possible inputs,
whose probabilities are given by summing over all possible
identities of the word and landing positions. To see that this
sum ranges over a finite number of values, note first that there
are only a finite number of possible word identities w to sum
over. Given the possible word identities, there are only a finite
number of landing positions `i for which the visual informa-
tion could possibly help in identifying the word – any landing
positions outside this range will not produce any reduction in
entropy. Since there is a single visual input Ii for each combi-
nation of landing position and word identity, this summation
is over a finite range. To ensure finiteness of the search to find
the value of ti that produces the minimum entropy, Mr. Chips
only searches those within the range of the `i that could give
some information about the current word. In case of ties, the
model selects the furthest position to the right.

Comparing Mr. Chips to humans
Legge, Hooven, Klitz, Mansfield, and Tjan (2002) present a
number of ways in which the behavior of the Mr. Chips model
is similar to human reading behavior. The model produces
behavior that replicates a number of human findings in word
skipping rates, initial fixation locations on words, and refix-
ation rates. The result for word skipping rates – where word
skipping for the model is defined as never having any of the
word’s characters as the centrally fixated character – is that
longer words are skipped less often, and the slope of the re-
lationship between word length and skipping rate has a very
similar slope for the model as for humans. For initial word
fixation locations, or landing positions, the model replicates
the human behavior of most commonly landing at or just to
the left of the word’s center, and also the fact that the land-
ing position shifts toward the left as the launch site of the
saccade shifts further to the left. For refixations, the model
mimics human behavior in showing the proportion of refix-
ations to increase with word length, and in addition, within
a given word length class, the model refixates low frequency
words a higher proportion of the time than high frequency
ones. Finally, as a function of landing position, refixations are
the least likely for the model, as for humans, when the initial
landing position is near the center of the word.

As noted above, however, it is also the case that the model
exhibits some behavior very different from that of human
readers. For example, the model’s average saccade length is
just 6.3 characters, noticeably lower than that for humans,
who are around 8 (Rayner, 1998). Second, although, as men-
tioned, the slope of the relationship between word skipping
rates and word length has a similar slope for the model as for
humans, the model skips far fewer words than humans do.2 In
short, judging by these two measures, a rational model that is
using all the information available and expensively calculat-
ing the best saccades to reduce entropy in word identification
appears to be reading slower than humans do.

In rational analysis, the fact that an ‘optimal’ model is per-
forming worse than humans (here in terms of speed) suggests
two likely problems: (a) the model is not making use of all
the information that humans use or (b) the model’s computa-
tional goal is not the same as the one that humans are solving.
As suggested above, we argue that in this case both reasons
are partially to blame. Since it has only word frequency infor-
mation as its model of language, the Mr. Chips model cannot
make use of linguistic context to aid in word identification,
while there is evidence that humans make heavy use of it.
The model also assumes that the goal is to identify each word
with 100% confidence, but experiments suggest that humans
do not. In the next section, we modify the Mr. Chips model
to include some information about linguistic context and a
flexible identification confidence criterion.

Extending Mr. Chips
The model described here generalizes the Mr. Chips model in
three ways. First, it can use an arbitrary language model as its
source of language knowledge, and thus make use of informa-
tion about the linguistic context in word identification, solv-
ing the first problem with Mr. Chips we pointed out above.
Second, it can move on to the next word after it achieves a
flexible level of certainty about the current word’s identity,
solving the second problem. Finally, our model also allows
for the standard deviation of the motor error to be an arbi-
trary linear function of the intended distance, allowing us to
incorporate a more realistic motor error function. We describe
the model in the same format as we described the Mr. Chips
model, first describing its sources of information, and then its
algorithm for selecting saccade targets.

Information sources
Visual input The visual input component is unchanged
from the original Mr. Chips model.

Language knowledge The model’s knowledge of language
is represented by an arbitrary language model that can gen-
erate string prefix probabilities, e.g., an n-gram model or a

2The graph given in Legge et al. (2002) appears to show remark-
ably similar word skipping rates between the model and humans, but
that graph is from the sole simulation in the paper for which Legge
et al. assumed no motor error. When motor error is included, the
skipping rates are significantly lower for the model than for humans,
as shown in Figure 1.
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probabilistic context-free grammar (PCFG). Such models can
capture the between-word dependencies needed for the model
to make use of linguistic context in word identification.

Motor error In our model as in Mr. Chips, the ith landing
position is normally distributed around the ith target location,
except that the standard deviation is an arbitrary linear func-
tion of the intended distance

`i ∼ N
(
ti,(β0 +β1|ti− `i−1|)2) (9)

allowing for the use of a more realistic motor error function.
Experiments in this paper use the one from SWIFT (Engbert
et al., 2005; β0 = 0.87, β1 = 0.084).

Algorithm
As in the original Mr. Chips model, at any given point in
time, the model is working to identify one word. However,
this revised model considers the goal of identifying this word
achieved when the marginal probability of some identity for
the word given the visual input exceeds a predefined thresh-
old probability α . This flexibility requires the algorithm to be
substantially modified to allow for uncertainty about previous
word identities and the use of linguistic context. We denote
the sequence of words as W , where the first word is W1.

Because every word in Mr. Chips was identified with com-
plete certainty, the model always knew precisely at which po-
sition the next word to be identified began, and its goal was
always to identify this next word. Now that the model has
uncertainty about the identities of previous words, however,
the goal must be changed. In the revised model, the reader is
always focused on some character position n, and its goal is
to identify whether some word W(n) begins at that position,
and if so, which one, with confidence exceeding α . Once the
model has achieved this goal, it then chooses a new charac-
ter position n via a procedure whose description we leave for
later. To be explicit about this goal, we slightly update our
original equation for choosing t̂i, swapping w out for W(n),

t̂i = argmin
ti

∑
Ii

H(W(n)|I i
1)p(Ii|ti,I i−1

1 ) (10)

where the conditional entropy is calculated assuming that
some word does in fact begin at position n. The fact that
our language model can now make use of linguistic context
means that the equation for finding the probability of the cur-
rent word given some visual input (Equation 2) must also be
changed to marginalize over identities of the preceding words

p(W(n)|I i
1) = ∑

W (n)−1
1

p(W(n)|I i
1,W

(n)−1
1 )p(W (n)−1

1 |I i
1). (11)

These probabilities of strings consistent with the visual input
are again given probabilities according to their probability in
the language model normalized by the probability of all other
consistent strings (cf. Equation 2)

p(W |I i
1) =

χ(I i
1,W )p(W )

∑
W

χ(I i
1,W )p(W )

. (12)

The second term in Equation 10 is expanded as in Mr. Chips
by marginalizing over possible landing positions

p(Ii|ti,I i−1
1 ) = ∑

`i

p(`i|ti)p(Ii|`i,I i−1
1 ), (13)

but now to incorporate information about the linguistic con-
text, we must next marginalize over possible full sentence
strings instead of possible words

p(Ii|`i,I i−1
1 ) = ∑

W
p(Ii|`i,W )p(W |I i−1

1 ). (14)

If we make the simplifying assumption that the model does
not consider possible future input about words that are after
W(n), this sum can again be finitely computed for a given ti by
a relatively straightforward dynamic programming scheme.
The range of possible values of ti to search through also grows
relative to Mr. Chips, because the model must consider not
only any position that can give visual input about W(n) itself,
but also positions that can give information about any position
of uncertainty, since that may indirectly help to identify W(n)
through linguistic context. In the case where the language
model is an n-gram model, it can be shown that the mini-
mum value of ti that can contribute toward helping to identify
W(n) only extends back to the first uncertain character after
the most recent string of n−1 words for which the model has
no residual uncertainty. Having established the method of se-
lecting a saccade to identify W(n), we next give a description
of the full algorithm of the model, including how to select n.

The model always begins reading by focusing on identi-
fying W(0). Once the probability of some identity for W(0) is
greater than α , all the possible identities of W(0) that have
not been ruled out by visual input are combined into a set of
possible ‘prefixes’. Each of these prefixes has a conditional
probability given the visual input, and each one predicts that
the next word in the sentence begins at a particular position
(i.e., two characters past the end of that string). Thus, the set
of prefixes specify a probability distribution over the possible
positions at which the next word begins. The model simply
selects the most likely such position as the next character po-
sition n to focus on identifying W(n).

Now in the general case, the system has a set of prefixes
together with their conditional probabilities given the visual
input, and a position n, which it is trying to identity the word
beginning at. It plans and executes saccades according to the
formula for t̂i, and after getting each new piece of visual infor-
mation, the model rules out not only possible candidates for
the current word, but also possible prefix strings, and renor-
malizes both distributions. The model’s attempt to identify
W(n) can now end in one of two ways: (a) the model’s confi-
dence in some identity of W(n) exceeds the confidence thresh-
old α or (b) the model eliminates all possible candidates for
W(n) and thus knows that no word begins at that position. In
the former case, the model creates all possible concatenations
of prefixes ending 2 characters prior to W(n) (i.e., prefixes
whose next word begins at n) with all the possible identities of
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W(n), and adds these new strings to the set of prefixes. Then,
in both cases, it removes those original prefixes whose next
word begins at n from the set. Note that this update of the
list of prefixes leaves unaffected prefixes that are incompati-
ble with a word beginning at position n, but still compatible
with visual input. Finally, since the set of prefixes again gives
a distribution over the starting position of the next word, the
model selects the most likely new n and the cycle continues.

Experiment 1
With our new model in place, we can now describe the two
experiments we performed to test our hypotheses about the
reasons for the Mr. Chips model’s performance being below
that of humans in terms of average saccade length and word
skipping rates. In Experiment 1, we test the hypothesis that
one of the reasons that its performance was below humans is
due to its assumption that the goal of the reader is to identify
each word with 100% confidence. Specifically, we compare
the performance of our model using a 100% criterion vs. a
90% criterion. The former is equivalent to Mr. Chips except
for the more realistic motor error function, so for ease of ex-
position, we will refer to it simply as Mr. Chips.

Methods
Confidence criterion We set α = 1.0 to replicate Mr.
Chips, and α = 0.9 for the model using a slightly lower con-
fidence criterion to trigger moving on to the next word.

Language model Both models used a unigram language
model, smoothed with Kneser-Ney under default parameters
(Chen & Goodman, 1998; equivalent to add-δ smoothing for
a unigram model). As in Legge et al. (2002), the models were
trained on a 280,000 word corpus of Grimms’ Fairy Tales,
containing 7503 unique words. This corpus was normalized
by Legge et al. to convert all letters to lowercase, remove all
punctuation other than apostrophes, convert all numbers to
their alphabetic equivalents, and remove all gibberish words.

Text Following Legge et al. (2002), we tested the models by
simulating the reading of 40,000 words of text generated from
the language model, ensuring that the reading models had a
normative probability model for the text they were reading.

Results
The results for mean saccade size for both models are given
in the top two rows of Table 1. As shown in the table, using a
criterion of 90% increases the average size of saccades, bring-
ing it a bit closer to the human estimate of about 8 characters.
The results for word skipping rates for the two models are
plotted as the lower two lines in Figure 1. The results show a
modest increase in word skipping rates across almost all word
lengths for the new model with a lower criterion, bringing it
closer to human performance.

Discussion
Although the gain is modest, the results of Experiment 1
show that changing the goal of the model to one more sim-

Table 1: Mean saccade size (and std. error) for each model
Model Mean saccade size
Mr. Chips 6.7 (.012)
Without context, 90% criterion 7.1 (.013)
With context, 90% criterion 7.5 (.014)
Humans ≈ 8 (Rayner, 1998)
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Figure 1: Proportion of words skipped by word length for
each model. In all cases, the standard error of the mean for the
Normal approximation to the Binomial distribution is smaller
than the symbols. The human data is from Rayner and Mc-
Conkie (1976) and has no standard errors.

ilar to that of human readers, i.e., relaxing the assumption
that words need to be identified with 100% certainty, alters
the performance of the model across two measures to look
more like human performance. Such a result adds some sup-
port to the idea that the relevant human behavior is well un-
derstood as a rational response to the demands of the task.
It is also worth pointing out that the resulting model main-
tains and uses uncertainty about previous input, something
for which most models of sentence processing do not allow.

Experiment 2
In Experiment 2, we test the effect of allowing the model to
use the linguistic context as another source of information
for word identification. Specifically, we compare the previous
two models to one that includes a 90% confidence criterion as
well as a simple bigram model of linguistic context.

Methods
The methods are the same as Experiment 1, except that the
new model uses a bigram language model, again smoothed
with Kneser-Ney under default parameters.

Results
The results for average saccade length for the new model is
given in the third row of Table 1. As shown in the table, giving
the model information about linguistic structure increases the
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average size of saccades a bit more, bringing it still closer to
the human estimate of 8 characters.

The results for word skipping rates for the new model is
plotted as the second line in Figure 1. This new model gives
an even larger increase in word skipping rates across all word
lengths, on top of the increase seen previously, bringing it
more in line with human results. Skipping rates are 30%
closer to humans than the previous 90% criterion model on
average, and for some word lengths are up to 75% closer.

Discussion
The results of this experiment show a case in which making
more of the information that is available to a human reader
also available to a rational model causes its behavior to more
closely approximate human performance. Together with the
previous result, this supports the notion that some aspects
of reading are well understood as a rational response to the
structure of the problem.

General Discussion
In this paper, we presented a new rational model of reading
based on Mr. Chips, but which fixes two problems with it
– it uses information about linguistic context in word iden-
tification and a flexible identification criterion. Experiment
1 showed that the model’s performance looks more like hu-
mans’ when the model’s goal is shifted to one more like
that of humans, 90% confidence in each word. Experiment
2 showed the model’s behavior looks even more like humans’
when the model can use information that is used by humans:
linguistic context. Taken together, these results suggest that
many facets of human reading behavior can be well explained
as resulting from a rational solution to the problem of reading.
This model adds to the growing literature on rational process
models, exploring the extent to which human performance
can be viewed as rational agents across a wide variety of com-
plex behaviors, such as multiple object tracking (Vul, Frank,
Alvarez, & Tenenbaum, 2009) and online change detection
(Brown & Steyvers, 2009).

It is the case, however, that many aspects of human read-
ing behavior cannot in principle be explained by a model
such as those described in this paper. This is because much
of what we know about human reading behavior is about fix-
ation durations, and these models have no notion of duration.
They cannot have a notion of duration because visual input is
veridical categorical information about a range of characters,
so that there is no reason to stay at a given location for more
than one timestep. Reichle and Laurent (2006) overcome this
problem by making the simplifying assumption that required
processing times on words are a function only of their length.

We believe, however, that the way forward for rational
models of reading is to incorporate a model of noisy visual
input, so that the model can make decisions about fixation
durations to get more or less visual information. In other
work (Bicknell & Levy, 2010), we explore the use of such
models to answer questions that are impossible to ask with
non-rational models of reading such as when and why should

between-word regressions be made, and how should reading
behavior change as accuracy is valued more or less relative to
speed.
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