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In the beginning, there was history.  If scholars of International Relations (henceforth IR) wanted 
to know why something happened, they consulted history for patterns.  Under what conditions 
did that something happen?  What if conditions had been different?  What if choices had been 
different?  What if timing had been different? 
 
Then, spurred by a combination of factors, some IR scholars discovered that the field of statistics 
offered new ways to explore history.  By compiling history into databases, wrangling it into 
numerical matrices, and applying mathematical models, these scholars abstracted away from the 
fine details to see broad patterns that are difficult for even the most systematic historian to pick 
out.  Historical and statistical modes of inquiry seem entirely different; the data rearranged in 
unfamiliar ways, the skill sets distinct.  But the logic of inference can be surprisingly similar, if 
the language barrier between traditions can be crossed.   
 
Matching is a family of quantitative procedures for creating and analyzing a sample of cases that 
differ on one key factor (called a “treatment”) and are “matched” to be similar on others.  It puts 
historical counterfactual comparison at the center of statistical analysis, providing one “border 
crossing” between the historical and statistical traditions in IR. 
 
Matching emerges naturally as the statistical analog to the qualitative tradition of paired case 
comparison (Tarrow 2010).  In a qualitative study of a puzzling phenomenon, our first move 
might be to identify a positive case: one in which the outcome of interest happens.  We might 
then try to infer why the outcome happened from the historical record by considering possible 
counterfactual histories: if various factors had been different, would the outcome have been 
different also?   
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Relying on subjective intuition about counterfactual histories for a single case can lead us to 
merely confirm our prior assumptions.  Comparison cases provide more objective information 
for inferring how the positive case might have turned out if some factor had been different.  
Following the logic of Mill's methods of difference, we might seek a comparison case that is 
similar to our positive case, but differs in the factor that we suspect matters most.  If our cases are 
otherwise identical and our theories are deterministic, then this comparison can tell us all we 
need to know.  Any difference between the case outcomes is the causal effect of the differing 
factor.  However, our theories are not usually deterministic and our paired cases rarely match in 
every respect so the difference in outcomes could be due to something else.  To be more certain 
that the factor explains the outcome, we might do another comparison, and another, to see if they 
support the same conclusion.  Soon, we have too many pairs of cases to easily summarize 
qualitatively, so we might give a numerical summary: perhaps the average difference in outcomes 
across pairs of cases.  We have arrived at matching.  Typically, an analyst creates a matched 
sample by trimming down a quantitative data set, but a researcher employing the method of 
paired comparison could build the same matched sample “from the ground up,” as I have just 
described.  The power of matching comes from the properties of the sample, not how the analyst 
obtains it. 
 
After constructing a matched sample, an analyst typically estimates the causal effect of treatment 
on the outcome using a regression model. Regression is a method for calculating correlations that 
does not, by itself, necessarily produce credible estimates of causal effects.  Matching is a method 
for selecting cases to use in the regression calculation so that the assumptions necessary to infer 
causation from correlation are more plausible.  Matching is case selection for quantitative 
studies.2 
 
In the mid-2000s, matching burst into IR and Political Science in a series of high-profile 
publications.  To chronicle its dramatic rise, I collected a comprehensive list of articles applying 
matching to IR data the twelve leading IR journals.3  Following the first application by Simmons 
and Hopkins (2005), the number of applications has risen exponentially.  In 2017, a record high 
of 28 articles used matching (see Figure 1), and by mid-2018 there were 20, with the year only 
halfway over (the latest for which I could collect data).  Matching now features in at least ten 
percent of the approximately 200 quantitative IR articles published each year.   

                                         
2 Matching is also useful as a case selection strategy for some qualitative studies.  See Nielsen (2016) for 
explanation and Weeks (2018) for an example.  However, my focus in this chapter is on matching for 
statistical inference. 
3 I consider IR data to include either an international predictor variable, an international outcome variable, 
or both.  I use the TRIP article database (Teaching, Research, and International Policy Project 2017; Maliniak 
et al 2018) to identify IR articles in twelve journals: APSR, AJPS, BJPS, JOP, IO, IS, ISQ, WP, SS, JCR, JPR, 
and EJIR.  Using several methods for searching, I find 124 articles that use matching.  A full list is in the 
online supplemental information.   
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Figure 1: The number of articles per year using statistical matching in the twelve leading IR 
journals. 
 
 
The rise of matching has been controversial.  Proponents tout the benefits for making causal 
inferences with non-experimental data.  Detractors argue that matching is over-hyped as a magic 
bullet for causal inference, and that it offers unscrupulous researchers another tool to “p-hack” 
their way to false discoveries (Arceneaux, Gerber, and Green 2006, Arceneaux, Gerber, and Green 
2010, Miller 2019).  The time-series cross-sectional (TSCS) data sets common in IR are especially 
challenging for matching.  With little guidance from methodologists, researchers have developed 
ad hoc approaches to matching with TSCS data, a fact that is equally troubling for the credibility 
of research findings despite receiving less attention. 
 
The critics are right that matching is not magic.  It is helpful for causal inference, but only with 
strong assumptions.  Existing matching methods do not adequately accommodate the complex 
structure of many IR data sets.  And matching does not stop researchers from p-hacking.  Like 
any other method, it can be misused, oversold, and misunderstood.  But matching is not just hype 
either.  Matching has proven to be a reliably useful method for causal inference with messy, non-
experimental data.  It belongs in the toolbox of IR scholars.   
 
In this chapter, I introduce matching for readers with no prior experience and weigh its merits 
and weaknesses in IR applications using time-series cross-sectional data.  There are already 
several excellent introductions to matching (Ho et al 2007, Sekhon 2009, Stuart 2010), which I aim 
to complement rather than reproduce.  I first introduce the philosophy of causal inference 
underlying matching.  I then explain the mechanics of matching that arise from this philosophy.  
Matching mechanics are not always well-suited to the time-series cross-sectional data structures 
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common in IR, so I discuss the challenges and attempts to surmount them.  I conclude by 
returning briefly to the controversies. 
 
The Philosophy of Matching 
 
Matching rests on a counterfactual approach to causation.  A variable T (for “treatment”) is a 
cause of variable Y if Y would have been different had T been different.  Imagine all possible 
values of Y for a unit i and call these the potential outcomes of unit i.  For simplicity, consider the 
case where T is a binary indicator for whether the event represented by T happened (𝑇𝑇 = 1) or 
not (𝑇𝑇 = 0).  The causal effect of T on Y for unit i is the potential outcome when T is one minus 
the potential outcome when T is zero, denoted 𝑌𝑌𝑖𝑖(𝑇𝑇 = 1) −  𝑌𝑌𝑖𝑖(𝑇𝑇 = 0). 
 
The fundamental problem of causal inference is that for any unit, we cannot observe both 
potential outcomes because we cannot re-run history (Holland 1986).  For any causal inference, 
at least half of the data for our calculation are missing.  Thus, we infer causal effects rather than 
measuring them; we are always guessing about the counterfactual outcome that we would see if 
T were different. 
 
Experimental manipulation is the best way to learn about cause and effect (Bowers and Leavitt, 
this volume).  In an experiment, we randomly assign T to learn whether it causes changes in Y.  
Yet even in an experiment, we cannot observe both potential outcomes for any individual.  To 
impute the missing potential outcomes, most analysts estimate average causal effects over many 
individuals.  With enough units and random assignment of T, we can average Y for the 𝑇𝑇 =
1 group and subtract the average of Y for the 𝑇𝑇 = 0 group to get an unbiased estimate of the 
average treatment effect (abbreviated ATE).  We can write this difference in means estimator as 
𝑌𝑌𝑌𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 −  𝑌𝑌𝑌𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝑐𝑐𝑐𝑐. 
 
Despite efforts to bring experiments into IR (Findley, Nielson, and Sharman 2013), there are many 
situations where randomization is impossible, unethical or both.  We are forced to infer cause and 
effect from an observational study using data observed in the natural world. In observational 
studies, units select their level of treatment or have it assigned to them non-randomly (called 
“selection effects,” “endogeneity,” and “reverse causality”).  This results in imbalance: systematic 
differences between treated and control groups. If selection into treatment is correlated with 
potential outcomes of Y, then the average control unit provides a biased estimate of the missing 
potential outcome for the average treated unit, making the estimator 𝑌𝑌𝑌𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 −  𝑌𝑌𝑌𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝑐𝑐𝑐𝑐 biased as 
well.  These factors that are related to both treatment status and the potential outcomes are called 
confounders, and often denoted with the matrix X. 
 
Some observational studies feature a natural experiment in which treatment is assigned “as if” 
randomly by nature for a subset of the data. Even if treatment assignment in the overall data set 
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is correlated with possible confounding variables, comparing the subset of units that received as 
if random treatment assignment can produce credible causal inferences.  Techniques such as 
instrumental variables (Carter and Dunning, this volume) and regression discontinuity designs 
(Cattaneo, Titiunik, and Vazquez-Bare, this volume) facilitate these comparisons, depending on 
the type of natural experiment that occurred. 
 
Often, there is no natural experiment for a researcher to exploit.  The next-best strategy is to 
compare outcomes for units with similar values of the confounding variables.  This is called a 
conditioning strategy because we condition on the values of X to infer the causal effect of T on Y).  
Matching is a conditioning strategy X proposed by Rubin and collaborators in a series of papers 
starting with Rubin (1973).4  As developed by Rubin, matching identifies treated and control units 
that have similar values of the confounding variables in X in a data set and then removes the 
other units, hoping to approximate the data that would have resulted from a randomized 
experiment.  In this matched sample, the variables in X are no longer correlated with treatment 
assignment so we can obtain unbiased estimates of the ATE using the difference in means: 
𝑌𝑌𝑌𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 −  𝑌𝑌𝑌𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝑐𝑐𝑐𝑐. 
 
The core insight of matching is that a subset of data may be useful for credible causal inference, 
even if all available data are not.  However, subsetting the data may limit the inferences a 
researcher can make.  In a natural experiment, only some units have treatment randomized by 
nature, so the estimated quantity of interest is a local average treatment effect for only those units 
(Imbens 2009). Analogously, matching only allows credible causal inference for the types of units 
retained in the matched sample; all other inferences rely on extrapolation.  If an analyst’s quantity 
of interest is the sample average treatment effect on the treated units (abbreviated SATT), then she 
cannot discard any treated units.  This quantity of interest answers the question “what would 
have happened if all treated units in this sample had instead received control?”  Answering an 
alternative question such as “what if all control units received treatment?” requires a different 
matching scheme that retains all control units but may discard treated units.  Sometimes, an 
analyst may wish to estimate the SATT but there are treated units that do not have good matches 
and discarding them would greatly reduce imbalance.  Analysts may discard these treated 
observations, but their quantity of interest is now the feasible sample average treatment effect on the 
treated (FSATT): the average treatment effect in the subsample for which causal inference is 
feasible (King, Lucas, and Nielsen 2017, 475). 
 
Assumptions 
The assumptions necessary for causal inference with a conditioning strategy are stringent.  First, 
we require the stable unit treatment value assumption, abbreviated SUTVA, which states that the 
fixed (but generally unknown) potential outcomes for each unit do not depend on the potential 

                                         
4 These papers are collected into one volume in Rubin (2006). 
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outcomes of the other units.  Equivalently, this assumption states that there is no interference 
between units and no hidden versions of treatment.   
 
Second, conditioning strategies require the assumption of conditional ignorability: that after 
conditioning on the X, treatment assignment is independent of the potential outcomes.  
Alternatively, this assumption is called “selection on observables” or “no omitted variables.”  If 
unobserved confounders affect both treatment and outcome, conditioning on X cannot provide 
unbiased causal estimates.  This requires that the analyst know which variables are confounders.  
Variables that are part of the assignment mechanism of T should be included in X.  The most 
compelling matching applications carefully theorize the assignment mechanism of T and then 
exhaustively measure each variable. 
 
Third, we require common support: there must be treated and control units at all levels of X for 
which we wish to make inference. 
 
Constructing and Analyzing Matched Samples 
 
The core activity of matching is construction a matched sample that plausibly satisfies the 
assumptions of stable unit treatment values, conditional ignorability, and common support. A 
matching algorithm is the procedure for constructing a matched sample.  Matching algorithms 
typically identify similar treatment and control units and match them to each other, discarding 
(or “pruning”) unmatched units from the data set.  This is equivalent to giving discarded units a 
weight of zero in subsequent statistical calculations, so a matched sample is merely a reweighted 
version of an unmatched sample.5    After constructing a matched sample, the analyst can 
calculate the effect of treatment by calculating the difference of the (weighted) average outcome 
of the treated units and the weighted average outcome of the control units (𝑌𝑌𝑌𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 −  𝑌𝑌𝑌𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝑐𝑐𝑐𝑐).  
Or, the analyst may wish to further adjust via regression (Ho et al 2007). 
 
Although matching algorithms are the focus of much of the matching literature, from a certain 
perspective, the algorithm is not very important.  What matters is getting the best possible 
matched sample by whatever means. What is the best possible matched sample?  Matched 
samples are evaluated on two main criteria: the similarity of treated and control units in the 
sample (called balance) and sample size.  A larger sample provides more statistical power for 
estimating precise results. A balanced sample is more likely to satisfy the assumptions of common 
support and conditional ignorability.  These two criteria are in tension because the way to 
improve balance is to discard observations.  Matching is a constrained optimization problem of 

                                         
5 Some matching algorithms also give units non-integer weights, which can be thought of as “partial 
inclusion” in the matched sample. 
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maximizing balance subject to a sample size constraint (or maximizing sample size subject to a 
balance constraint).   
 
Assessing sample size is straightforward, but the notion of balance deserves elaboration.  When 
𝑋𝑋𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 =  𝑋𝑋𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝑐𝑐𝑐𝑐, the data set is unambiguously balanced.  However, when 𝑋𝑋𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ≠  𝑋𝑋𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝑐𝑐𝑐𝑐, 
there is no universal definition of balance.  Various balance metrics have been proposed and each 
may give different answers.  Improvement on one balance metric may not correspond to 
improvements in other balance metrics.  Applied scholars often fixate on justifying their choice 
of matching algorithm, but they should be more concerned with justifying their choice of balance 
metric.  As I show below, these are integrally connected, but the prevalence of nonsensical 
practices in the literature reveals that analysts may not fully appreciate this connection. 
 
Each balance metric offers different answers to two questions: How should differences between 
𝑋𝑋𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 and 𝑋𝑋𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝑐𝑐𝑐𝑐 be summarized?  And which differences are small enough for a data set to 
be declared sufficiently balanced?  Analysts must inescapably answer these questions by 
choosing a balance metric, and their choice reflects an implicit set of assumptions about how 
confounding threatens their inferences.   
 
Analysts who believe that confounding is omnipresent worry that minor differences between 
𝑋𝑋𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 and 𝑋𝑋𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝑐𝑐𝑐𝑐 could induce substantial confounding.   These analysts prefer balance 
metrics that are sensitive to small differences in many possible dimensions.  Other analysts might 
be less concerned about confounding from small differences between 𝑋𝑋𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 and 𝑋𝑋𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝑐𝑐𝑐𝑐 and 
prefer balance metrics that do not capture these small differences. 
 
One set of balance metrics focus on the discrepancies between pairs (or groups) of treated and 
control units.  The Average Mahalanobis Imbalance metric uses the average of the pairwise 
Mahalanobis distance6 from each unit to the nearest unit of the opposite treatment status (King, 
Lucas, Nielsen 2017, 479).  The L1 Imbalance metric is a discretized version of the same idea.  The 
analyst selects a multivariate histogram binning, calculates the difference in the frequency of 
treated and control units in each bin, and averages over the bins of the histogram (King, Lucas, 
Nielsen 2017, 479).  For both metrics, larger values indicate more imbalance.  These discrepancy-
based are sensitive to small differences in many possible dimensions.  Both of have the highly 
desirable ability to detect an exactly matched subset of observations if such a subset exists.  
However, they offer no definitive threshold for declaring a data set “balanced” short of zero 
difference (𝑋𝑋𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 =  𝑋𝑋𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝑐𝑐𝑐𝑐).   
 

                                         
6 Mahalanobis distance is a generalization of Euclidean distance that is unit-less, scale-invariant, and 
accounts for correlated variables.  
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An alternative style of balance metrics use statistical tests to detect differences between 𝑋𝑋𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 
and 𝑋𝑋𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝑐𝑐𝑐𝑐.  Some analysts calculate the difference in means of the covariates in X and declare 
the data set balanced if variable-by-variable t-tests fail to reject the null hypotheses that the means 
are the same.  Some analysts prefer Kolmogorov-Smirnov tests for the difference in distributions 
to t-tests.  Hansen and Bowers (2008) propose a global p-value for a test that the combined 
dimensions of X are detectably different from each other.  The metrics rely on widely recognized 
significance thresholds for declaring a data set sufficiently balanced, even if 𝑋𝑋𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ≠  𝑋𝑋𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝑐𝑐𝑐𝑐.  
Unfortunately, hypothesis testing depends on the sample size, so “balance” may be achieved once 
enough observations are removed whether the remaining observations in the matched sample 
are actually similar or not (Stuart 2010).  Also, optimizing these metrics will not reliably uncover 
an exactly matched subsample, even if one exists. 
 
In addition to these formal approaches, analysts also inspect balance by plotting the difference in 
means between treated and control groups for each covariate before and after matching (akin to 
the variable-by-variable t-tests, but without a test). 
 
Matching Algorithms 
It does not matter how one constructs a matched sample with sufficient balance and sample size.  
In theory, analysts could directly optimize their preferred balance metric subject to a sample size 
constraint. In practice, this is usually not possible because the optimization problem is intractable, 
though it can be done for some balance metrics (King, Lucas, and Nielsen 2017).  One could 
attempt brute-force optimization by randomly sampling all possible subsets of the data and 
finding the sufficiently sized subset with the best balance.  However, this is infeasible for most 
data sets because the number of possible combinations is too large.  Instead, analysts turn to 
matching algorithms that dramatically reduce the time necessary to construct candidate matched 
samples and select the best one. 
 
Ideally, matches should be exact: each treated unit paired to a control unit (or units) with identical 
values of all confounding pre-treatment covariates.  Exact matches can be identified by checking 
whether each treated unit has a matching control unit with identical values of X (using, for 
example, the MatchIt library in R).  
 
In most data sets, exact matching leaves too few observations for precise estimation in the 
subsequent statistical analysis.  With continuous covariates, exact matches are unlikely to exist at 
all.  Approximate matching methods offer a way to identify matched subsets of the data that 
plausibly satisfy the three key assumptions above, even if the treated and control units are not 
exactly matched.   
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Each approximate matching algorithm deals with the problem of inexact matches by explicitly or 
implicitly constructing a distance metric from each treated unit to each control unit and then 
attempting to identify a matched sample of sufficient size that minimizes that distance metric.   
 
There is no established “best” matching algorithm.  Because each algorithm has a different 
distance metric, each is optimizing a different implied balance metric, and each potentially finds 
different matched samples.  Standard practice is to match with one algorithm and then check 
balance with one or more metrics not implied by that algorithm.  If one is lucky, optimizing the 
balance metric implied by the algorithm will lead to improvements with respect to other balance 
metrics.  In this happy circumstance, the choice of balance metric does not matter much because 
they all move together.   
 
However, in many cases a matching algorithm does not lead to notable improvements on all 
balance metrics.  Standard practice in this situation is to change the tuning parameters of the 
algorithm, rematch, and check balance again, repeating until balance on various balance metrics 
is satisfactory.  More generally, analysts often match using a method that minimizes one metric, 
and then evaluate balance by checking another metric.  This is a strange form of indirect 
optimization.  If balance on one metric is really the target, then iteratively optimizing it using hit-
or-miss trials from an unrelated matching algorithm seems nonsensical.  One justification might 
be that some balance metrics cannot be directly optimized, but even so, the standard practice of 
checking balance and manually adjusting the algorithm after each iteration of is inefficient.   
 
Instead, analysts who cannot find exactly matched observations within their data sets must make 
a philosophical commitment to a particular balance metric and, if possible, chose a matching 
algorithm that optimizes it.  Checking whether matching improves alternative balance metrics 
may be revealing about the sensitivity of matches to the choice of balance metric, but it is not 
dispositive about whether the data set is balanced.  When two balance metrics diverge 
meaningfully, there is no way to optimize both at the same time.  The choice of one over the other 
is philosophical. 
 
There is a long and growing list of matching techniques.7  I'll review the key families of algorithms 
which are the foundation for many, though not all, of the options available. 
 
Mahalanobis Distance Matching (MDM) 
The first matching approach proposed by Rubin (1980) matches treated and control units based 
on continuous distances from each other in the k-dimensional space defined by the k covariates 
in X.  The basic matching machinery works for any continuous distance metric: First, calculate 
the distance from each treated unit to each control unit.  Then, form matches by selecting the 

                                         
7 See the online supplemental information for a list with citations.   
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closest control observation to each treated observation.  Finally discard the unmatched control 
observations.  Methodologists prefer Mahalanobis distance (Euclidian distance normalized by the 
covariance matrix) because it accounts for correlations between the variables and makes them 
unit-less and scale-invariant.  In order to avoid matched pairs that air not adequately similar, 
analysts often use a caliper: a defined maximum distance for a match.  If a treated unit does not 
have a matching control unit within the specified caliper, it is discarded and the quantity of 
interest shifts from the SATT to the FSATT. 
 
Propensity Score Matching (PSM) 
Rubin and Rosenbaum (1983) introduce the propensity score, defined as the probability that unit i 
receives treatment, conditional on X. They show that the propensity score is a sufficient statistic 
for X; all of the information about X necessary to make the potential outcomes independent of 
treatment is contained in this score. Assuming conditional ignorability, matching units exactly on 
their true propensity scores results in unbiased estimates, even if 𝑋𝑋𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ≠  𝑋𝑋𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝑐𝑐𝑐𝑐.  The true 
propensity score is usually unknown, so we must estimate it, typically with predicted values from 
a logistic regression predicting treatment as a function of X.  We then match treated and control 
units using the similarity of their propensity scores.  Again, analysts often define calipers.  A 
common rule of thumb is that observations should be within 0.25 of a standard deviation of the 
propensity scores to match (Rosenbaum and Rubin 1985, 114, but see King and Nielsen 2019). 
 
The theory underlying PSM is elegant and intuitive, but it requires exact matches on the true 
propensity score.  In practice, we typically must make do with inexact matches on estimated 
propensity scores, and this can sometimes make causal inferences worse, rather than better (King 
and Nielsen 2019).  Several methods combine information from the propensity score and some 
other covariate information (Diamon and Sekhon 2013; Imai and Ratkovic 2014), and these 
methods side-step the problem. 
 
There are a host of complications that can be vexing for both MDM and PSM.  Methodologists 
assume a large pool of control observations from which to match (Rubin and Thomas 1996) but 
this is not the case in many IR settings.  Also, the same control might be the best available match 
for multiple treated units.  Which should get it?  Optimal matching (Rosenbaum 1989), optimal 
full matching (Hansen 2004), and optimal cardinality matching (Zubizaretta, Paredes, and 
Rosenbaum 2014) are promising solutions that improve global balance as well as local balance.  
 
Coarsened Exact Matching (CEM) 
Coarsened exact matching is an extension of exact matching methods to situations where exact 
matches are not possible (Iacus, King, and Porro 2012), and is the most popular example of a class 
of matching methods that are monotonically imbalance bounding (Iacus, King, and Porro 2011).  
Monotonically imbalance bounding methods set a fixed bound on the imbalance that the analyst 
will permit and achieve that balance, though often at the expense of matched sample size. 
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CEM “coarsens” each variable into categories that are less restrictive than the measured values.  
For example, if the democracy level of country is measured on a scale from 21 point scale, as in 
the Polity IV scores (Marshall, Jaggers, and Gurr 2002), we might coarsen this variable into five 
categories based on the scores: strongly democratic, leaning democratic, inchoate, leaning 
autocratic, strongly autocratic.  Then, we match units that fall in the same category, rather than 
requiring that matches have exactly the same score.  Observations that do not have matches, both 
treated and control, are discarded, and the remaining observations are reweighted to account for 
the fact that matches may not be one-to-one.  Then, the analyst “uncoarsens” the data, and 
estimates causal effects using weighted least squares on the matched data set. 
 
The Matching Frontier 
A new class of approaches seeks to improve inferences with each of the prior methods by 
introducing the “matching frontier” – a set of matched samples that are optimal according to the 
balance metric they maximize (King, Lucas, and Nielsen 2017).  Users of MDM and PSM often 
use calipers, which define the maximum allowable distance between a treated and control match.  
A stricter caliper will result in a smaller, but more balanced matched sample.  Analysts also tend 
to create one-to-one matched samples out of convenience.  However, if more than one control 
unit is a good match for a treated unit, arbitrarily limiting the number of matches decreases the 
sample size and decreases the precision of causal estimates without removing bias.   
 
The matching frontier generalizes the idea of a caliper and allows many-to-many matching.  The 
frontier is defined by matched samples of various sizes, from 𝑛𝑛 = 𝑁𝑁 (the full unmatched sample) 
down to 𝑛𝑛 = 2 (the closest matching pair).  At each possible sample size n between N and 2, there 

are �𝑁𝑁𝑛𝑛� possible matched samples. The frontier finds the optimal one for each n, resulting in a 

series of optimal matched samples of various sizes.   
 
This continuum of matched samples defines the trade-off between bias and variance.  Matched 
samples that discard all but a few extremely close matches will reduce bias the most, but may 
lack the statistical power to precisely estimate effects.  On the other end, those that retain most of 
the original sample will usually result in more precise estimates, but there may be more bias 
because the observations are less similar to each other.  Any matching solution that is not on this 
frontier is suboptimal: there is an achievable matched sample that has either more observations 
or better balance. 
 
Calculating matching frontiers for arbitrary balance metrics is hard because the number of 
possible matched samples for real-life data sets is extremely large.  King, Lucas, and Nielsen 
(2017) develop fast algorithms that calculate the matching frontier for MDM, PSM, and CEM-
style methods.   
 



12 
 

Categorical and Continuous Treatments 
All of these algorithms struggle to accommodate categorical and continuous treatment variables.  
The problem is philosophical as well as technical.  As the number of treatment levels increases, 
so does the number of counterfactual questions we must answer to describe what would have 
happened to a given unit if it received each alternative treatment level.  One possibility is to 
construct a matched sample for each possible treatment contrast, but this is difficult if each level 
of treatment is only assigned to a few observations.  With a truly continuous treatment variable, 
each unit receives a unique level of treatment, so constructing a matched sample for each 
treatment level is impossible.  Instead, methodologists have proposed matching methods that 
effectively consider similar levels of treatment to be equivalent (Imai and Van Dyk 2004,  Hirano 
and Imbens 2004). 
 
Regression appears to side-step this challenge, effortlessly estimating effects of categorical and 
continuous treatments.  In fact, regression faces the same challenge but limits the analysts ability 
to diagnose it; regression automatically fits a hyperplane that extrapolates between treatment 
levels while obscuring the fact that this extrapolation may be based on very little data at any 
single treatment level.  Matching calls attention to the true degree of difficulty in making credible 
causal inferences when there are many versions of treatment. 
 
Inference 
After matching, analysts typically calculate their desired treatment effect by fitting a parametric 
regression model predicting Y as a function of T, possibly controlling for variables in X if 
matching was inexact.  If the assumptions hold, this results in an unbiased estimate.  But analysts 
are almost always interested in testing whether this estimate is statistically different from some 
null hypothesis (typically that treatment has no effect).  This requires estimates of the uncertainty 
surrounding an effect estimated via matching and there is substantial debate in the literature 
about how to do so. 
 
Because it is convenient, standard practice among practitioners is to report the standard errors 
from regression analysis as measures of uncertainty for the treatment effect.  Methodologists 
worry that these standard errors do not account for the uncertainty of the matching procedure.  
Abadie and Imbens (2008) show that naive bootstrap standard errors are not asymptotically valid 
and propose a correction, though recent work proposes an asymptotically valid bootstrap (Otsu 
and Rai 2017).  Others propose algorithm-specific approaches such as a Bayesian estimate 
incorporating the uncertainty inherent in estimating propensity scores (An 2010).  But Iacus, King, 
and Porro (2019) argue that these concerns are misplaced; if analysts are willing to change their 
axioms about sampling, then unaltered regression standard errors are correct. 
 
One especially clever approach to justifying measures of effect size uncertainty comes from Imai 
and Kim (2019).  They demonstrate an equivalence between linear models with unit fixed effects 
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and a class of within-unit matching schemes.  From this equivalence, they are able to show that 
accepted model-based standard errors are valid, without resorting to the more computationally 
intensive proposed alternatives.  While this equivalence approach currently only applies to an 
uncommon subclass of matching approaches, it might be extensible. 
 
Comparison to Regression 
Regression is an alternative approach to conditioning on X that has a much longer history of use 
in IR.  Regression conditions on X by calculating smooth hyperplanes that summarize the central 
tendency of the data at all levels of the variables in the regression.  To make causal inference, a 
researcher simply compares the average distance between the conditional central tendency for 
the treated units and the conditional central tendency of the control units. Regression without 
matching works well for causal inference the assumptions listed above hold, and if the regression 
hyperplanes accurately reflect the central tendency of X; in other words, if the model fits well.  
However, matching offers several advantages over traditional regression.   
 
Benefit 1: Matching automatically conditions on complex interactions between covariates.  Linear 
regression can do this in principle, but in practice, most applied researchers specify linear, non-
interactive regression models and only check model fit haphazardly.  In a balanced matched 
sample, treatment effect estimates are not dependent on whether the analyst includes interactions 
and nonlinear terms in a subsequent regression (Ho et al 2007).   
 
Benefit 2: Matching identifies and corrects issues of “common support,” where some subset of 
treated or control units is so dissimilar from any units with other treatments that any inference 
about the outcomes of these units is determined almost entirely by modeling assumptions rather 
than data.  Matching also draws attention to the related challenge of estimating the effects of 
categorical and continuous treatments.  Linear regression obscures these challenges. 
 
Benefit 3: Analysts have intuitions about cases, but regression makes it difficult for analysists to 
tell which cases are really being compared.  Analysts can examine matched cases to directly assess 
the quality of their counterfactual comparisons. 
 
Matching with Time-series Cross-sectional Data 
 
IR researchers frequently use time-series cross-sectional (TSCS) data to estimate causal effects. 
With the exception of a few working papers (Nielsen and Sheffield 2009, Imai, Kim, and Wang 
2018), there has been very little attention to TSCS data in the matching literature, leaving applied 
researchers with few guidelines.  My survey of the applied matching literature in IR shows that 
65% of IR articles that use matching use it on TSCS data, but only half of these do anything to 
account for the structure of the data, and few analysts defend their choices. 
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In this section, I explain the challenges of matching with TSCS data and describe current best 
practices.  This is an area of active research (Imai, Kim, and Wang 2018), so future scholarship 
may offer amendments and improvements to the approach I endorse here. 
 
To match TSCS data, IR scholars must be attentive to their unit of analysis.  Outside of IR, 
matching is typically applied to cross-sectional data, in which each row in a data matrix records 
information about a single unit (e.g., a patient in a medical study).  Analysts generally assume 
that these units are independent, so each row of the matrix is exchangeable.  If this assumption 
holds, then every treated unit may be matched to any control unit without fear of violating the 
stable unit treatment value assumption or the assumption of conditional ignorability.  Virtually 
all matching algorithms have been designed to take the data matrix provided by the analyst and 
match each treated row to the nearest available control row, without constraint.  In this setting, 
each row of the data set matches the analyst’s conceptual unit of analysis. 
 
TSCS data are typically formatted in a “long” format matrix where each column is a variable and 
each row contains information about a given unit in a given time period, such as a country-year.  
These rows are no longer plausibly independent observations.  Repeated observations of the same 
unit are probably correlated, as are observations of different units in the same time period.  
Applying standard matching algorithms to these data sets often results in matches that are likely 
to be dependent (e.g., if the country of Ghana received a treatment in the year 2005, the row of 
the data matrix with the most similar X values is likely to be Ghana in 2004).  This is not 
necessarily bad.  In fact, Imai and Kim (2019) show that estimates from a within-unit matched 
sample is equivalent to a popular fixed effects model.  But generally, if countries (rather than 
country-years) are the analyst’s unit of analysis, then I advise modifying the TSCS data matrix to 
correspond.  For most TSCS matching applications, the fix is simple: transform the data matrix 
from “long” to “wide” format and then perform matching. 
 
The cross-sectional data sets used in traditional matching applications can be thought of as TSCS 
datasets in “wide” format with only two time-periods: pretreatment (covariates) and 
posttreatment (outcome).  Extending matching methods to data sets with a longer pretreatment 
time-series component merely requires appending this information in the right way.8   Each prior 
time period simply adds to the available set of covariates on which to match treated and control 
units.  Rather than representing this additional time-period with a new row in the data matrix X, 
represent it with a new column.  Similarly, lagged values of the outcome variable should be 
represented as additional columns on the data matrix.   
 

                                         
8 There are many complicated issues involved with making causal inferences about time-varying (dynamic) 
treatments and treatment regimes (Murphy, van der Laan, and Robins 2001). But most IR scholars using 
matching have worked with static treatments, so I focus on how to extend the standard matching apparatus 
for static treatments to TSCS data.   
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Analysts may be interested in long-range outcomes.  If so, long-range measurements of the 
outcome variable should be included in a single row as well.  However analysts should not adjust 
for post-treatment covariates that might affect the outcome, because they might also be a result 
of treatment, and would then bias the estimated treatment effect. The difficulty of adjusting for 
post-treatment confounding means that inferences about immediate outcomes will be much more 
precise than inferences about long-range outcomes. 
 
Several complications remain.  First, should TSCS matching include every observed lag of every 
covariate? Can units provide multiple observations?  And if so, how should treatment and control 
units be defined?  Finally, should analysts remain concerned about interference between units 
inducing SUTVA violations?  I discuss each of these issues in turn. 
 
Should matching include every lag of every covariate?  
With a TSCS set in “wide” format, analysts will suddenly feel that they have “lost” most of their 
data because they have exchanged a data matrix with many rows and few columns for one with 
few rows and many columns. This “loss” is illusory; the “N” of the data matrix in “long” format 
gives a highly inflated sense of the effective number of observations.  The “wide” data matrix 
encodes the same information, but reflects dependencies between repeated observations of the 
same unit.   
 
With TSCS data in “wide” format, the analyst may have more variables than observations.  
Suppose she observes 180 countries over, say, 74 years since the end of World War II  and wishes 
to “control for” 20 variables (e.g., GDP, Democracy, Trade).  Structured as country-years, the X 
matrix would have 13,320 observations and 20 variables.  But reformatted to be “wide,” the same 
data set now has 180 observations and 1,480 variables (e.g., GDP1946,…, GDP2019; Democracy1946,…, 
Democracy2019; Trade1946,…, Trade2019).  Most matching methods fail when the number of 
covariates exceeds the number of observations (Roberts et al 2018).   
 
If a country receives treatment in 2015, does the analyst really need to consider each observation 
of each control variable back to the end of World War II?  Probably not.  Determining how many 
lags of a given covariate to use depends on how treatment is assigned.  Analysts should choose 
the smallest set of lags that ensures conditional ignorability.  Ideally, theory and prior evidence 
should guide this choice, but they are rarely precise enough to dictate whether 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡−4 is 
a confounder after including 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡−1, 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡−2, and 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡−3.  Without strong 
theory to guide the choice about lags, analysts can reasonably turn to heuristics.  For example, if 
the analyst assumes that treatment assignment is largely a function of recent events, she might 
match placing greater weight on the recent past while still placing a small weight on the distant 
past (see Nielsen 2016, 588 for an example). 
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One practical reason to omit unnecessary lags is that some are likely to be missing.  Analysts can 
impute these missing values, but it complicates matching (D’Agostino Jr and Rubin 2000).  If 
treatment assignment is not a function of these missing lags, then avoid the complication. 
 
Can units provide multiple observations?   
Considering each row of a “long” TSCS data set as an independent observation dramatically 
overstates the amount of information the data contain.  But transforming it to “wide” format 
implicitly assumes that repeated observations are completely dependent, which is probably too 
conservative.  There is often independent information in repeated observations of each unit that 
could be exploited. 
 
This motivates some IR scholars to use a different unit of analysis – the country-block (see for 
example Simmons and Hopkins 2005, Hollyer and Rosendorf 2012, Nielsen and Simmons 2015).  
The analysts selects a number of l lags which they consider to be sufficient for conditional 
ignorability on all variables, and a number of m post-treatment periods for measuring the 
outcome.  Each treatment block is defined by the l time-period observations before treatment and 
the m time periods after.  Control units are also divided into blocks of l+m consecutive observation 
periods.  If the analyst wishes to match exactly on time, then time subscripts of treated and control 
blocks must match.  If exactly matching time is unnecessary, then treated blocks can match control 
blocks with different time subscripts, greatly increasing the number of available controls.  Each 
unit that never receives treatment can potentially offer multiple control blocks, rather than one.  
Additional control blocks can come from the pre-treatment life histories of units that eventually 
get treatment.  In some IR data sets, almost every unit eventually receives treatment, so drawing 
from the pretreatment histories is the only source of control blocks. 
 
Approximately 15% percent of the TSCS matching papers in IR have landed on this strategy, 
including the pioneering paper of Simmons and Hopkins (2005).  Simmons and Hopkins use the 
following procedure.  First, for each treated unit, they drop all lags except for the four years prior 
to treatment, the year of treatment, and the year after.  They divide the control units into blocks 
of six consecutive observations, using both countries that never receive treatment and countries 
that receive treatment later.  They then average the lagged covariates over the first four years of 
both treated and control blocks, and do a propensity score matching with these averages, 
reporting improvements in balance and, presumably, a reduction in bias. 
 
The Potential for Violations of SUTVA 
Many applications in international relations and comparative politics are likely to violate the 
stable unit treatment value assumption (SUTVA).  This is not a problem induced by matching; 
matching merely illuminates a problem that standard TSCS regression techniques often overlook. 
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One obvious violation of SUTVA arises from the dependence between repeated observations of 
the same unit that I have just discussed; there may be “interference” between the observations.  
Causal inference with regression requires the same SUTVA assumptions as causal inference with 
matching, so it is puzzling that IR scholars sometimes wring their hands about matching repeated 
observations of the same unit to each other but then blithely throw them all into a pooled 
regression.  If pooled matching makes the analyst uncomfortable, then pooled regression is 
inappropriate.  Matching TSCS data in the “wide” format avoids the problem of dependence 
within repeated observation of a single unit, but interactions between units are also threaten to 
violate SUTVA.  Unlike a medical study in which subjects can be isolated, it is not generally 
reasonable to assume that there is no interference between units in the International System.  
There is currently no widely accepted solution to this problem, though causal inference under 
networked interference is an active area of research (Aronow and Samii 2017). 
 
Hidden versions of treatment are another other major source of SUTVA violations.  Common 
TSCS practices for estimating the effects of “sticky” treatments can inadvertently create hidden 
versions of treatment.  For example, when estimating the effect of a binary democracy variable 
on an outcome like trade flows, researchers typically estimate a model that compares each 
observed year of democracy to each year of non-democracy.  However, the first year of 
democracy after democratization may not be equivalent to a year of mature democracy many 
years after democratization.  Conceptualizing the treatment variable as a transition to treatment 
and using countries, rather than country-years, as the unit of analysis avoids this problem. 
 
 SUTVA is a strong assumption that may not be plausible in many TSCS applications. If so, TSCS 
matching will still mitigate model specification dependence but the results should probably not 
be interpreted causally.  There has been very little research exploring when and how violations 
of SUTVA are problematic and methods for proceeding without SUTVA are in their infancy 
(Tchetgen Tchetgen and Vanderweele 2012).  The standard practice for applied researchers facing 
possible SUTVA violations is to simply proceed as if they didn't exist.  Rather than ignoring 
SUTVA violations entirely, first order violations of SUTVA may be avoided by following the 
advice above. 
 
Estimation after Matching 
What should analysts do after create a matched TSCS sample?  Following Ho et al (2007), analysts 
may be able to proceed with the model they would have used on unmatched data.  The data may 
need to be transformed back into “long” format for use with popular TSCS model software.  
However, analysts may realize in the course of matching that the pooled regression they initially 
wanted to estimate probably violates the assumptions above.   
 
If so, reasonable approach is to estimate treatment effects using the difference-in-differences 
estimator (Keele, this volume).  This estimator assumes that units observed have parallel over-
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time trajectories prior to treatment. If so, differences in the differences of their outcome 
trajectories after treatment of some panels are the effect of treatment (hence the name).  However, 
it is difficult to find settings where the parallel trends assumption is plausible.  Heckman, 
Ichimura and Todd (1997) have suggested that researchers use matching to select units with 
similar trends prior to difference-in-differences estimation.  The TSCS matching methods 
outlined above and in Imai, Kim, and Wang (2018) offer a way to perform this matching.  
 
Match or Mismatch? 
 
Will matching help me get better, more reliable answers to my research questions? This is a crucial 
question for any International Relations scholar considering using statistical matching in their 
work.  With over a decade of matching under our belts, we can step back and evaluate its 
usefulness for IR.  Potential criticism comes in two varieties: matching is generally problematic 
and matching is especially problematic when applied to the TSCS data sets common in IR. 
 
To review, matching is a method for selecting cases to use in a subsequent statistical analysis.  A 
matched sample is fully characterized by a data matrix of cases and a set of weights (generally 
derived from a matching algorithm) for each case.  Observations with weights of zero are 
considered “pruned” from the data set, resulting in a data set that is more “balanced” than the 
original (meaning treated and control observations are more similar on a set of possible 
confounders represented by X).  Once a matched sample is in hand, a researcher can typically use 
any appropriate regression technique to analyze the data without much modification.   
 
As Geddes (1990) reminds us, the cases we choose affect the results we get.  Because matching is 
case selection based on X, calculations based on the matched sample are conditional on X whether 
the subsequent estimation is explicitly conditional or not.  This means that matching “controls” 
for X in ways similar to regression, with added flexibility for interactions and ensuring common 
support.  It also means that statistical results from matched data will depend less on which 
specific regression model an analyst chooses than results from unmatched data (Ho et al 2007).   
 
Critics of matching warn that it can produce misleading results (Arceneaux, Gerber, and Green 
2006) and facilitate false discovery through p-hacking (Miller 2019).  At seminars and conferences, 
I have seen critics scold matching advocates for overstating the benefits (and benefitting 
professionally from those overstatements!).  It is fair to say that some proponents of matching 
(including myself) have at times been overly sanguine about the method, though the same could 
be said for virtually every statistical technique.  Perceptions that researchers benefit 
professionally from applying matching in their research are also probably correct.  Using the data 
set of IR articles I described above, I estimate that articles using matching have gotten 10 more 
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citations on average than comparable articles that did not use matching.9  It is worth asking 
whether this additional attention is warranted. 
 
The critics have a point.  Matching is not a statistical truth serum to extract causal information 
from even the most recalcitrant data sets.  There is no secret “causality” sauce in the inner 
workings of matching methods.  Matching is for researchers who want to make causal inferences, 
but it won't necessarily allow them to do so.  Matching cannot transform your unruly data into a 
neat and tidy experimental study.  Moreover, existing matching methods have been used in an 
off-the-shelf manner not appropriate for the TSCS structure of many IR data sets.  And it is 
unlikely that matching alleviates the risk of fishing for desired results despite early optimism on 
this score.  Now that a decade has passed, my sense is that the critics of matching have 
successfully tempered these overly-optimistic claims about what matching can do. 
 
Matching is not magic, but it is not all hype either.  The upside of matching is that it is likely to 
help you understand your data better, and make clear to you and your readers what assumptions 
underlie your conclusions. Fitting a good regression model for causal inference can be very hard, 
and bad regression models abound.  My experience is that matching makes the assumptions 
necessary for reliable causal inference more transparent to researchers.   The intuition of matching 
is easier for many people than the intuition of regression, and understanding the intuition can 
help analysts avoid pitfalls.  Matching has proven to be a reliably useful method for causal 
inference with messy, non-experimental data, precisely the sort that most of us in IR are used to 
dealing with.  Although conditioning with regression can get the same result as conditioning with 
matching, I generally find that someone using matching is going to have a better sense for 
whether the counterfactuals implied by their model make any sense.   
 
Yet, even if matching is useful for cross-sectional data analysis, it may be that the dependencies 
of time-series cross-sectional data are too challenging for existing matching methods to tackle.  I 
acknowledge that the challenges are formidable.  It is difficult to confidently assert that the stable 
unit treatment value assumption and conditional ignorability have been satisfied in any cross-
national comparison study.  But these assumptions are necessary for making credible causal 
inferences from regressions analysis without matching.  Experiments are currently infeasible for 
many pressing IR questions and genuine natural experiments are rare. This leaves us with the 
necessity of extracting the most credible inferences we can from the observational data provided 
by history.  Matching offers a transparent, useful framework for doing so while foregrounding 
the challenges. 
 

                                         
9 See the online Supplemental Information (Nielsen 2019) at https://doi.org/10.7910/DVN/HEFNHA. 
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So, where does this leave us? Matching is here to stay and rightfully belongs in the tool kit of IR 
scholars.  It is no silver bullet. Like any other method, it can be misused, oversold, and 
misunderstood. It shouldn’t be, if we care about learning the truth about international relations. 
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