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Abstract

Matching methods for causal inference selectively prune observations from the data
in order to reduce model dependence. They are successful when simultaneously
maximizing balance (between the treated and control groups on the pre-treatment
covariates) and the number of observations remaining in the data set. However, ex-
isting matching methods either fix the matched sample size ex ante and attempt to
reduce imbalance as a result of the procedure (e.g., propensity score and Mahalanobis
distance matching) or fix imbalance ex ante and attempt to lose as few observations
as possible ex post (e.g., coarsened exact matching and calpier-based approaches).
As an alternative, we offer a simple graphical approach that addresses both criteria
simultaneously and lets the user choose a matching solution from the imbalance-
sample size frontier. In the process of applying our approach, we also discover that
propensity score matching (PSM) often approximates random matching, both in real
applications and in data simulated by the processes that fit PSM theory. Moreover,
contrary to conventional wisdom, random matching is not benign: it (and thus often
PSM) can degrade inferences relative to not matching at all. Other methods we study
do not have these or other problems we describe. However, with our easy-to-use
graphical approach, users can focus on choosing a matching solution for a particular
application rather than whatever method happened to be used to generate it.
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1 Introduction
As is widely recognized, matching methods for causal inference are best applied with

an extensive, iterative, and typically manual search across different matching solutions,

simultaneously seeking to maximize covariate balance between the treated and control

groups and the matched sample size. A measure of the difficulty of this process may be the

fact that most applied publications report running only a single matching solution. This

is especially problematic because no existing matching method simultaneously optimizes

both goals: For example, Mahalanobis Distance Matching (MDM) and Propensity Score

Matching (PSM) choose a fixed number of observations ex ante (typically a multiple of the

number of treated units) and hope for imbalance reduction as a result of the procdedure. In

contrast, Coarsened Exact Matching (CEM) and caliper-based approaches choose a fixed

level of imbalance ex ante and hope that the number of observations left as a result of the

procedure is sufficiently large.

We attempt to close some of this gap between methodological best practices and the

practical use of these methods. To do this, we describe a simple graphical tool to identify

the frontier (and evaluate the trade off) of matching solutions that define maximal levels

of balance for given matched sample sizes; users can then easily choose a solution that

best suits their needs in real applications. We also use this approach to elucidate differ-

ences among individual matching methods. We study PSM and MDM (with and without

calipers) and CEM. PSM and CEM each represent the most common member of one of

the two known classes of matching methods (Rubin, 1976; Iacus, King and Porro, 2011).

Other matching methods can easily be incorporated in our framework too.

In the process of developing this graphical tool for applied researchers, we are also led

to several new methodological findings. For example, we discover a serious problem with

PSM (and especially PSM with calipers) that causes it to approximate random matching in

common situations. Moreover, and contrary to conventional wisdom, random matching is

not benign; on average, it increases imbalance (and variance) compared to not matching.

As we show, such results call into question the automatic use of PSM for matching without

comparison with other methods; the common practice of calipering PSM matches worse
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than 1/4 of standard deviation; using PSM to adjust experimental results; including all

available covariates in PSM models; and some other commonly recommended practices.

To understand this problem, we analyze data simulated to fit propensity score theoretical

requirements, and we find the problem again. With these simulations, and a simple 12-

observation example we develop, we illuminate precisely why the problem occurs and

what to do about it. Even with these findings, PSM can be a useful procedure, but it needs

to be used comparatively; our graphical procedure can help.

The comparative effectiveness approach to matching methodology discussed here of-

fers an easy way to implement best practices, enabling applied researchers to choose

matching solutions that improve inferences in their data rather than having to decide on a

theoretical basis which matching methods may or may not work best in general.

2 Matching Methods
Here we summarize three matching methods, as they are commonly used in practice. We

begin with notation, the quantities of interest and estimation, and then discuss how to

choose among matching methods.

Notation For unit i (i = 1, . . . , n), let Ti denote a treatment variable coded 1 for units

from the treated group and 0 for units from the control group. For example, Ti = 1

may indicate that person i is given a particular medicine and Ti = 0 means that person

i is given a different medicine (or a placebo). Let Yi(t) (for t = 0, 1) be the value the

outcome variable would take if Ti = t, a so-called “potential outcome”. By definition,

for each i, either Yi(1) or Yi(0) is observed, but never both. This means we observe

Yi = TiYi(1) + (1 − Ti)Yi(0). Finally, we denote a vector of available pre-treatment

control variables Xi.

Quantities of Interest and Estimation Denote the treatment effect of T on Y for unit i

as TEi = Yi(1)−Yi(0). Now consider an observation from the treated group, so Yi(1) = Yi

is observed, and so Yi(0) is unobserved. The simplest version of matching is to estimate

TEi by replacing the unobserved Yi(0) with an observed unit (or units) j from the control

group such that it is matched to observation i either as Xi = Xj (which is known as “exact

matching”) or, as is usually necessary, Xi ≈ Xj . (Matching methods differ primarily by
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how they define approximate matching.) Unmatched observations are pruned from the

data set before further analyses.

The immediate goal then is to maximize both balance, the similarity between the mul-

tivariate distributions of the treated and control units, and the size of the matched data set.

Any remaining imbalance must be dealt with by statistical modeling assumptions. The

primary advantage of matching is that it greatly reduces the dependence of our conclu-

sions on these assumptions (Ho et al., 2007).

In most studies, we do not seek to estimate TEi for each i; we instead estimate averages

of it over relevant subsets of units. One such quantity of interest is the sample average

treatment effect on the treated, SATT = 1
nT

∑
i∈{T=1} TEi, which is the treatment effect

averaged over all (nT ) treated units. However, since most real data sets contain some

observations without good matches, perhaps because common support between the treated

and control groups do not fully coincide, best practice has been to compute a causal effect

among only those treated observations for which good matches exist. We designate this

as the feasible sample average treatment effect on the treated or FSATT.

This decision is somewhat unusual in that FSATT is defined as part of the estimation

process, but in fact it follows the usual practice in observational data analysis of collecting

data and making inferences only where it is possible to learn something. The difference is

that the methodology makes a contribution to ascertaining which quantities of interest can

be estimated (e.g., Crump et al., 2009; Iacus, King and Porro, 2011); one must only be

careful to characterize the units being used to define the new estimand. As Rubin (2010,

p.1993) puts it, “In many cases, this search for balance will reveal that there are members

of each treatment arm who are so unlike any member of the other treatment arm that they

cannot serve as points of comparison for the two treatments. This is often the rule rather

than the exception, and then such units must be discarded. . . . Discarding such units is the

correct choice: A general answer whose estimated precision is high, but whose validity

rests on unwarranted and unstated assumptions, is worse than a less precise but plausible

answer to a more restricted question.” In the analyses below, we use FSATT, and so let

the quantity of interest change, but everything described below can be restricted to a fixed
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quantity of interest, decided ex ante, which will of course will sometimes be of interest.

Matching Procedures Mahalanobis distance matching (MDM) and propensity score

matching (PSM) are built on specific notions of distance between observations of pre-

treatment covariates. MDM measures the distance between the two observations Xi and

Xj with the Mahalanobis distance, M(Xi, Xj) =
√

(Xi − Xj)′S−1(Xi − Xj), where S

is the sample covariance matrix of X . In PSM, we first collapse the vectors to a scalar

“propensity score,” which is the probability that an observation receives treatment given

the covariates, usually estimated by a logistic regression, πi ≡ Pr(Ti = 1|X) = 1/(1 +

eXiβ); then, the distance between observations with vectors Xi and Xj is the simple scalar

difference between the two estimates π̂i − π̂j (or sometimes Xiβ − Xjβ).

The most common implementation of each approach is to apply one-to-one nearest

neighbor greedy matching without replacement (Austin, 2009, p.173). This procedure

matches each treated unit in some arbitrary sequence to the nearest control unit, using that

method’s chosen distance metric. Some procedure is then applied to remove treated units

that are unreasonably distant from (or outside the common support of) the control units

to which they were matched. The most common such procedure is calipers, which are

chosen cutoffs for the maximum distance allowed (Stuart and Rubin, 2007; Rosenbaum

and Rubin, 1985).

Coarsened Exact Matching (CEM) works somewhat differently. First, each variable is

temporarily coarsened as much as is reasonable. For example, years of education might be

coarsened for some purposes into grade school, high school, college, and post-graduate.

Second, units with the same values for all the coarsened variables are placed in a single

stratum. And finally, for further analyses, control units within each stratum are weighted

to equal the number of treated units in that stratum. Strata without at least one treated and

one control unit are thereby weighted at zero, and thus pruned from the data set. (The

weights for each treated unit is 1; the weights for each control unit equals the number of

treated units in its stratum divided by the number of control units in the same stratum,

normalized so that the sum of the weights equals the total matched sample size.) The

unpruned units with the original uncoarsened values of their variables are passed on to
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the analysis stage. Unreasonably bad matches are dropped as an integral part of the CEM

procedure and so a second step, such as calipers, is not required. See Iacus, King and

Porro (2011, 2012).

Many refinements of these and other matching procedures have been proposed, only

a few of which are widely used in applied work (for reviews, see Ho et al., 2007; Stuart,

2010).

3 Evaluating Matching Methods
To evaluate a matching method, we confront the same bias-variance trade-off as exists

with most statistical methods. However, two issues can prevent one from optimizing on

this scale directly. First, matching can be used to define the quantity of interest, FSATT, in

which case a particular point on the bias-variance frontier is not known but instead merely

becomes possible to achieve. Whether any level of bias or variance is actually achieved

depends on the particular analytic method chosen to apply to the matched data.

Second, best practice in matching involves avoiding selection bias by intentionally ig-

noring the outcome variable while matching (Rubin, 2008b), the consequence of which

is that we give up the ability to control either bias or variance directly. Thus, instead of

bias, we focus on reducing the closely related quantity, imbalance, the difference between

the multivariate empirical densities of the treated and control units (for the specific math-

ematical relationship between the two, see Imai, King and Stuart, 2008). Similarly, the

variance of the causal effect estimator can be reduced when heterogeneous observations

are pruned by matching, but a too small matched sample size can inflate the variance.

Thus, in matching, the bias-variance trade off is affected through the crucial trade off

between the degree of imbalance and the size of the matched sample.

We repeat all analyses with each of three types of imbalance metrics. The most com-

monly used metric in empirical evaluations (and theoretical analyses) of PSM is the differ-

ence in means between the treated and control groups for variable j: d(j) = X̄(j) − X̃(j),

where X̄(j) is the mean of variable j in treated group and X̃(j) is the corresponding mean

in the control group. We examine each variable separately and then (rescaling if neces-

sary) report the average of the absolute values: D = 1
J

∑J
j=1 |d(j)|.
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Second is the Mahalanobis matching discrepancy, defined as the Mahalanobis distance

between each unit i and the closest unit in opposite group, averaged over all units: M =

1
N

∑n
i=1 M(Xi, Xj(i)), where Xj(i) = minj∈{1−Ti}M(Xi, Xj), where {1 − Ti} is the set

of units in the group that does not contain i, and N is the size of the observed or matched

data set being evaluated.

Our final imbalance metric is L1, which directly measures the difference between the

multivariate histogram of the treated group and the multivariate histogram of the control

group (Iacus, King and Porro, 2011). With a chosen set of bin sizes H , we form the

multivariate histogram of the treated units and separately the multivariate histogram of

the control units. Let f`1···`k
be the relative empirical frequency of treated units in bin with

coordinates `1 · · · `k, and similarly for g`1···`k
among control units. Then let

L1(H) =
1

2

∑
(`1···`k)∈H

|f`1···`k
− g`1···`k

|. (1)

The final L1 imbalance measure then arises when fixing the bin sizes H to that which

produce the median value of L1(H) from (approximately) all possible bin sizes in the

original unmatched data. The typically numerous empty cells of each of the histograms

do not affect L1, and so the summation in (1) has at most only n nonzero terms. The

relative frequencies also control for what may be different sample sizes for the treated and

control groups. Weights may be used when matching methods produce weights; otherwise

all observations are weighted equally. A value of L1 = 0 indicates identical treatment and

control distributions, and L1 = 1 indicates complete imbalance and no overlap between

the densities.

We might think that we could choose one of these metrics, and optimize it directly

to choose a matching method. However, existing methods do not optimize with respect

imbalance and matched sample size simultaneously. To avoid the resulting difficulties,

statisticians have recommended that researchers conduct an iterative search for a good

matching solution by evaluating the matched sample size and more general imbalance cri-

teria (e.g., Austin, 2008; Caliendo and Kopeinig, 2008; Imbens and Rubin, 2009; Rosen-

baum, Ross and Silber, 2007; Stuart, 2008). For example, Rosenbaum and Rubin (1984)

detail their “gradual refinement” of an initial model by including and excluding covari-
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ates until they obtain a final model with 45 covariates, “including 7 interaction degrees

of freedom and 1 quadratic term”. And Ho et al. (2007, p.216) write “one should try as

many matching solutions as possible and choose the one with the best balance.” This ad-

vice is unfortunately not often followed in applied research. The graphical approach we

offer in the next section is meant to be a convenient way of applying this advice by giving

the researcher the big picture in terms of viewing and choosing from a range of possible

matching solutions.

4 Comparing Matching Solutions
We now introduce the space graph, the goal of which is to compare matching solutions,

without regard to the method that produced them, and to approximate the imbalance-

matched sample size frontier. The frontier is the set of matching solutions for which no

other solution has lower imbalance for a given sample size or larger sample size for given

imbalance. Matching solutions not on the frontier should not be used in applications

(at least not without further justification) since they are strictly dominated in terms of

imbalance and number of observations by those on the frontier.

Among the solutions along the frontier, one can reasonably choose one based on the

matching version of the bias-variance trade-off: For example, in a large data set, we

can afford to prune a large number of observations in return for lower imbalance (since

our confidence intervals will still be fairly narrow), but in smaller data sets or when an

application requires especially narrow confidence intervals we might prefer a solution on

the frontier with fewer pruned observations at the cost of having to build a model to cope

with imbalance left after matching. If we choose to let matching help define FSATT,

rather than fixing the quantity of interest as SATT, the choice of a solution on the frontier

also helps us choose the estimand. Either way, the the choice of a matching solution from

the imbalance-matched sample size frontier is analogous to, but of course different than,

the process of choosing an estimator that reflects the bias-variance trade off.

The space graphs we show in this section attempt to identify the overall frontier, and

also a frontier constrained within the solutions given by each specific matching method.

Only the overall frontier is of importance for applications; the method-specific frontier is
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a methodological tool for understanding the contribution of individual matching methods.

4.1 Space Graph Construction

We construct a space graph to parallel a bias-variance plot by displaying matching so-

lutions with a measure of imbalance on the vertical axis and the matched sample size

(starting from the full sample on the left and dropping to the right) on the horizontal

axis. See, for example, the axes for the three space graphs in Figure 1 (about which more

below).
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Figure 1: Space graphs based on data from Nielsen et al. (2011). Each point represents one
matching solution plotted horizontally according to the matched sample size and vertically by one
of three imbalance metrics. Solutions closer to the bottom left of each plot are better than others.
The observed frontier for a method is the set of points such that no other point from that method
appears to its lower left.

A point in a space graph represents one matching solution. Solutions appearing closer

to the bottom left of the figure, that is with low imbalance and large sample size, are

preferable. Of course, no uniquely best solution is likely to exist, and so instead, we

attempt to identify the frontier, the set of points such that no other point appears to its

lower left. The simplest, fastest, and most reliable algorithm we have found to identify the

frontier is to begin with a large set of matching solutions generated by existing matching

methods and to identify those for which no solution can be found to their lower left. (Of

course, this observed frontier may be improved if even better matching solutions can be
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found, or if a method can be developed to reliably find the optimal frontier.)

To fix ideas, we construct in Figure 1 space graphs for data analyzed in Nielsen et al.

(2011) for the purpose of estimating the effect of a sudden decrease in international for-

eign aid on the probability of violent conflict in developing countries. The data set in-

cludes 18 covariates representing national levels of democracy, wealth, population, ethnic

and religious fractionalization, and prior upheaval and violence. The open circle at the

left of each graph represents the original data prior to pruning any observations through

matching. Other points on the graph represent those we randomly generated from each

matching method. For PSM and MDM, we randomly sample 1,000 specifications from

the set of all variables, their squares, and two-variable interactions. Thus, we added to the

18 raw pre-treatment covariates, 18 squared terms, and
(
18
2

)
= 153 one-way interactions.

We then sample subsets of these 189 variables. In a separate simulation, we restricted

variable selection to enter main effects for all variables included in the interactions se-

lected, and to always include all 18 main effects, but these had no substantive effect on

the results. (And of course, eliminating solutions, even if done based on some version of

expert judgment, can never improve the observed frontier.) We also tried adding three-

way interactions; this also led to similar conclusions, but in this case many PSM models

do not converge and MDM variance matrices were not invertable.

We then matched observations under MDM and PSM using 1-to-1, 1-to-2, and 1-to-3

treatment-to-control matching. For each match, we also choose a caliper c at random from

a uniform distribution on the integers between 0 and the number of treated units. We then

prune the c worst matches, where “worst” is defined by the matching method’s distance

metric. Most implementations of calipers instead set a single arbitrary threshold of imbal-

ance, such as one-quarter of a standard deviation of the propensity score, above which all

matches are excluded. Our analysis thus includes all possible thresholds, including this

most common approach, which we also discuss below. Limiting matching solutions in the

space graph to only some caliper thresholds can never improve the observed frontier. (In

the following section, we separate out the effects of calipering, which in PSM and MDM

effects n, from variable selection, which does not.)
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For CEM, we create matching solutions by changing the coarsenings (and where a

null coarsening is equivalent to excluding the covariate). To search over a large number of

CEM solutions, we sample from the set of possible coarsenings equally spaced between

minimum and maximum levels. Again, using only a subset of these that are “plausible”

by some expert definition can never improve the observed frontier.

We choose to display all the matching solutions, and to identify the frontier by visual

inspection, rather than withholding all but the frontier points. Solutions from different

methods are represented with different symbols and colors: PSM (green disk), MDM

(red cross), CEM (blue plus), and as a baseline the average for each given sample size of

random matching solutions (black dashed line). (Space graphs were introduced by Iacus,

King and Porro (2009), who also offer software to compute and plot them.)

4.2 Results

We describe the results in Figure 1 in several steps.

The Overall Frontier The conclusion in the literature that matching solutions should be

compared prior to use is clearly confirmed by the great diversity in the quality of solutions

represented here. It would be easy to inadvertently choose a solution far from the frontier

by failing to compare different solutions.

In all three graphs, the overall frontier (the set of symbols such that none appears to

the lower left of each) is usually defined by CEM and occasionally by MDM solutions.

The CEM frontier (the subset of blue plus symbols such that no other blue plus appears

to its lower left) is always either equal or close to the overall frontier. PSM solutions do

not usually approach the overall frontier. Applied researchers will of course only need

to identify the overall frontier, the method giving rise to it being unimportant for appli-

cations. In contrast, the methods-specific frontiers may be relevant for those developing

specific matching methods.

Of course, the specific set of matching methods we consider, and the definition of each

individual method, are not sacrosanct: if we added matching with replacement to MDM,

replaced greedy with optimal matching under MDM or PSM, applied MDM within CEM

strata, or adjusted in many other ways, we might well be able to generate a better overall
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frontier than CEM. And, we still leave the open question as to whether it is possible to

invent an optimization algorithm to identify the theoretical (i.e., best possible) frontier

directly.

Method-Specific Frontiers The overall, CEM-specific, and MDM-specific frontiers in

all three graphs in Figure 1 display the expected trade off between imbalance and sample

size: As we prune more observations imbalance drops. For PSM, the result is very differ-

ent: as PSM and its calipers prune more observations, imbalance increases (see the green

dots moving up and to the right). We refer to the troubling behavior as the propensity

score paradox, and seek to explain it in Section 5.

Consequences of Random Matching As a baseline of comparison, we offer in each

graph in Figure 1 a dashed line representing the average for each sample size of a large

number of matching solutions constructed by randomly choosing obserations to prune.

That this line is increasing from left to right indicates that the more observations that are

randomly deleted the larger the average imbalance becomes. This may seem counterin-

tuitive, and to our knowledge has not before been noted in the literature (Imai, King and

Stuart, 2008, p.495), but is in fact to be expected. Although no one would intentionally

match randomly, we show below that, in many situations, PSM is at times doing some-

thing similar, and so understanding why random matching increases imbalance will prove

important.

For intuition, consider four observations perfectly matched on sex with two males and

two females: MM, and FF. Randomly dropping two of the four observations will leave us

with one matched pair among MM, FF, MF, or FM, with equal probability. This means

that with 1/2 probability the remaining data set will be balanced and with 1/2 probability

it will be completely imbalanced; on average, then, randomly dropping an observation

will increase imbalance from its starting point of L1 = 0 to L1 = 1/2. Similarly, although

the expected difference in means does not change as observations are randomly pruned,

the variance of the difference increases, as of course does the average absolute difference

in means. The same intuition applies to randomly deleting observations in larger data sets

where, even if the empirical distribution is unchanged, the actual units are more sparsely
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arranged, and thus any two points are further apart on average (think of the consequence

of removing every other point in a two-dimensional grid, or the reason density estimation

becomes easier with a larger n).

What About Expert Specification Selection? To the these basic space graphs, we add

the solution chosen by Nielsen et al. (2011). The authors followed best practices by

selecting variables for substantive reasons, considering many individual PSM matching

solutions, and then choosing the best solution based on imbalance comparisons (using the

difference in means metric). This solution appears as a black dot in each graph (noted

“published PSM”). We then calipered off the worst match (based on PSM’s distance met-

ric), the next worst match, etc., each time generating a different solution; the set of these

solutions is traced out by the black line starting at the black dot.

From this analysis we draw three conclusions. First, the general upward trajectory

of the black line in all three graphs demonstrates that the propensity score paradox even

afflicts results from this expert-selected PSM solution.

Second, the figure also represents the matching solution that begins with a published

PSM match and then calipers off all matches larger than 1/4 of a standard deviation, as

widely suggested in the PSM literature (since Rosenbaum and Rubin, 1985). As can be

seen, this advice is harmful here and is dominated by the original PSM solution (and

numerous others). This result invalidates the 1/4 caliper advice in this data set, and the

paradox questions whether this common practice is advisable in other applications as well.

Finally, the published PSM solution is not at the observed PSM-specific frontier, and

thus is strictly dominated by other PSM solutions, according to any of the three imbalance

metrics (including the difference in means metric used by Nielsen et al. 2011). Although

best practice should be to select a matching solution from the frontier regardless of the

matching method that created it, even researchers restricting their search to PSM solutions

will likely find better matching solutions using a space graph than they could by hand.

What About Other Data Sets? Space graphs for four additional data sets (described in

Appendix A) appear in Figure 2, using the same symbols and color schemes. Instead of

expert-selected results for these data, we take advantage of a “benchmark” procedure pro-
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posed by Imbens and Rubin (2009) to automate previous best practices in the use of PSM.

The procedure runs PSM, checks imbalance, adjusts the specification, and automatically

reruns until convergence. To each of the graphs in Figure 2, we add this solution (the

leftmost point on the solid black line), and then, as before, caliper off the worst match,

one observation at a time (traced out with the rest of the black line).

The conclusions from these four data sets generally confirm those in Figure 1. First,

and most importantly, the space graph is a useful tool to identify the overall frontier from

which applied researchers can choose matching solutions. Second, the overall frontier is

usually defined by CEM and occasionally by MDM; the CEM-specific frontier is always

near the overall frontier; and PSM solutions do not usually approach the overall frontier.

Third, the “best practices” line is sometimes better than the mass of PSM points, some-

times worse, and sometimes about the same, but across four data sets and three imbalance

metrics, the propensity score paradox is in clear evidence by the line often or always head-

ing upwards (indicating more imbalance) as more observations are dropped. Fourth, for

the first three data sets, the PSM-specific frontier heads upward, displaying the paradox.

Interestingly, the Lalonde data, which many methodology articles use for their sole

data analysis example, exhibit the paradox the least among the four data sets across both

figures. This may account for why the paradox was not previously identified. Neither

CEM nor MDM reveal this paradoxical behavior for any of the four data sets. Random

matching (dashed lines) is the only other approach that displays similar behavior to PSM.

How Widespread is the Paradox? To get a sense of how widespread these patterns are

in other social science data sets, we advertised on line to help researchers doing matching

analyses in return for being able to access their data before publication (and promising

not to distribute the data or scoop them for their substantive results). For almost all of

the 27 data sets we received, the patterns we found above were repeated, and so we can

be reasonably confident that the results from the five data sets presented above are more

general and apply to a large number of data sets now being analyzed by social scientists

around the world.
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5 Explaining the Propensity Score Paradox
As Section 4 shows, PSM evaluates some matched pairs as highly imbalanced, even

though removing them increases overall imbalance. We now explain why this occurs.

To begin, if the goal of PSM were to match only the means in the treated and control

groups, then this pattern could possibly be innocuous: That is, a large positive imbalance

in one matched pair might counterbalance a large negative imbalance in another, and so

removing only one of the two would be unwise. However, the goal of matching in gen-

eral, and PSM in particular, is to balance the entire distribution of the treated and control

groups (Stuart, 2010, p.13), and so we must look elsewhere for an explanation.

We proceed by first ruling out the possibility that the problem is unique to the many

data sets we analyze above. We do this by using two data generation processes, either one

of which is required for PSM to have attractive theoretical properties (Rubin and Stuart,

2006).

Data Generation Processes We set aside the process of pruning from the original data

set to a matched set (i.e., with observations equal to twice the number of treated units).

Instead, we zero in on the qualities of the resulting matched set and PSM imbalance

metric. We thus simulate in one of two ways: First, following the procedures of Gu

and Rosenbaum (1993), for j covariates (j = 1, 2, 3), we repeat the following 50 times

and average. We first draw a data set with 250 treated and 250 control units, which is

equivalent for our purposes to generating a larger pool of controls and pruning down to

250. The data generation process is multivariate normal (which meets the requirements

of the equal percent bias reducing class of methods, which includes PSM) with variances

of 1 and covariances of 0.2. The control group always has a mean vector of (0,0,0). We

create data sets with high, medium, and low levels of balance by setting the treated group

means to (0.1,0.1,0.1), (1,1,1), and (2,2,2), respectively.

We estimate the propensity score (specified with all the main effects in a logit model,

as usual) for each of the 50 randomly selected data sets. Then, for each, we remove the

single worst match — i.e., for which the scalar difference in propensity scores is greatest

— and compute an imbalance metric. (If the paradox found above does not appear in
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these data, then the matched data set with the worst match removed would have lower

imbalance.) We then repeat this for each of the 50 data sets, average, and put a point on the

graph. We then iteratively remove the next worst match and so on, each time recalculating

L1, and adding a point to the graph. We also conduct the analogous procedures for CEM

and MDM, using the identical randomly generated data sets as for PSM.

For CEM, we begin with the loosest possible coarsening, so that all data fall in a single

stratum and no observations are pruned. We then randomly select a variable, add one cut-

point to its coarsening (always arranging the cutpoints so they divide the space between

the minimum and maximum values into equal sized bins), and compute L1. Additional

cutpoints eventually lead to more observations being dropped; results are then averaged

over the 50 randomly generated data sets.

We also conducted analyses with two other data generation processes. For one, we

repeat the above simulation but using formal specification searches to define the PSM

model. For the other, we used the same simulated covariates as above, but we defined the

treatment assignment vector using a true propensity score equation. We then estimated

a propensity score model using the correct specification (from the true propensity score)

and iteratively apply calipers as above. As we find virtually identical results to those for

the first data generation process, we only present results for it.

Results Figure 3 gives the results for the methods in three columns (PSM, CEM, and

MDM) and different numbers of covariates (1,2,3) in separate rows. Each of the nine

graphs in the figure give results for data sets with low (solid line), medium (dashed line),

and high (dotted line) levels of imbalance between the treated and control units. For

graphical clarity, unlike Figure 2, individual matching solutions do not appear and instead

we average over the simulations in each graph for a given matched sample size and level

of imbalance. The figure presents results with L1 (the other two imbalance metrics gives

essentially the same results and so we do not present them). The PSM paradox is re-

vealed whenever one of the lines increase (i.e., with imbalance increasing as the number

of observations drops).

As the figure shows, CEM and MDM do not suffer from the paradox: all the lines in
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all the graphs in the last two columns have imbalance dropping as more observations are

pruned, just as we would want to be the case. There is also no evidence of the paradox

with PSM applied to a single covariate, which makes sense since the distance metric is

based on a simple monotonic (logit) transformation of the scalar X .

For PSM, two problematic patterns emerge. First, the paradox appears with PSM as

soon as some dimension reduction begins (in the bottom two graphs in the left column).

With two covariates, the lines increase as n drops, and the problem intensifies with three

covariates (and the paradox continues to intensify with more covariates). PSM, but not

MDM or CEM, fails due to the curse of dimensionality: the scalar propensity score π̂i

is an increasingly worse summary of a vector of covariate values, Xi, as the number of

elements in the vector increase (see Brookhart et al., 2006).

Second, the PSM graphs for 2 and 3 covariates also reveal the fact that propensity

score matching performs systematically worse in better balanced data. Data with better

balance means that the propensity score logit discriminates less well between treateds and

controls. At the extreme inability to predict, where every observation has a propensity

score of 0.5 (as in a classic randomized experiment), the propensity score is equivalent to

random matching.

Explanation What explains the fact that the PSM paradox occurs and intensifies in

higher dimensions and with better balanced data? Why does it not occur with MDM or

CEM? Our answer is that when the predictive capacity of the logit worsens, the scalar

propensity score metric approximates random matching which, as we have shown, in-

creases imbalance. Three factors lead to this conclusion.

First, under MDM and CEM, the chosen measure of match quality is computed di-

rectly from the multivariate data sets of treated and control units. In contrast, PSM’s

two step procedure first attempts to reduce the multivariate data set to a scalar (propen-

sity score) measure, and only afterward computes the measure of matching quality. The

problem is that a great deal of information can be lost in the (unnecessary) first step.

Second, the methods pose different estimation demands: whereas CEM does not re-

quire estimation, and MDM requires only the computation of the sample covariance ma-
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trix, PSM involves a full scale (usually logistic) estimation step. When the logit’s classifi-

cation performance is poor, such as in well balanced data, PSM can approximate random

matching.

Illustration To clarify this issue, we first show how in balanced data PSM, but not MDM

and CEM, is highly sensitive to trivial changes in the covariates, often producing nonsen-

sical results. In the left panel of Figure 4, we generate data with 12 observations and

two covariates. The simulations are designed to be extreme so that the problem becomes

obvious. The graph plots one covariate by the other. The data are well balanced between

treated (black disks) and control (open circles) units, which means that each treated unit

is relatively close (even if not identical) to at least one control unit in the covariate space.

From these initial data, we generate 10 data sets, where we add to each observation a tiny

amount of random error drawn from a normal distribution with mean zero and variance

0.001. This error is so small relative to the scale of the covariates that the new points are

visually indistinguishable from the original points (in fact, the graph plots all 10 sets of 12

points on top of one another, but it only appears that one set is there). Next, we run CEM

(with automated coarsening) and MDM; in both cases, as we would expect, the treated

units are matched to the nearest control in every one of the 10 data sets (as portrayed by

the pair of points in each red dashed circle). (The light grid denotes the CEM coarsenings,

and so treateds and controls within the same rectangles are matched; MDM matches in

this example based on distances close to Euclidean.)

However, when we run PSM on each of the 10 data sets generated for Figure 4, the

four treated units are each matched to different control units (as portrayed by the maze of

green lines connecting the black disks to different open circles). PSM is approximating

random matching in this situation because it is unable to distinguish treated and con-

trol units except for the tiny perturbations. From the perspective of PSM, this may seem

to make sense because covariates that do not discriminate between treated and control

status are not confounders and so which they match to is irrelevant. However, and cru-

cially, matching on covariates that have no effect on treatment is also equivalent to random

matching, which increases imbalance on average. Thus, PSM will approximate random
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Figure 4: Ten data sets (that differ from each other by tiny amounts of random error, imperceptibly
different from each other visually) with 4 treated units (black disks) and 8 control units (open
circles). CEM and MDM match the closest control units to each treated (red dashed circles). The
two-step procedures match different control units for each data set, as can be seen for PSM (green
lines, left panel) and PS-CEM (blue lines, right panel). (The four open circles in the middle of the
right panel are never matched; lines are passing through them on the way to show how other points
are matched.)

matching and result in degraded inferences relative to not matching at all when the data

are reasonably well balanced, and the problem is exacerbated when using PSM with large

numbers of covariates.

Finally, we illustrate how the paradox results from PSM’s two-step procedure. We do

this by developing a (similarly unnecessary and ill-advised) two-step “propensity score

CEM” (PS-CEM) algorithm: first we use CEM to compute a nonparametric estimate of

the propensity score (i.e., the proportion of treated units within each coarsened stratum;

see Iacus, King and Porro 2011) and, second, we match on this estimate. The right panel in

Figure 4 is constructed the same way as the left panel except that instead of the green lines

representing propensity score matches, we now plot blue lines for the PS-CEM matches.

The result is almost as bad as PSM. The blue lines in the right panel show how in the

different (but highly similar) data sets, the two-step PS-CEM procedure matches control
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units (circles) close to and also distant from treated (closed disks) units. Thus, collapsing

to a scalar and then matching based on a scalar distance is causing the PSM paradox.

6 Concluding Remarks
Our results suggest at least seven implications for practice. First, once the actual matched

sample from any particular matching solution is known, the matching method that pro-

duced it is unimportant. Matching can be performed by any method, or even by hand, so

long as a solution on the balance-sample size frontier is found. The key to the productive

use of modern matching methods is that many matching solutions be compared, and a

final solution chosen from the diversity of possibilities on the frontier. The space graph

offers an easy method for doing this and thereby following recognized best practices.

Second, among the methods we studied, results from CEM, and occasionally MDM,

usually define the frontier. This was the case in numerous real data sets and simulations.

It is true with respect to all three imbalance metrics we evaluated. Of course, nothing

guarantees this result will hold in future data sets or that CEM dominates other matching

methods not examined in our analysis. Likely, one could improve on the results here by

adjusting or combining features of the three methods used here or others. As such, users

are well advised to use a space graph to choose a matching solution from a large number

of comparisons.

Third, we discovered a serious problem that causes PSM, as commonly used, to act

like random matching and degrade inferences, sometimes worse than the original data.

CEM and MDM do not suffer from this problem. Our conclusion is not that researchers

should necessarily discard PSM, but that it should not be used without comparing its

results with other methods, such as via a space graph.

Fourth, the recommendation sometimes given in the literature that PSM should be

used to adjust the data from (inadequately blocked) randomized experiments (Rubin,

2008a) is ill advised. In well balanced data, such as from experiments (with all propen-

sity scores near 0.5), pruning observations by PSM will often degrade causal inferences

relative to the raw unmatched data. Adjusting via some other matching method may still

be advantageous in these situations. In addition, it may be possible in some instances
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to use a space graph to chose a matching solution generated by PSM which ensures that

balance is improved; the results here suggest that using other methods are more likely

to be successful, but comparing more solutions to better identify the frontier is always

worthwhile.

Fifth, the long-standing advice in the literature to routinely use a 1/4 standard deviation

caliper with PSM to remove the worst matches should not be used without a space graph

or some other comparative approach to evaluation. This procedure will often increase

imbalance even while shedding observations; in some cases, the solution will be worse

than not matching at all. This procedure may sometimes be advisable with MDM (it is

probably unnecessary with CEM).

Sixth, notwithstanding Pearl’s (2000) argument about how controlling for certain “ir-

relevant” variables can induce bias, most applied researchers claim to have “little or no

reason to avoid adjustment for [every] true covariate” (Rosenbaum, 2002, p.76). However,

even when controlling for all available pre-treatment variables is theoretically appropriate,

our results indicate that it can lead to problems if PSM is the method of adjustment, since

PSM destroys more information in higher dimensions and thus makes the PSM paradox

more problemmatic. The advice is of course still appropriate for other matching methods.

This problem with PSM is exacerbated by the fact that performance of most classifiers

(including the propensity score regression) degrades fast with the number of covariates,

because in high dimensions the points are massively spread out and so what would have

been a somewhat easier interpolation problems in lower dimensions now require extrapo-

lation (see Hastie, Tibshirani and Friedman 2001, pp.22–24 and Beyer et al. 1998).

Finally, some researchers reestimate the propensity score logit after using PSM to

remove observations outside the common support of the treated and control groups. The

justification is that the non-common support data may be thought of as outliers, but the

use of PSM to perform this task is probably not advisable. That is, reestimation may pose

a serious problem because the remaining data will be better balanced and thus make the

PSM paradox more prominent. This problem with PSM and the others can be remedied

by the user of a space graph or other method of comparison.
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A Data
Figure 2 analyzes four data sets: (1) a Healthways data set (n = 19, 846) designed to

evaluate the firm’s disease management programs. The treatment variable includes inter-

vention via telephone, mailings, and the web, among other practices, to attempt to get

patients with chronic illnesses to follow their doctor’s advice. The outcome variable is

the number of dollars spent in caring for a patient in the year in which treatment was

administered. We match on 18 pre-treatment covariates (such as demographics, specific

chronic illnesses, prior costs, etc.) that may affect health costs and that factor into the de-

cision of who receives treatment. (2) a Call/No Call data set, designed to evaluate only the

causal effect of a telephone call by Healthways for the same purpose and with the same

outcome variable as in the first data set. This data set includes to 84,868 individuals in a

large employer-based contract with Healthways. The 41 covariates include demographics,

health conditions, prior spending, and prior interactions with the medical establishment.

(3) An FDA (Food and Drug Administration) data set collected and analyzed by Carpenter

(2002) and reanalyzed by Ho et al. (2007), designed to assess the effect of partisan control

of the U.S. Senate on FDA drug approval times. The data includes 18 control variables

to match on, including clinical and epidemiology factors and firm characteristics; it also

includes 408 new drugs reviewed by the FDA, of which 262 were eventually approved.

Finally, (4) a data set introduced by Lalonde (1986), and cleaned and subsetted by De-

hejia and Wahba (2002) to evaluate a 12-18 month job training program, and used as an

example throughout the methodological literature on matching. These data include 297

treated units, 2,490 controls, and 10 pre-treatment covariates including demographics, and

unemployment and earnings history.
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