Additional Resources

Arabic Text Analysis Workshop, Cairo University, March-April 2019
Rich Nielsen

rnielsen@mit.edu

nielsen.rich@gmail.com

Last updated: 5/15/2019

The following document responds to questions from the participants in the Cairo University
workshop.

Facebook Data

After the American election in 2016, Facebook changed its APl data access because of the
Cambridge Analytica scandal. When | last checked in November 2018, there was no easy way
for an individual researcher to use the Facebook API to get data. The best way for academic
researchers to get data is by submitting a data request through Facebook’s academic
collaboration: Social Science One. https://socialscience.one/. | have not made any requests
myself, so | cannot advise on how to be successful, but | am happy to help review a request you
wish to make.

Twitter Data

A limited amount of data from Twitter is available through their API. You will need to sign up
for a developer account (as if you were making an app). Here is a YouTube video that explains
(though I have not watched it all): https://www.youtube.com/watch?v=-jvPDfz--I8

| have added a Twitter example at the end of the tutorial code.

R and R GUIs

R comes with a basic GUI for both Windows and Mac. | like the Windows version and use it
myself. But | do not like the Mac version very much. Instead, | use RStudio, which is a free GUI
for R that has additional functionality. Although the appearance is different, the results are the
same. [UPDATE: | learned that the Mac version of R cannot generally display Arabic text in
figures. The problem seems to be deep and | do not have a solution.]

Displaying Arabic correctly in RStudio
To display Arabic correctly in a script in RStudio, you must open it with the UTF-8 Encoding.

How to find examples of research using text analysis?

Scholars usually cite papers but do not cite software. Check Google Scholar citations to
Grimmer and Stewart 2013 (“Text as data: The promise and pitfalls of automatic content
analysis methods for political texts”):
https://scholar.google.com/scholar?cites=10738245560487335638

The STM website lists some papers that use the structural topic model software:
https://www.structuraltopicmodel.com/

mailto:rnielsen@mit.edu
mailto:nielsen.rich@gmail.com
https://socialscience.one/
https://www.youtube.com/watch?v=-jvPDfz--l8
https://www.cambridge.org/core/journals/political-analysis/article/text-as-data-the-promise-and-pitfalls-of-automatic-content-analysis-methods-for-political-texts/F7AAC8B2909441603FEB25C156448F20
https://www.cambridge.org/core/journals/political-analysis/article/text-as-data-the-promise-and-pitfalls-of-automatic-content-analysis-methods-for-political-texts/F7AAC8B2909441603FEB25C156448F20
https://scholar.google.com/scholar?cites=10738245560487335638
https://www.structuraltopicmodel.com/

Arabic Text Analysis in Python

| wrote a script to stem and transliterate Arabic in python. It is an older version of the
arabicStemR package in R. The script is linked on my website:
http://www.mit.edu/~rnielsen/helpful.htm and the code itself is on github:
https://github.com/ChristopherLucas/txtorg/blob/65876dfb56a0b947df8a856bb0896a7e41e3f
38c/textorganizer/nielsenstemmer.py

| sometimes work in both Python and R for text analysis. Python has excellent string
manipulation commands via regex, and is faster at processing large numbers of documents. It
is also much more sophisticated at web scraping. However, | find data analysis in python to be
hard. There are now libraries for some statistical models, but not as many as R. My usual
workflow is to do text collection with python and analysis in R. You can find any mix that works
for you.

Information about arabicStemR
The manual for arabicStemR is here: https://cran.r-

project.org/web/packages/arabicStemR/arabicStemR.pdf. It is somewhat helpful, but not
exhaustive.

Transliteration
Arabic letter | Transliterated

Cleerfre | b2 6| G |G (G |G | e [e e e e | | G |6 | -
+~|O|w|N[d|O|v|S|v |N|s |—|a|x|N[—|C|l~+|T|>|o

http://www.mit.edu/%7Ernielsen/helpful.htm
https://github.com/ChristopherLucas/txtorg/blob/65876dfb56a0b947df8a856bb0896a7e41e3f38c/textorganizer/nielsenstemmer.py
https://github.com/ChristopherLucas/txtorg/blob/65876dfb56a0b947df8a856bb0896a7e41e3f38c/textorganizer/nielsenstemmer.py
https://cran.r-project.org/web/packages/arabicStemR/arabicStemR.pdf
https://cran.r-project.org/web/packages/arabicStemR/arabicStemR.pdf

3 Q
< K
J I
e m
8] n
° h
3 w
¢ Y
| a
) a
3 o]
] 5
¢ q
| a
5 0
< p
° h
< k
& t
J n
< y
S y
| a
1 [
4 h
& y
& y
X k
S k

Stop words removed by default in stem() and removeStopWords()

Prepositions
n‘;su ,"f‘ﬁ—}é" "'L@.}é" "'4_.1\5" ,u‘;éu,
"Lg...}k;" ,"A\:ﬁr_" ’"L':;:Ss" ,u S”! " ’"d;:k;"’
"\‘lﬁ—.‘“ ,"66—.‘“ ’IILG_JII ’ud‘_.‘ll ’"‘._5&:" ’II “] "’
IIL.)A:‘II ’IILA:‘II ’udst‘u ,“?S:‘" ’lldt‘ll ’Ildlh:‘"’
llwll ’lchll ’"eeJ" ,lltéll ’"d" ,“L-'\:\II,
"LG_.\.G" ,“4—.\0“ ’"L.\.G" ’"U.c“ "'e@_&d“ ’“LG_LA"’
lléﬁll ’"é‘sé" ,"‘;\A" ,ll&;ﬂll ’“ee...\.c",
"C‘)Li" ’“eLA\" ,uéuiu ’ueuiu ’"A._\.'\L_;_)"’
lle.-c‘)n—.‘“ ’lle.-chl ,"LJP" ’II&PII ,“GJ&L}",

MNAT et Mt Mt e
G U T T Y
";\J " ,";\Jy&\" S M gt
"ds\" L.ute“ uSl ,"OJJ-.'" Lm
II‘)::‘S\" ,Ildg‘ll

Pronouns
meWsat Mall Mlld™ Mola" M,
"oliehaa" Molaat el o MW s
e Mlaat el L) "um"
"ot }@_u\" negi e \" me

e-u\" Ile-u\" "O;J ‘EQ (SQ)A ,

?@AII HPGJ" "eA" "(QA" lle-u\" "e.-‘-‘\"

MAl“" ,"u\.\l“" ,“Lﬁsﬂ\“ ,ll‘fnll ’"(‘SA}"’
Ilu;fﬁj‘ll ’"Ow\ll

Particles and connectors

MGt A Mg e e

G PR P "LA@J\" "agdl",

Mgl Magdl" Mg gt " \"

RS "(,54\" M el u\" Rl

o i) g ,"u\ " "'Lu\" el

el O e

A el Magal™ Mgl st

na ";\" "LA@J\" Magdl" Ml

ny ,"\;3 S ,"uy' A A

MISLE IR I A A

Mg gl g MM YT I Y,

A AR R

R A L A

ML M g g g g

LA WL DU LR R W

MO MOV MLt LSt Mg

Mgy sy A Mg v
A" YT Ayt Moy "eg—'!‘\J"

1" MY Mg L "

LG.JSS" ,"A_\S]" ’llusj L "usj" ".JM"
"M" ,“(si)}t—}“ ,"(‘SQJH ’"MII "(‘SG-\SS ,
"L‘ﬂUA" "L-.‘A n llésll Ilumll "E“_L\;"

7

"DJ" ’"‘5 Il "LSJII ’" " ,“Q—!‘J“ ’" Il,
"OA§" ’"L.As" ’"}G-s" "\J«_ﬁ" “LAJ‘" ,"LJ”"’

Il\'ASII ,ll;\y}@é" ’"dA " ,lld@" ’"LA;}s"’
"uA" ,llm" ,“O&S" ,"‘:JLA]" ,"L‘ﬂl.l‘"’
"L‘ﬂ.‘" ’"1 - n ’"1 - n ’"(‘;SA.A" ,"L‘ﬂ_.\A",

"?AA.'\CH ’umu ,“dA}" ,“LA}" ,uwu ,")X)"
"O..J‘“ ’ud_-u:u ’u\ . n ,“L.'\A.'\c“ ’llum",
g ,Ileﬁj" ,ues_-‘uu ,uuuu ,ll‘é"ﬂ\n’

"gﬂ:\é" ’IILAEII ;"?E" 1“?55“ ’"dg" ,"dSé"’
"\..Aé" ,"?S:‘é"

’

Prefix removal

Only one prefix is removed. They are evaluated in this order — after the first prefix match is
found and removed, the stemmer moves to the next word.

"dI" if >= 4 characters
"JIs" if >= 5 characters
"Ju" if >= 5 characters
"J&" if >= 5 characters
"J@" if >= 5 characters
"J" if >= 5 characters

n.n

3" if >= 4 characters
Prefix removal

Only one prefix is removed. They are evaluated in this order — after the first prefix match is
found and removed, the stemmer moves to the next word.

"W" if >= 4 characters
"oI" if >= 4 characters
"< if >= 4 characters
"us" if >= 4 characters
"o" if >= 4 characters
"4" if >= 4 characters
"i," if >= 4 characters
"s" if >= 3 characters
if >= 3 characters
"@" if >= 3 characters

nen
o

Is there a way to turn off parts of the stemmer without programming?

Sort of. In the commands “removePrefixes()” and “removeSuffixes()”, you can specify how long
a word must be in order to remove the stem. If you set this number very high for a specific
prefix or suffix (i.e, Inf), it will not remove that prefix or suffix. However, this is inside the
stem() function. You would have to combine your own custom stemmer from the internal
parts, which does require programming. | have an example with code here:
http://www.mit.edu/~rnielsen/r%20stemmer%20example website.R

http://www.mit.edu/%7Ernielsen/r%20stemmer%20example_website.R

How can | see what the stemmer is doing?

In the code, | created an object called “stemListHolder.” This object is a list where each
element is a vector. In each vector, each element is a stem, and the name of the element is the
original word. We can use this to see exactly what the stemming did to any word in the corpus.

Assuming the stemListHolder object is in the memory, the code below makes the calculations
(note, | have added this code to the tutorial).

How many words were stemmed in some way?
table(unlist(lapply(stemListHolder, function(X){x!=names(x)})))

How many unique words are there without stemming?
length(unique(names(unlist(stemListHolder))))

How many unique words are there with stemming?
length(unique(unlist(stemListHolder)))

Get the suffixes and prefixes for the daeyat
suffixesAndPrefixesHolder <- c(Q)
for(J in 1l:length(stemListHolder)){
print(paste(j,"of", length(stemListHolder)))
suffixesAndPrefixes <- c()
if(length(stemListHolder[[Jj]1])==0){next}
for(i in 1l:length(stemListHolder[[J11)){
stemmedunit <- stemListHolder[[J]11Li]
suffixesAndPrefixes <-
c(suffixesAndPrefixes,strsplit(names(stemmedunit),stemmedunit)[[1]])

}
suffixesAndPrefixesHolder[[j]] <- suffixesAndPrefixes[-
which(suffixesAndPrefixes==""")]

Table the result so we have counts for each prefix and suffixe

suffixesAndPrefixesTab <- sort(table(unlist(suffixesAndPrefixesHolder)))

List them one by one (because the Arabic names get reversed

1T we print the table all together)

for(i in 1l:length(suffixesAndPrefixesTab)){
print(suffixesAndPrefixesTab[i])

}

Add bigrams to a dtm

(note, | have added this code to the tutorial).
Add bigrams to the dtm

mybigram <- "nad zmalk"

To count a single bigram, you could do this and add the column to the DTM
unlist(lapply(str_extract_all (dat$text,mybigram), length))

To add a single bigram to all documents, you could do this and paste it to the
documents before making a DTM.
unlist(lapply(str_extract_all(dat$text,mybigram),paste,collapse="" "))

dat$bigramText <- paste(dat$text,
unlist(lapply(str_extract_all(dat$text,mybigram),paste,collapse=" '")))

1T we wanted to learn ALL of the bigrams around a particular stem
we can do something more complicated

myunigram <- "‘nad"

textBigrams <- rep(NA, length(dat$text))
for(i in 1:length(dat$text)){
mydoc <- dat$text[i]
if(length(grep(myunigram,mydoc))>0){
bigramsl <- str_extract_all(mydoc,pasteO("'[0-9a-zA-z]+ [0-9a-zA-
z]*" ,myunigram, " [0-9a-zA-z]1*""))[[11]
bigrams2 <- str_extract_all(mydoc,paste0("'[0-9a-zA-z]*" ,myunigram, ' [0-9a-zA-z]*
[0-9a-zA-z]+"))[[11]
bigramsl <- pasteO(sapply(bigramsl,function(x){strsplit(x,” ")[[1]11[1]1})." -
", myunigram)
bigrams2 <- pasteO(myunigram,'-",sapply(bigrams2,function(X){strsplit(x,""
"LI111213))
textBigrams[i] <- paste(paste(bigramsl, collapse=" "), paste(bigrams2, collapse=""
"))
} else {
textBigrams[i] <-
}
3

We can look at what bigrams there are
sort(table(strsplit(paste(na.omit(textBigrams),collapse=" ")," ")[[111))
We could append these to the original documents before making

the dtm

dat$text2 <- paste(dat$text,textBigrams)

Then we would make the dtm with "dat$text2”

What is next after this workshop?
| recommend trying to do a project. Experience is the best teacher.

There are many resources online for learning more:

- A set of talks given at a “Text as Data” workshop in 2010.
https://toolsfortext.wordpress.com/readings-and-software/

- Justin Grimmer’s “Text As Data” class materials are available here:
https://www.justingrimmer.org/teaching.html

- See day 3 of this short course: https://compsocialscience.github.io/summer-
institute/2018/teaching-learning-materials

- There are a number of books on text analysis in R:
https://www.tidytextmining.com/

- There are papers that explain text analysis in R:
https://kenbenoit.net/pdfs/text analysis in R.pdf

- There are websites with examples for various R resources:
https://quanteda.io/

But really, | recommend diving into a project and learning to search on the web for materials to
learn the skills you need for that project.

https://toolsfortext.wordpress.com/readings-and-software/
https://www.justingrimmer.org/teaching.html
https://compsocialscience.github.io/summer-institute/2018/teaching-learning-materials
https://compsocialscience.github.io/summer-institute/2018/teaching-learning-materials
https://www.tidytextmining.com/
https://kenbenoit.net/pdfs/text_analysis_in_R.pdf
https://quanteda.io/

