
Knowledge mechanisms in
IEEE 1471 & ISO/IEC 42010

Rich Hilliard
r.hilliard@computer.org

Two Themes

• Knowledge mechanisms in IEEE 1471 and
ISO/IEC 42010

– 2000 edition and on-going revision

• Toward a (bigger) picture of Architectural
Knowledge (AK)

IEEE Std 1471™

• First formal standard for architecture
description (2000)

• Now an international standard (2007)

• IEEE & ISO joint revision as ISO/IEC 42010
Systems and Software Engineering —
Architecture Description

IEEE Std 1471™

• Built on an explicit ontology*

• Focused on descriptions not concepts

– “the map is not the territory”

– the blueprint is not the architecture

*Ontology, epistemology, meta model, conceptual framework, ...

Knowledge mechanisms

• knowledge mechanism: a means of capturing
knowledge

– just as we distinguish Architecture from
Architecture Description

– let’s distinguish what we know from how
we capture it

Standards

• Every standard is a knowledge mechanism

• A standard reflects a community
consensus, creating a filter on the world
through its definitions and establishing rules
on what to do when its definitions apply

Core Ontology

As important as what an
ontology says is what it omits.
IEEE 1471 takes no stand on
what is a system.

Mechanisms

• (Architecture-related) System Concerns

• Stakeholders

• Views and Models

• Viewpoints and Model Types

System Concerns

• “area of interest in a system pertaining to
developmental, technological, business,
operational, organizational, political,
regulatory, social, or other influences
important to one or more of its
stakeholders”

Separation of Concerns

“Let me try to explain to you, what to my taste is characteristic for all
intelligent thinking. It is, that one is willing to study in depth an aspect of
oneʼs subject matter in isolation for the sake of its own consistency, all
the time knowing that one is occupying oneself only with one of the
aspects. We know that a program must be correct and we can study it
from that viewpoint only; we also know that it should be efficient and we
can study its efficiency on another day, so to speak. In another mood
we may ask ourselves whether and if so: why, the program is desirable.
But nothing is gained—on the contrary!—by tackling these various
aspects simultaneously. It is what I sometimes have called “the
separation of concerns”, which, even if not perfectly possible, is yet the
only available technique for effective ordering of one's thoughts, that I
know of. This is what I mean by “focussing oneʼs attention upon some
aspect”: it does not mean ignoring the other aspects, it is just doing
justice to the fact that from this aspectʼs point of view, the other is
irrelevant. It is being one- and multiple-track minded simultaneously.

— E Dijkstra, 1974

System Concerns: Examples

functionality, performance, reliability, security,
information assurance, complexity, evolvability,
openness, concurrency, autonomy, cost,
schedule, quality of service, flexibility, agility,
modifiability, modularity, inter-process
communication, deadlock, state change,
subsystem integration, data accessibility,
distribution, persistence, safety, ...

Stakeholders (of a system)

• Individual, team, organization (or classes
thereof) holding concerns with respect to a
system

Role of Stakeholders and
Concerns

• architecture: “fundamental conception of a
system in its environment...”

• Stakeholders + Concerns = Environment

Viewpoints

• viewpoint: the conventions for constructing,
interpreting and using a view

• A way of looking at a system

Specifying a Viewpoint

• concerns framed by the viewpoint

• languages, notations, model types used

• methods, heuristics, patterns, guidelines

• new: correspondences (with other
viewpoints)

Viewpoints

• A Viewpoint is the legend for the map that
is the View

• We “invented” viewpoints because we
couldn’t pick one set

• Inspired by Ross 1977, RM-ODP, Finkelstein
et al.

Viewpoints à la Finkelstein et al.

Each viewpoint is composed of the following components, which we call
slots:

• a representation style, the scheme and notation by which the viewpoint
expresses what it can see;
• a domain, which defines that part of the “world” delineated in the style;
• a specification, the statements expressed in the viewpointʼs style
describing particular domains;
• a work plan, describing the process by which the specification can be
built;
• a work record, an account of the history and current state of the
development.

A. Finkelstein, et al., “Viewpoints: a framework for integrating multiple
perspectives in system development,” International Journal of

Software Engineering and Knowledge Engineering, 1992.

Architecture models

• A view is composed of models determined
by the viewpoint

• Models allow sharing between views

New mechanisms (proposed)

• models and model types: finer-grain reuse

• model correspondences and rules: linking
views

• codifying architecture frameworks: for
large-scale reuse and sharing

• rationale and decision capture

Model Correspondences

• In 2000 edition, we knew consistency
between views is an issue but did not
specify a mechanism

• Revision introduces

–model correspondences and

–model correspondences rules

Architecture frameworks

• architecture framework: conventions and
common practices for architecture
description established within a specific
domain or stakeholder community

• Most architects work within a framework
determined by their organization or
client

Specifying an architecture
framework

• a set of concerns

• typical stakeholders

• viewpoints

• model correspondence rules

Conformance

• An architecture description can conform

• An architecture framework can conform

• An AD can conform to a framework

• Proposed:

– architecture viewpoint

– architecture description language

Rationale and Decision Capture

Two AK Myths

• “Architecture descriptions are all about
components and connectors”

• “Views don’t capture decisions”

Two AK Myths

• Components and connectors are one
possible viewpoint when using IEEE 1471

• Every view shows decisions, assumptions,
constraints, ... based on the concerns it
addresses

Rationale and Decisions

• Minimal treatment of rationale in 2000
edition

–We’ve learned a lot since then, thanks to
SHARK and others!

• Vague musing during IEEE 1471
development about decisions...

IEEE 1471 (early draft)

5.3.8 Decision
The decision viewpoint documents the
decisions about the selection of elements or
their characteristics.
This viewpoint records the rationale for
architectural choices. Typical models include:
• Mission utility
• Cost/Capability tradeoffs
• Element performance tradeoffs

A very early draft of IEEE 1471 (draft 1.0, dated
February 1998) contained a “Decision Viewpoint” that
began:

Architect’s Intent

R. Hilliard and T. B. Rice, “Expressiveness in architecture description languages” Proceedings of
the 3rd International Software Architecture Workshop, 1998.
A. Burns and M. Lister, “A framework for building dependable systems” The Computer Journal,
1991.
P.E. London and M. Feather, “Implementing specification freedoms” Science of Computer
Programming, 1982.

View Template: What readers need to know
about each view

Purpose
Scope
Selected Viewpoint
Key needs
Assumptions
Key Decisions

Commitments
Consequences

Obligations and Freedoms
Open Issues

commitments:
decisions a designer is not at liberty to change
obligations:
lower-level decisions a designer must address
freedoms:
things left to the implementation

Decision and Rationale in 42010

Based on input from SHARK
2007.

Styles of Decision Capture

• Annotations (as in Hilliard-Rice, 1998)

• Decision viewpoint: decisions are elements
of the view with their relations (as in
KCD*)

• Decision models: require each view to
contain a decision model, relate elements
of these models as in KCD

* Kruchten, Capilla, & Dueñas, “The Decision View’s Role in Software
Architecture Practice,” IEEE Software, March/April 2009.

a 6-dimensional Calabi–Yau manifold
(Wikipedia)

Toward a Bigger Picture of
Architectural Knowledge

Dimension: Levels

• System:

– views, models, correspondence

• Organization, Community

– viewpoints, model types correspondence
rules,

Dimension: Areas of Interest

• System Concerns

• Disciplines, Domains, Implementation
Technologies, ...

Dimensions: Social and Intentional

• Stakeholders have concerns

• Social:

– actors, roles, duties, institutions, ...

• Intentions:

– interested in, requires, needs, has as goal,
decides, ...

Dimension: Forms

• Declarative (know that):

– definitions, facts, principles, concepts,
models, descriptions, artifacts, ...

• Procedural (know how):

– strategies, techniques, methods,
guidelines, ...

Challenge problem

The problem

• Styles, patterns and viewpoints: how are
they the same? different?

• Compare and contrast as 3 mechanisms in
active use for capturing architectural
knowledge

• Extra credit: perspectives, view types

A theory of AK should offer insight
into ...

• How are they the same?

• Are they interchangeable?

• What are differences?

• When to use each?

• Conditions on applicability?

• How do they interact, compose, interwork?

For more information on
IEEE / ISO/IEC 42010

• Visit website, join users email group

• To participate in revision:

– become an IEEE reviewer, or

– join your ISO national member body

http://www.iso-architecture.org/ieee-1471/

Backups

Architectural Patterns

• The Name of the pattern

• The Problem which the pattern attempts to solve

• The Rationale provides a justification for the pattern

• The particular Context which the pattern solves a problem

• Forces (or tradeoffs)

• The Solution describes the structure and behavior of the result, and/or how
to achieve that result

• Examples (and Visual Analogies) help explain the pattern

• Resulting Context (or, Force Resolution) explains what forces (issues and
properties) the pattern leaves unresolved, and what other patterns might be
applied to resolve these remaining issues

Source: “Gang of 4” book

Architectural Styles

• Vocabulary: What are the types of elements in the style? What relationships
do they have? What are their properties? What are the rules of composition
that determine how the vocabulary can be used?

• Semantics: What computational model do these elements support?

• Analyses: What forms of analysis are supported by the style?

• Implementation: What are the implementation strategies that allow one to
produce an executable system?

Source: Clements et al., Views & Beyond book

Architecture Viewpoints

• Architectural concerns framed by the viewpoint;

• Stakeholders to be addressed by the resulting view;

• Resources: the model types, notations, language, modeling techniques, or
analytical methods used;

• Associated operations: consistency or completeness checks associated with
the underlying method to be applied to models within the view; any
evaluation or analysis techniques to be applied to models within the view;
and any heuristics, patterns, or other guidelines which aid in the synthesis of
an associated view or its models

Source: ISO/IEC WD4 42010

What do we mean,
architectural knowledge?

• Knowledge vs practice:

• Competence and performance:

• “Things” architects need to know

