
On representing variation

Rich Hilliard
r.hilliard@computer.org

Updated: 18 April 2012

Abstract

Although primarily studied in the context of product lines, variability is a
key fact about most systems and therefore a concern for the architectures of
those systems. Thus it is essential for the Architect to have suitable tools for
representing, managing and reasoning about variation. Most work on product
line variation has focused on the variability of components and their connec-
tors within an architecture. Meanwhile, Architects today often use multiple
viewpoints to frame diverse stakeholders’ concerns for an architecture. How
can variation be expressed within the representational paradigm of multiple view-
points? This paper uses a simplified model of variation reflecting current prac-
tice and explores the consequences of that model for the representation of
variation as a part of architecture description, using the conceptual foundation
of ISO/IEC/IEEE 42010 (the revision of IEEE 1471:2000) and poses a number
of questions for discussion at the VARI-ARCH workshop.
Keywords: architecture description, concerns, variation, features

I have taken my ECSA 2010 paper for VARI-ARCH and added some of notes in
Green.

Working Notes

1. Variation is a concern every architect may face; not just product lines.

2. Any architecture elements can vary; therefore representation of variation
should be “orthogonal” to (representation) other concerns, but intimately
related.

3. Is the “simple model” in this paper a starting point? What is missing or
needs to change? What is needed to make it practical?

4. How do Features relate to Concerns? How do Features relate to AD Ele-
ments? Can we enhance a picture like this (figure 1)?

5. If each Variation Point is a place of a possible Decision (or “decision
point”?), how can work on Variation utilize existing work on Architecture
Decisions and Architecture Knowledge?

1

mailto:r.hilliard@computer.org


Figure 1: 42010 Model of Decisions

1 Introduction

Variation has been studied for a number of years, largely in the context of product
lines and product families, however it is a key fact of most, if not all, systems
and therefore a relevant concern for the architectures of those systems. In these
systems, variation arises for the same reasons it does in product lines; including: to
defer decisions about design or implementation; to support multiple deployments;
to achieve system qualities such as adaptability.

If variation is widespread, then its explicit representation is probably a Good
Thing. As with so many other properties of systems, we observe that identifying
and managing variation early in the life cycle of a system-of-interest (whether a
single system, product line, product family, system of systems, or other ensemble) is
preferable to discovering and attempting to address variation in that system much
later in its life cycle [11].

Given its pervasive nature, it seems every Architect should have tools for deal-
ing with variation in her toolkit. Therefore, this paper focuses on the representation
of variation from an architecture perspective. However, whereas most work on vari-
ation within product lines has focused on the variability of components and their
connectors within an architecture [1], Architects today often use multiple view-
points to frame diverse stakeholders’ concerns for an architecture. The question I
would like to pose for the workshop is:

How is variation to be expressed within the representational paradigm of
multiple viewpoints?

In the remainder of this paper, I explore the question of representing variation
using as context the conceptual foundations of architecture description presented
in ISO/IEC/IEEE 42010 (originally IEEE 1471:2000) [I have updated citations
to refer to the published version of the Standard; quoted text and diagrams

2



have been updated to that version.] with the intent of suggesting a framework for
addressing this issue at the workshop.

The next section presents a brief overview of those foundations, section 3 sug-
gests a simplistic model of variation and section 4 is an initial exploration of ways
in which variation might be captured within that model of architecture description.
The Summary section poses a number of specific questions for the workshop.

2 On Architecture Description

As basis for discussion, I use the conceptual foundations of ISO/IEC/IEEE 42010,
Systems and software engineering — Architecture description [7]. ISO/IEC/IEEE 42010
is the joint ISO and IEEE revision of IEEE Std 1471TM:2000, Recommended Practice
for Architectural Description of Software-intensive Systems [6].

ISO/IEC/IEEE 42010 attempts to codify best practices in architecture descrip-
tion. It does this by defining a conceptual model (or metamodel) of architecture de-
scriptions: a content model for architecture descriptions (ADs); and, in the newest
version, extends these ideas to the specification of architecture frameworks and ar-
chitecture description languages (ADLs). Most of the observations in section 4 will
apply to all three of these constructs.

The conceptual model in the Standard provides a general syntax and semantics
of architecture descriptions, which I briefly summarize here.

An architecture description (AD) is an artifact specifying a particular architecture
of a system-of-interest (which may be a software application, an individual system,
a product line, system of systems, etc.).

Reflecting contemporary practice, within ISO/IEC/IEEE 42010, an AD is com-
posed of multiple architecture views. A view addresses one or more system concerns
relevant to some of the system’s stakeholders. A view is composed of one or more
models. A key requirement in the Standard is that each view in an AD must com-
pletely depict the system with respect to those concerns.

Each view is defined following the conventions of an architecture viewpoint. The
viewpoint determines the notations and model kinds used for that view to enable
the expression of the architecture in a manner that addresses a set of concerns for
its audience of stakeholders.

Reflecting the breadth of what the Architect must deal with, concerns, as de-
fined by the Standard, are meant in the widest possible sense:

concern – interest in a system relevant to one or more of its stakehold-
ers
NOTE: A concern pertains to any influence on a system in its environ-
ment, including developmental, technological, business, operational,
organizational, political, economic, legal, regulatory, ecological and so-
cial influences.

In the latest edition, the basic ideas for specifying an architecture description
have been generalized to enable users of the Standard to also specify architec-
ture frameworks [5] and architecture description languages (ADLs) – each being a

3



mechanism that pairs stakeholders and concerns with viewpoints and model kinds
capable of framing those concerns.

While the core meanings of these constructs are established by the Standard,
there is great flexibility for end users of the Standard (i.e, Architects) in the identi-
fication of stakeholders and concerns, and in the formulation of specific viewpoints
and model kinds suitable to particular systems, application domains or other con-
siderations – such as how to represent variation! The Standard is defined with the
expectation that its users will extend its constructs by defining new viewpoints:
each new viewpoint may have its own models, viewpoint languages, notations, as
needed to express critical concerns. Therefore, the exact semantics of any particu-
lar AD is dominated by semantics of the viewpoints and model kinds used therein.

The core conceptual model is illustrated in figure 2.

Figure 2: Content model of an architecture description (from ISO/IEC/IEEE
42010)

In addition to the constructs discussed above, ISO/IEC/IEEE 42010 adds a ba-
sic notion of AD element: any construct occurring in an AD; and a notion of corre-
spondence and correspondence rule for expressing relations between such elements.
Correspondences can be used to capture a wide variety of relations within an AD,

4



including dependency, traceability, and transformation [4].

3 On Variation

Variation has been typically studied in the context of product lines and product
families. In these situations, one wants to capture commonality: what is the same
across products and variation: how and when should the products be different.
However, variation is not limited to product line and product family situations;
the Architect encounters many situations where variation is present and must be
expressed. These situations include variations due to: deferral of design decisions
and the resulting choices among one or more alternatives; configuration of “single
systems” for customization; multiple deployment, operation and/or maintenance
scenarios; planned evolution of a system over its life cycle or even within a mode
of operation; self-? systems, etc. Within the product line context, a wide range of
such situations have been studied and taxonomized (see for example [3, 9]).

Variation is pervasive throughout the system life cycle, its processes and result-
ing artifacts. It is in no way the exclusive interest of Architecture. Although this
paper is focused on Architecture, specifically on ADs and the linkages to proxi-
mate artifacts related to architecture – recognizing key considerations and linkages
between AD and other areas, including “upstream” variation requirements which
might lead to variations captured in an AD and “downstream” AD variations lead-
ing to Design, Implementation, Operations – its observations (if useful at all!) may
offer insights outside Architecture.

There are two artifacts frequently used in modeling variability: feature models
and variation models.

3.1 Features and feature models

In product line engineering, variation is often characterized in reference to fea-
tures: a feature being any stakeholder-relevant characteristic of a system. Features
express commonalities and potential variations. Features and admissible combi-
nations of features are often recorded using feature models [11]. Feature models
express these combinations using trees, AND/OR connectives, mandatory/optional
attributes and other constructs.

3.2 Variation points and models

Another common modeling approach uses variation points. A variation point speci-
fies where a decision is to be made; including the how, when and where a variation
may be introduced. A variation may be described by one or more variations points.
Associated with the variation point will be one or more variants: alternatives which
may be realized. Associated with each variant, one might incorporate conditions:
what facts must hold to use this variant; and a binding time: when the variant may
be applied [2].

5



Conditions may be expressed logically, as combinations of choices, values of
parameters, in terms of dependencies, etc. The scope or context of variation is
important – e.g., Bachmann and Clements make the distinction between essential
versus local variation. When representing variation, capturing this context is criti-
cal to aid realization. A variant must tell us what is varied – let’s call this the variant
body. This may be an attached process description, a model or other artifact, de-
scribing the outcome or “recipe” for realizing this variant. Finally, the realization of
a variant may introduce dependencies on other elements. This should be captured
in the variation model, too.

Figure 3 summarizes this simple model – pervasive in the literature.

Figure 3: Simplistic model of variation

4 Variation in Architecture Description

This section looks at variation within the context of architecture description, specif-
ically the conceptual framework offerred by ISO/IEC/IEEE 42010.

4.1 Sources of variation

The first thing to observe, is that from an Architect’s perspective, any of the con-
structs captured in an AD may meaningfully vary for a given system-of-interest. One
can imagine a system with varying stakeholders, varying concerns, and therefore
varying viewpoints, views, models and elements.

6



Stakeholders may vary in kind: change of stakeholder, or in degree: e.g., casual
users versus power users. Within an AD, the consequences of stakeholder variation
would potentially include varying concerns, viewpoints, and models, as well as
their constituents. I am not aware of approaches to variation that address this
dimension of stakeholder variation.

Varying concerns is a general expression of a wide range of cases which are
beginning to be studied in the product line community, such as variability among
qualities, and varying levels of quality [10]. In the Standard, concern is inten-
tionally very general to cover many familiar categories including quality attributes,
non-functional requirements, developmental and operational issues, etc. Because
concerns are first-class entities in the Standard, their expression is necessary.

One can discern two broad cases among stakeholders: those concerned with
variation and those concerned with implementing and managing the outcome of a
particular variation. Metzger et al. discuss this distinction in other terms [9]. In
the first case, without getting reflective, variation itself is a concern for some stake-
holders. While in the second case„ stakeholders are interested in implementing,
overseeing or using the implementation of particular variants and others will want
to reason about the consequences of those selections.

I would observe that the feature models already in use treat variation as a
concern, attempting to capture all permissible variation in one place:

This approach assumes that the feature model plays the exclusive role
of gathering and representing all variability aspects of a system (or a
family thereof) in one central variability view ([?]). This, however,
implies that, since they must potentially accommodate a wide diversity
of feature types (such as behavioral, structural or data), feature models
necessarily have little to say about the meaning of the variability they
represent. [10, Liaskos, et al., 18]

As an Architect, I am agnostic as to whether a feature model is an architecture view,
or an input to Architecting, but will make these observations:

• For many stakeholders, a feature model would be more than enough infor-
mation about an architecture.

• We should ask where the vocabulary used to name and describe features
comes from. It is clearly more than just requirements, and equally clearly
less than design. Taking the definition of feature seriously: any stakeholder-
relevant characteristic may be a feature; therefore, I would posit that any AD
element in any viewpoint language may express a feature. Of course, some may
be much more interesting than others, and many “features” may be aggrega-
tions of AD elements. A consequence of this is that the basic partitioning of
an AD by its viewpoints lends itself to creating the context for each feature.

In this regard, there is probably useful work to be done among the communities
interested in goals, intentions, dimensions of variation, concern spaces and archi-
tecture concerns in the sense of the Standard. The strict structuring into trees

7



often used for goals and some variation models may be too strict for this general
case. Experience in Architecting suggests the relations are more complex and do
not typically have a single “root” due to multiple stakeholders, conflicts, etc.

4.2 Expressing Variation

Given the simplistic model of variation shown above, we can now look at possible
kinds of variation.

The first thing to notice is that if we capture a variation as in figure 3 then
potentially anything in an AD might be in the vocabularies for a Condition, or
might occur in a Body; i.e., anything in the AD could be a source of variation or a
target of variation.

The Binding time in an AD may be within the AD, i.e., the variant expresses
changes to be realized within the architecture; or may be realized downstream:
during Design, Implementation, Deployment, Installation, Operation (or beyond:
one can imagine system retirement options, especially for critical systems). Often,
the binding time will be obvious from the variation point’s context, which will be
expressed by the model or view to which it refers (e.g., an operational view is
unlikely to contain a design-time variation point).

It is critical to capture the dependencies among variants. Within the context of
architecture description, dependencies would (hopefully) already be part of each
viewpoint language, and should therefore be available for expression of variant
dependencies. For cross-model and cross-view dependencies, correspondences can
be used.

Finally, wherever there is no variation (point) in an AD, the reader can assume
there is commonality!

4.3 Implementing Variation

Given the scheme for architecture description in ISO/IEC/IEEE 42010, there are
several possible approaches to implementing variation constructs within the the
Standard:

1. a variation viewpoint, for defining a single view within an AD where all
variation-related information resides;

2. a variation model kind, which can shared over multiple viewpoints; packaging
all variation points relevant to each view into a model within that view;

3. a global, viewpoint-neutral variation notation or annotation scheme, (building
on the body of existing knowledge of AND/OR trees, mandatory/optional fea-
tures) which may be utilized wherever needed within each/any view/model;

4. Unique, idiosyncratic approaches to variation for each viewpoint or model
kind where variation may arise.

8



At this point in time, I see no basis on choosing a single implementation ap-
proach, and the needs of various Architects and systems may lead to preferring
one or another in individual cases. Analogs to each can be found in the existing
literature. For example:

Thiel and Hein use a feature model and a variation point viewpoint (although
they do not call it that) with one or more architecture views in the spirit of IEEE 1471
to express variation [11].

KumbangSec defines four kinds of variability, each associated with a defined
viewpoint: functional, security, component and connector, and deployment vari-
ability [10, Myllärniemi, et al., 61]

More than one researcher has observed the similarity, synergy of variations
and aspects [10, Kim, et al., 37ff]. In ISO/IEC/IEEE 42010, model kinds can be
used for aspect-style Architecting, and for “packaging” portions of an architecture
description in general.

Mens et al. show how change can be represented in a first-class manner in terms
of resemblances and replacements [8]. Their language could be a candidate of the
third type, a schme to be used across viewpoints and model kinds.

5 Summary

Variation is pervasive in Architecting – not just for product lines and product fami-
lies. Therefore, it is essential for the Architect to have tools for handling variation
in her toolkit. Common approaches to variation in the software product line liter-
ature, features models and variation points, have been “contextualized” to fit with
the practices of contemporary architecture description, using the paradigm of mul-
tiple viewpoints together with hints at how they may be generalized are suggested.
But the main goal of this paper is to suggest a background to explore the represen-
tation of variation within this paradigm. The following questions are posed in the
context of the above presentation for discussion at the workshop:

1. Is the simple model of capturing variation described in 3 adequate in the
multiple viewpoints paradigm?

2. Are there alternate models of variation suggested by this model of architec-
ture description?

3. Which “bindings” of constructs of variation elements in Figure 2 to AD con-
structs make sense? I.e., practically speaking, which AD constructs can use-
fully vary and therefore ought to be representable?

4. Can/should variation be limited to “structural” models (modules, compo-
nents or connectors) or is the notion equally useful for arbitrary architecture
views?

5. Can/should feature models be generalized to multiple views?

9



References

[1] F. Bachmann and L. Bass. Managing variability in software architectures.
SIGSOFT Software Engineering Notes, 26(3):126–132, 2001.

[2] F. Bachmann and P. C. Clements. Variability in software product lines. Techni-
cal Report CMU/SEI-2005-TR-012, Software Engineering Institute, Septem-
ber 2005.

[3] J. Bosch, G. Florijn, D. Greefhorst, J. Kuusela, J. H. Obbink, and K. Pohl.
Variability issues in software product lines. In PFE ’01: Revised Papers from
the 4th International Workshop on Software Product-Family Engineering, pages
13–21, London, UK, 2002. Springer-Verlag.

[4] N. Boucké. Composition and relations of architectural models supported by an
architectural description language. PhD thesis, Katholieke Universiteit Leuven,
October 2009.

[5] D. Emery and R. Hilliard. Every architecture description needs a framework:
Expressing architecture frameworks using ISO/IEC 42010. In R. Kazman,
F. Oquendo, E. Poort, and J. Stafford, editors, Proceedings of the 2009 Joint
Working IEEE/IFIP Conference on Software Architecture and European Confer-
ence on Software Architecture (WICSA/ECSA 2009), pages 31–40. IEEE Com-
puter Society Press, 2009.

[6] IEEE Std 1471–2000, IEEE Recommended Practice for Architectural Description
of Software-Intensive Systems, October 2000.

[7] ISO/IEC/IEEE 42010, Systems and software engineering — Architecture de-
scription, December 2011.

[8] T. Mens, J. Magee, and B. Rumpe. Evolving software architecture descriptions
of critical systems. Computer, 43(5):42–48, 2010.

[9] A. Metzger, K. Pohl, P. Heymans, P.-Y. Schobbens, and G. Saval. Disambiguat-
ing the documentation of variability in software product lines: A separation
of concerns, formalization and automated analysis. Requirements Engineering,
IEEE International Conference on, 0:243–253, 2007.

[10] K. Pohl, P. Heymans, K.-C. Kang, and A. Metzger, editors. Proceedings of the
First International Workshop on Variability Modelling of Software-intensive Sys-
tems, 2007. Available as Lero Technical Report 2007–01.

[11] S. Thiel and A. Hein. Modeling and using product line variability in automo-
tive systems. IEEE Software, 19(4):66–72, July/August 2002.

10


	Introduction
	On Architecture Description
	On Variation
	Features and feature models
	Variation points and models

	Variation in Architecture Description
	Sources of variation
	Expressing Variation
	Implementing Variation

	Summary

