
Toward a Recommended Practice for Architectural Description�

Walter J. Ellis
Software Process and Metrics

ellis@cse.ogi.edu

Richard F. Hilliard II
The MITRE Corporation

rh@mitre.org

Peter T. Poon
Jet Propulsion Laboratory
peter.t.poon@jpl.nasa.gov

David Rayford
Comerica Incorporated

Thomas F. Saunders
The MITRE Corporation

tfs@mitre.org

Basil Sherlund
Comerica Incorporated

she@acm.org

Ronald L. Wade
E-Systems

rwade@ix.netcom.com

Abstract

The Architecture Planning Group (APG) was chartered
by IEEE’s Software Engineering Standards Committee to
set a direction for incorporating architectural thinking into
IEEE standards. In this paper, we present a framework
for architectural thinking and use it to review existing ar-
chitectural practices; summarize the work of the APG and
its recommendations; and provide the rationale for those
recommendations.

1. Introduction

It is recognized that architecture should have a strong
influence over the life cycle of a system. In the past, hard-
ware architectural aspects were dominant, whereas software
architectural integrity, when it existed, was first to be sacri-
ficed in the course of system development.

The cost of software development and the increasing
complexity of software systems has changed the relative
balance. Today, software technology has matured. The
practice of systems development can benefit greatly from
adherence to architectural precepts, at both the systems and
software systems levels. However, the concepts of archi-
tecture are not yet consistently defined and applied over the
life cycle.

To address this, IEEE’s Software Engineering Stan-
dards Committee (SESC) chartered an Architecture Plan-
ning Group (APG) to set the direction for incorporating

�In Proceedings 2nd IEEE International Conference on Engineering of
Complex Computer Systems, Montreal, Quebec, Canada, October 21–25,
1996.

architectural thinking into future IEEE standards.
The APG began its work August 19, 1995, in Montreal.

At that meeting, we adopted the charter included as ap-
pendix A. Over the course of the next eight months, we met
regularly to develop an Action Plan for SESC. In April 1996,
that Action Plan was delivered to SESC and accepted. We
have subsequently initiated an Architecture Working Group
(AWG) to implement the APG recommendations.

In its deliberations, the APG set these goals for itself and
any subsequent Architecture Working Group:

1. To define useful terms, principles and guidelines for
the consistent application of architectural precepts to
systems throughout their (full) life cycle.

2. To elaborate architectural precepts and their anticipated
benefits for software products, systems and aggregated
systems (“systems-of-systems” [13, 17]).

3. To provide a framework for the collection and consider-
ation of architectural attributes and related information
for use in IEEE Standards.

4. To provide a useful road map for the incorporation of
architectural precepts in the generation, revision and
application of IEEE standards.

It was the consensus of the APG that there is a mode of
architectural thinking applicable to systems which is much
wider than only software. Every system or subsystem has
an architecture. As such, the APG work attempts to address
all relevant software standards and practices and to consider
interdisciplinary perspectives from a systems’ life-cycle per-
spective. Although the IEEE SESC is software oriented, the
intent is to produce standards and guides which can broadly



support all disciplines involved in developing systems. This
“wide scope” was encouraged and affirmed by SESC and
will be reflected in the framework and recommendations
described below.

In order to assess the impact of the wide scope interpreta-
tion of architecture, and to identify the standards potentially
impacted, the APG undertook an analysis of recent and on-
going activities in the community related to “architecture.”
Every effort was made to contact professional associations
to determine the extent of efforts in establishing architec-
tural standards and guidelines within the industry. Key-
word searches were performed on IEEE standards as well
as those of other standards setting organizations. Keyword
searches were also performed using several search engines
on Internet. The effort identified several hundred potential
efforts. These were narrowed through a process of deter-
mining whether architecture was a primary or secondary
focus. Elimination criteria consisted of documents that had
architecture as a by-product or where the word was used in a
descriptive sense rather than a development perspective. A
list of approximately twenty standards and in-process works
represents a starting point for the harmonization and coordi-
nation efforts of the Architecture Working Group with other
efforts.

2. Architectural Framework

To meet our first goal of defining “useful terms, princi-
ples and guidelines,” we began our work by initiating the
development of a conceptual framework (or, frame of ref-
erence) for talking about architecture. In formulating the
framework, we found the building metaphor – the analogy
between software systems architecture and traditional build-
ing architecture quite useful [12, 21].

For perspective, we began with the common, “pre-
systems” definition of the word:

Architecture 1. The art or science of building or
constructing edifices of any kind for human use. 2.
The action or process of building. 3. Architectural
work: structure, building. 4. The special method
or style in accordance with which the details of
the structure and ornamentation of a building are
arranged. 5. Construction or structure generally.1

Each of these senses of the word are applicable in the
systems context.

There is at present much interest and activity in system
architectural thinking (for example, [9, 15, 22]). These ac-
tivities would benefit from a common framework of terms
and concepts. The key term is “architecture” itself. We
considered the current IEEE 610.12–1990 definition of “ar-
chitecture” [11]:

1Oxford English Dictionary, 1933 edition.

Architecture The organizational structure of a
system or component.

However, this definition was not adequate for our pur-
poses. It has several limitations. (1) It does not distinguish
an architectural level of structure for a system from the de-
sign or physical structure of that system. (2) It does not
separate architectural concerns, such as the interaction of
the system with other systems, from other concerns, such
as details of construction. (3) It offers no basis for treating
architectures as engineering objects.

Looking at a number of other definitions in the literature
(for example, [4, 7, 25]), we found most suffered from these
or other limitations. We settled on the following definition:

An architecture is the highest-level concept of a
system in its environment.

This definition addresses (1) by stating that architecture
pertains to the highest-level of a system, distinguishing it
from design and implementation concerns. As Mary Shaw
admonished the First International Workshop on Architec-
tures of Software Systems [8], “Let’s not dilute the term
‘architecture’ by applying it to everything in sight.” Our
definition acknowledges (2) by reminding us that systems
are situated in their environments, and that the architecture
is in part a recognition and response to that environment.
But it still does not directly address (3) — a “concept” is not
particularly useful as an engineering construct. Following
recent IEEE work on software design [10], we distinguish
the architecture itself from descriptions of that architecture:

An architectural description is a model — docu-
ment, product or other artifact — to communicate
and record a system’s architecture.

This distinction allows us to retain the idea that every
system has an architecture, while advocating that the explicit
description of a system’s architecture allows that system
to be brought under “engineering control.” The form and
content of architectural descriptions may then be subject to
standardization — not the architectures themselves.

There is an established engineering approach to bring-
ing such complex entities under control, which is to “sepa-
rate concerns” by identifying one or more viewpoints [23].
Therefore, our framework advocates that an architectural
description be organized into well-defined pieces:

An architectural description conveys a set of views
each of which depicts the system by describing
domain concerns.

Meszaros defines an architectural view as: “a way of
looking at an architecture. Each view may have a differ-
ent concept of components and relationships” [19]. In our



framework, each “way of looking” will be determined by
the interests of the users of that view. A system exists in
many domains — it is therefore useful to regard architecture
as a multi-disciplinary practice [18]. Views offer a way to
get a handle on this. Some common architectural views are
listed below, reflecting typical systems concerns reflected at
an architectural level of description.

� behavioral, dynamic, operational views [16, 14, 4]

� data, data flow, information views [5, 7]

� development, maintenance views [3, 6]

� distributed, network views [25, 6]

� functional, activity views [24, 25]

� logical views [14, 20]

� static views [14, 7]

� physical views [14, 4]

The selection of relevant views will usually be deter-
mined by the architect — in consultation with other key
stakeholders of the system. The conventions by which a
view is depicted will vary with the particular architectural
technique or method employed; however, the engineering
principles governing views may be generic — for example,
completeness, the principle that an architectural view should
represent the whole system from a single, well-defined per-
spective, is adopted in various methods [20, 25].

The notion of “components” recurs throughout systems
and software thinking about architecture, as a construct for
capturing the major elements of the “structure or construc-
tion” of a system. Of course, these elements do not exist in
isolation but, as Meszaros observes, are related. The APG
framework postulates two kinds of relations: connections
(among components), and constraints (on components, or
connections).

The Architecture Planning Group chose to define these
terms as follows:

� Components are the major structural elements in a
view; such as functions in a functional view, data mod-
els in a data view, or hardware in a physical view.

� Connections are the major relations between compo-
nents of a view. They may be “run-time” relationships
like control or data flow, or other dependencies.

� Constraints represent laws the system must observe;
constraints apply to components and connections.
There are three kinds of constraints:

– Constraints reflecting performance, functional,
or non-functional requirements (such as security,
fault tolerance, quality)

– Style and protocol rules, and

– Laws of nature which constrain resources

The use of components and connections (or connectors)
seems to be a de facto standard in current architectural think-
ing, although the community is split on the latter term. Abd-
Allah, Boehm, Gacek, Kazman, Abowd, Bass, for example,
use “connection.” Garlan, Shaw, and Allen use “connector.”
Luckham uses both terms to distinguish the relation between
two components (a connection) from the entity which real-
izes that relation (the connector). In the present document,
we use connection to encompass both notions, recognizing
that we may want to refine this at a future time.

2.1 Uses of Architectural Description

To identify architectural concepts and principles relevant
to the potential users of a future standard, we realized we
needed to understand the roles which architectural descrip-
tions may play within system life cycles. While develop-
ment of a full “concept of operations” for architectural de-
scriptions is left to the Working Group, the APG identified
two fundamental ways of applying architectural precepts:
architecture as design and architecture as style.

The first way is to use an architectural description as
the vehicle for expressing high-level system characteristics
that define and organize its major elements and their inter-
relationships. The architectural description is used to com-
municate between client and developer to aid clarification
of requirements and assess their impact on system design.
The architectural description is often developed through an
evolutionary process from the initial expression of a system
concept as a high-level abstraction to one of a more detailed
and tangible expression that is widely accepted as being an
expression of design.

The second way is to use a subset of the information
used in a full architecture description to capture a style to
facilitate certain common attributes among systems, ranging
from system compatibility, interoperability, (component) in-
terchangability, to (system) replacability. An architectural
style is a set of patterns or rules for creating one or more ar-
chitectures in a consistent fashion. There are many ways to
capture and communicate a style [1, 2]. A reference model
can be used to embody a style. Style is a partial charac-
terization of a system; it does not represent the complete
architecture for a system, but is a template for specifying
the architecture of a specific system.

Architecture as design is useful for individual product de-
velopment, analogous to the design of individual buildings,
whereas architecture as style is also useful for harmony



among products, analogous to the design and planning of
cities. Consider the following examples:

1. Individual software products have usually had an archi-
tectural concept established prior to implementation.
However, all too often, conflicts between immediate
user requirements and the architecture are resolved in
favor of the requirements. The architecture is com-
promised over time, making the product less tolerant
of modification or enhancement. More prominent at-
tention to architecture can and would make software
products more manageable over their life-cycle.

2. The architectural design of a new system can often
benefit from an understanding of previous architec-
tural designs for similar or related systems. However,
the relative merits of one architecture vs. another for
addressing a specific constraint varies according to the
mix of other constraints upon the new system. A sys-
tematic approach to architectural description would aid
this understanding by facilitating “reuse” of architec-
tural knowledge.

3. Modern software development practices have evolved
an even stronger impetus to adopt attention to architec-
ture. In recent times, the state of the software practice
has begun to include reuse of software products. Such
reuse is only possible when expected behavior is con-
sistent with actual behavior. As such, encouraging the
software community to articulate and observe architec-
tural style rules is likely to facilitate the further reuse
and the continued maturation of software engineering
as a discipline.

4. While it is important for an architect to understand the
functional aspects of a system, it may be critical for
the success of that system to embody an architectural
view of those who must interface with it. If we look at a
mass transit map of any major metropolitan area we see
how various subsystems interconnect, where various
stops are located, and perhaps travel times between
locations. We would not, however, attempt to use the
map for determining distance, or our precise location
from a geometric perspective. Such maps are neither
rendered to scale nor do they show every turn, rise, or
fall. Yet, the view is critical for the successful use of
the system.

5. In recent years Planned Unit Developments (PUD)
have gained in popularity. From an architectural per-
spective the components that make up the unit are the
various entities within the proposed development area.
This allows the abstraction of many facets: roads (in-
terfaces), electric, water (support services), population
density (complexity).

6. Most major appliances have located on them a block
diagram. For instance, a refrigerator might have a
diagram on the back depicting the compressor, de-
froster, lights, temperature control, water location for
ice maker, power cable, etc. Although not to be con-
fused with the refrigerator itself, the diagram is one
view of the device.

These examples meet the principles stated above, in that
that they convey specific perspectives, dealing with domain
concerns. In each case what has been described as an end
product descriptor, probably had its beginning as a devel-
opment document to convey conceptually what the device,
product, or service was going to look like.

3. APG Recommendations

The primary result of our deliberations was an Action
Plan, delivered to SESC. That Action Plan made several
recommendations.

First, the Architecture Planning Group recommended
that SESC approve two new Project Authorization Requests
(PARs) for:

1. a Recommended Practice for Architectural Descrip-
tion; and

2. a Guide to the new Architectural Description standard.

Second, recognizing that architectural issues were of a
wider scope than any single IEEE standard, the APG rec-
ommended that the APG Action Plan be disseminated to the
SESC Working Group Chairs in order for the Chairs to re-
view and apply the architecture precepts set forth therein for
the generation and revision of IEEE Software Engineering
Standards.

Third, the APG recommended that the APG Action Plan
be disseminated to other affected disciplines so that the
framework of terminology and architectural precepts set
forth therein can be useful in establishing a dialog with oth-
ers in those disciplines in order to coordinate their responses
during the standards development process.

Fourth, the APG recommended that the Architecture
Working Group established by the above PARs address the
following topics in the preparation of the Recommended
Practice and Guide:

� How does architecture fit into life cycle?

� How do architecture documents relate to other life cycle
documents?

� How are architectures documented?

� Who are the stakeholders for an architecture?



� What architectural methods or processes are defined?

� What kinds of analyses may be applied to architecture
models?

Finally, the Architecture Planning Group recommended
that the following “concepts of operations” for an architect
be explored and supported by the resulting Standard and
Guide:

1. Software architects will require projections of available
technologies to plan not a point solution, but a means
to evolve a system including the user.

2. Architectural planning will include teams of experts
in the relevant engineering disciplines of hardware,
software, and human factors. For example, just as
hardware should be selected which supports good soft-
ware engineering, the software architecture should al-
low hardware evolution.

3. Time-to-complete a system will be balanced against
time-to-obsolescence. System capabilities will be
made operational and evolved iteratively through sim-
ulation if necessary. Too often, designs of the seventies
are implemented in the nineties chasing a technology
that will never be in use — obsolete before it is imple-
mented.

4. Maturing the concept of prototype, architects will plan
systems to include the user through early implementa-
tion of capabilities in the evolution to system solutions.
Planning must continue throughout system evolution
so that future capabilities are commensurate with the
hardware engines available to support them. Like the
weather, prognostication of the availability of storage,
speed, and input/output devices will be necessary to
judge whether the system will be reasonably current
when implemented. A reasonable time for implemen-
tation can then be determined, and a reasonable subset
of capabilities can be designated initial. Systems are
not just architected as designs, they are planned to
have initial capabilities which will evolve to solutions
including user inputs.

5. Architects will plan with logistics, support, evolution,
and continuing quality.

6. The expression of architecture will provide for the con-
veyance of lessons learned, suitability, etc., for the use
of architectural solutions.

4. Conclusion

SESC has determined that there is sufficient technical
basis and community interest in architecture to implement

the Architecture Planning Group’s recommendations for an
Architecture Working Group which will undertake the def-
inition of a Recommended Practice for Architectural De-
scription, and companion Guide. The first two quarterly
meetings of the Working Group took place in May and July
1996. The IEEE Architecture Working Group may be con-
tacted at: ieee-awg@spectre.mitre.org.

Acknowledgments Philippe Kruchten (Rational) pro-
vided helpful comments on a draft of this paper as a member
of the Architecture Working Group.

References

[1] A. Abd-Allah and B. W. Boehm. Reasoning about the
composition of heterogeneous architectures. Technical Re-
port USC–CSE–95–503, University of Southern California,
1995.

[2] G. Abowd, R. Allen, and D. Garlan. Using style to under-
stand descriptions of software architectures. ACM Software
Engineering Notes, 18(5):9–20, December 1993.

[3] B. W. Boehm. Software process architectures. In Proceed-
ings of the First International Workshop on Architectures for
Software Systems, Seattle, WA, 1995.

[4] Defense Information Systems Agency. Technical Architec-
ture Framework for Information Management (TAFIM), ver-
sion 2.0 edition, 1995.

[5] L. Druffel, N. E. Loy, R. A. Rosenberg, R. J. Sylvester, and
R. A. Volz. Information architectures that enchance opera-
tional capability in peacetime and wartime. Technical report,
US Air Force Science Advisory Board, February 1994.

[6] D. E. Emery, R. F. Hilliard II, and T. B. Rice. Experiences ap-
plying a practical architectural method. In A. Strohmeier, ed-
itor, Reliable Software Technologies– Ada-Europe’96, num-
ber 1088 in Lecture Notes in Computer Science. Springer,
1996.

[7] C. Gacek, A. Abd-Allah, B. K. Clark, and B. W. Boehm. On
the definition of software system architecture. In Proceed-
ings of the First International Workshop on Architectures for
Software Systems, Seattle, WA, 1995.

[8] D. Garlan, editor. Proceedings of the First International
Workshop on Architecture for Software Systems,Seattle, WA,
April 24–25 1995. Published as CMU–CS–TR–95–151.

[9] D. Garlan. Research directions in software architecture.
ACM Computing Surveys, 27(2):257–261, 1995.

[10] IEEE Std 1016, Recommended Practice for Software Design
Descriptions, 1987.

[11] IEEE Std 610.12, Glossary of Software Engineering Termi-
nology, 1990.

[12] R. F. Hilliard II, T. B. Rice, and S. C. Schwarm. The archi-
tectural metaphor as a foundation for systems engineering.
In Proceedings of Sixth Annual International Symposium of
the International Council on Systems Engineering, 1996.

[13] I. Jacobson, K. Palmkvist, and S. Dyrhage. Systems of
interconnected systems. ROAD, May–June 1996.

[14] P. B. Kruchten. The 4+1 view model of architecture. IEEE
Software, 28(11):42–50, November 1995.



[15] H. W. Lawson, W. Rossak, and H. R. Simpson. Working
group report – CBS architecture. In Proceedingsof the 1994
tutorial and workshop on systems engineering of computer-
based systems, Los Alamitos, CA, 1994. IEEE Computer
Society Press.

[16] D. C. Luckham, J. Vera, and S. Meldal. Three concepts
of system architecture. Technical Report CSL-TR-95-674,
Stanford University, July 1995.

[17] M. W. Maier. Architecting principles for systems-of-
systems. In Proceedings of Sixth Annual International Sym-
posium of the International Council on Systems Engineering,
1996.

[18] M. W. Maier. System architecture: An emergent discipline?
In 1996 IEEE Aerospace Applications Conference Proceed-
ings, volume 3, pages 231–246, 1996.

[19] G. Meszaros. Software architecture in BNR. In Proceed-
ings of the First International Workshop on Architectures for
Software Systems, 1995.

[20] M. Moriconi and X. Qian. Correctness and composition of
software architectures. In Proceedings of ACM SIGSOFT
’94: Symposium on Foundations of Software Engineering,
New Orleans, LA, December 1994.

[21] D. Perry and A. Wolf. Foundations for the study of software
architecture. ACM SIGSOFT Sofware Engineering Notes,
17(4), October 1992.

[22] E. Rechtin. Systems architecting: creating and building
complex systems. Prentice Hall, 1991.

[23] D. T. Ross, J. B. Goodenough, and C. A. Irvine. Software
engineering: process,principles, and goals. IEEE Computer,
8(5):17–27, May 1975.

[24] SofTech. Integrated Computer-Aided Manufacturing
(ICAM) Task I – Final Report. Technical Report AFML–
TR–78–148, Air Force Materials Laboratory, 1978.

[25] J. F. Sowa and J. A. Zachman. Extending and formalising
the framework for information systems architecture. IBM
Systems Journal, 31(3):590–616, 1992.

A. Architecture Planning Group Charter

The Architecture Planning Group will define for the Soft-
ware Engineering Standards Committee the statement of di-
rection for incorporating architecture into the set of IEEE
standards for software engineering. Every system or subsys-
tem has an architecture, as defined by IEEE 610.12–1990.
Every system with software has a software view of that ar-
chitecture. This planning group will define terms, principles
and guidelines for software architecture, not in isolation, but
integrated with the views of other disciplines.

Planned Tasks

1. Define a framework for relating the concept and prin-
ciples of software architecture to software and systems
engineering.

2. Examine selected IEEE software engineering standards
for:

a. their conformance to the framework of software ar-
chitecture that has been defined in task 1.

b. their applicability and use in Software architecture.

3. Produce an Action Plan with recommendations for in-
corporating software architecture into IEEE standards
for software engineering. (E.g., obsolete old standards,
modify existing standards, propose new standards).
Provide recommendations for the Software Engineer-
ing Standards Committee to work effectively within
the systems communities.


