
Aspects, Concerns, Subjects, Views, ... ∗

Rich Hilliard
Integrated Systems and Internet Solutions, Inc.

150 Baker Avenue Extension
Concord, Massachusetts 01742 USA

rh@isis2000.com
+1 978 318 0000

Introduction

Talk about separation of concerns influences a vari-
ety of branches of software engineering. (In fact, it
manifests far beyond software engineering in systems
engineering, software systems architecture, enterprise
and organizational modeling, and other fields, too,
but my focus here is software-intensive systems.) As
noted in the Call for Participation, concerns underlie
a number of other concepts, including those appear-
ing in the title of this paper. It is thus interesting to
ask:

What is a concern?
What is an aspect?
What is a view?
etc. and,
How do these concepts relate?

In this position paper I ask whether these various
notions can be put into a coherent conceptual frame-
work, and I attempt to sketch the beginnings of such
a framework. I hope this topic can be a subject1

for discussion at the workshop, under the category of
theoretical foundations.

Aside from academic, or purely conceptual inter-
est, there are a number of reasons why a conceptual
framework might be of value.
(1) First, since these notions are relatively recent,
people frequently mean different things even in their
use of the same terms. Having a common conceptual
framework may improve understanding among work-
ers.

∗Submission to the OOPSLA’99 Workshop on Multi-
Dimensional Separation of Concerns in Object-Oriented Sys-
tems

1It is hard to write this paper without casually using ordi-
nary terms that already have technical meanings in the con-
text of this workshop (e.g., “subject,” “aspect,” “role,” “view-
point,” ...) – I will disambiguate usage when it is not clear
from context.

(2) Building on (1), a common understanding is the
basis for sharing and reuse of insights among these
different branches of inquiry. For example, work
on aspect weaving in object-oriented programming
might be applicable to view integration in software
architecture – if we have a common frame of reference
within which to understand aspects viz a viz views.
(3) A conceptual framework is the basis for formaliza-
tion, not only for academic interest, but as the basis
for building new or improved tools (“tools” includes
notations, languages, methods, and automation) for
manipulating “concern-oriented” entities. For exam-
ple, given the widespread use of technologies such
as the Unified Modeling Language (UML), what is
needed to support concern-orientation in such tools?
What constructs are needed? In an earlier paper, I
diagnosed the UML [9] for its support for architec-
tural views and viewpoints [3]. Here, I apply these
ideas to a wider set of software engineering concerns.

Formalization also makes possible reification – the
“open implementation” approach to improving our
tools by introducing first-class generalizations of the
concepts of interest into them.
(4) Following from (2) and (3), there are certain re-
curring issues (e.g., view declaration, view checking,
view integration and traceability) that it may be pos-
sible to formulate once and then apply repeatedly –
given the right framework in which to pose them.

This work is inspired by the recent IEEE Rec-
ommended Practice for Architectural Description [5].
Ideas from that work will be noted below.

Concerns

Separation of Concerns begins with Concerns.

What is a concern?

A concern expresses a specific interest in some topic
pertaining to a particular system of interest (or other

Page 1



subject matter).
We have found it useful to articulate concerns in

the form of questions [1]:

How reliable is this system?

What function does the system perform?

How is the system deployed?

Where do concerns come from?

Concerns do not arise in the abstract, but, as the
term itself suggests, in relation to (human) interests.
In much of the literature, these humans are called sys-
tem stakeholders In system development, stakehold-
ers typically include a client for the system, its users,
maintainers, operators, system developers, vendors,
and so on [2]. So, we can say, Stakeholders have Con-
cerns. Concerns (and stakeholders) arise at all stages
of the system life cycle from conception, through
requirements, design, implementation, maintenance
and evolution. The relation of concerns to stakehold-
ers is many–to–many (see figure 1): a stakeholder
may have multiple concerns and a concern may be
held by multiple stakeholders. Furthermore, “within”
a concern (e.g., reliability), individual stakeholders
may have quite different requirements: while User 1
needs 95% reliability, User 2 needs only 50% reliabil-
ity. Each user is concerned with system functionality,
but has very different functional requirements.

Stakeholders have not been dealt with uniformly
by existing tools. Special cases of stakeholders (e.g.,
users) and certain traditional concerns (e.g., func-
tionality) are built into the expressive capability of
some modeling techniques. For example, in the UML
use case diagram, one models the functional concerns
of particular users. But in general, other classes of
stakeholders are not well-represented (let alone, rei-
fied) in current modeling techniques. In a recent pa-
per, I sketched a modeling ontology for a wider set
of stakeholders and architectural concerns [3]. In or-
ganizational and process modeling, wider classes of
roles [12, 7] have sometimes been modelled.

Views and Viewpoints

A view is a model of a system. Views have a long
history in software engineering. (For a “brief history
of views” see the Introduction to [4].) What is in-
teresting in this long history is the evolution of view-
points – in earliest work, viewpoints were fixed items.
For example, structured design methods (circa 1970s–
1980s) usually fixed on two viewpoints: the functional
viewpoint and the data viewpoint.

In Ross’ work on Structured Analysis (RSA, or
SADT) viewpoints were considered to be first-class
[11]. In RSA, each model had a model orientation
which declared the purpose, context, and viewpoint
of a model. In the present exposition, consider pur-
pose to be the set of concerns the view is intended to
address. A model orientation was documented in a
textual form. Although informal, this could be con-
sidered a primitive form of extension mechanism for
viewpoints.

Viewpoints have tended to be informal in most
modeling formalisms. However, in the IEEE Recom-
mended Practice for Architectural Description cited
above, the architect must declare the viewpoint be-
fore using it to develop a view. Recent work in
Requirements Engineering, also treats viewpoints as
first-class entities, with associated attributes and op-
erations [8]. Similarly, the ISO Reference Model for
Open Distributed Processing underwrites the con-
struction of individual views with formally defined
viewpoint languages [6] – albeit a fixed set.

It seems to me critical to distinguish view from
viewpoint (and the analogues of this below) if we
are to make progress in conceptualising, formalis-
ing and supporting these notions in architecture, re-
quirements, design and implementation languages.
Roughly, the view is the instance, and the viewpoint
is the reusable (type-like) information that defines the
rules for creating and using a view (relative to that
viewpoint):

view : viewpoint :: instance : type

(See [4] for more details on views and viewpoints,
in particular a more refined class diagram of their
associations, attributes, and methods than the one
that appears below.)

When one constructs a view of a system, it is typ-
ically intended to address one or more concerns, rel-
ative to that system, in the current context. That
context may be requirements, design, etc.

Typically, with views, there is an implicit method-
ological constraint that a view covers the whole sys-
tem from the selected viewpoint.

Using the Conceptual Frame-
work

Figure 1 summarises the core of the conceptual frame-
work I have in mind. As noted above, it is very much
inspired by the IEEE P1471 conceptual model which
we developed for understanding the role of architec-
tural descriptions in software-intensive systems.

Page 2



Figure 1: Core of a Conceptual Framework (using the UML syntax)

Let us see how to use the conceptual framework
to explain some of the other concepts that are the
subject of this workshop.

First, let’s look at using the framework to clarify
some terminology.

An aspect, like a view, addresses a particular con-
cern. Aspects seem to be more “lightweight” than
views – without the methodological constraint of cov-
ering the whole system. In the current literature on
aspects, there has not been attention to separating
out what I have called here the concern, the view
(model), and the viewpoint, although clearly each ex-
ists. If one wants to do checking of individual aspects,
it would be useful to do so against an aspect language
or aspect type definition.

A viewpoint, as that term is used in requirements
engineering [8], subsumes both the view (instance)
and viewpoint (type) characteristics I have separated
here. It describes a set of requirements from the per-
spective of a single stakeholder.

A subject (as in subject-oriented programming)
addresses concern with the functionality of object-
oriented systems. A subject is a partial view of the
system in the context of its domain of application.

Concern spaces, in the spirit of [10], can also be
constructed using this conception. A concern space
would be formed from the union of all stakeholder
concerns. That such spaces are “multi-dimensional,
overlapping and interacting” is therefore to be ex-
pected.

Second, let’s look at defining some recurring no-
tions over the framework.

A view is well-formed if it conforms to its view-
point. It is tempting to allow a view to conform
to multiple viewpoints, analogous to multiple inheri-
tance – but I haven’t explored this.

Next, let’s consider, What is view integration?
In this context, two views are integrated if a stake-

holder’s concerns with respect to those views are (all)
addressed.

Third, let’s return to concerns. At the beginning,
we asked where do concerns come from? and we an-
swered, stakeholders. Now we want to look deeper.
But, where do stakeholders get concerns from? Some
arise from the nature of the problem the system is in-
tended to solve. Others arise from the nature of the
technologies selected to solve the problem.

References

[1] David E. Emery, Rich Hilliard, and Timothy B.
Rice. Experiences applying a practical archi-
tectural method. In Alfred Strohmeier, editor,
Reliable Software Technologies–Ada-Europe ’96,
number 1088 in Lecture Notes in Computer Sci-
ence. Springer, 1996.

[2] Cristina Gacek, Ahmed Abd-Allah, Bradford
Clark, and Barry W. Boehm. On the definition
of software system architecture. In Proceedings
of the First International Workshop on Architec-
tures for Software Systems, Seattle, WA, 1995.

[3] Rich Hilliard. Using the UML for architectural
description. In Proceedings of Second Interna-

Page 3



tional Conference on the Unified Modeling Lan-
guage (�UML�’99), Lecture Notes in Com-
puter Science. Springer–Verlag, 1999.

[4] Rich Hilliard. Views and viewpoints in software
systems architecture. Position paper from the
First Working IFIP Conference on Software Ar-
chitecture, San Antonio, 1999.

[5] IEEE Architecture Working Group. IEEE
P1471/D5.0 Information Technology—Draft
Recommended Practice for Architectural De-
scription, August 1999. Available by request
from http://www.pithecanthropus.com/˜awg/.

[6] International Organization for Standardization.
ISO/IEC 10746 1–4 Open Distributed Processing
– Reference Model – Parts 1–4, July 1995. ITU
Recommendation X.901–904.

[7] Philippe Kruchten. The Rational Unified Pro-
cess: an introduction. Addison-Wesley, 1999.

[8] B. Nuseibeh, J. Kramer, and A. Finkelstein. A
framework for expressing the relationships be-
tween multiple views in requirements specifica-
tion. IEEE Transactions on Software Engineer-
ing, 20(10):760–773, 1994.

[9] Object Management Group. Unified Model-
ing Language – Notation Guide (version 1.1),
September 1997. OMG ad/97–08–05.

[10] Harold Ossher and Peri Tarr. Multi-dimensional
separation of concerns in hyperspace. Techni-
cal Report RC 21452(96717), IBM T. J. Watson
Research Center, 1999.

[11] Douglas T. Ross. Structured Analysis (SA):
a language for communicating ideas. IEEE
Transactions on Software Engineering, SE-3(1),
January 1977. Also appears in Programming
methodology : a collection of articles by mem-
bers of IFIP WG2.3 edited by David Gries. New
York : Springer-Verlag, 1978.

[12] E. S. Yu and J. Myopoulos. Understanding ‘why’
in software process modeling, analysis and de-
sign. In Proceedings 16th International Confer-
ence on Software Engineering, Sorrento, Italy,
1993.

Page 4


