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Abstract

Over the history of systems engineering, there have been numerous
attempts to establish the foundations of that field on other disci-
plines. In this paper, we explore a new approach, founding systems
engineering on an architectural metaphor. This approach is based
upon our work of the past five years to establish a discipline of sys-
tems architecture. We outline the key principles of our approachand
discuss their relevance to the broader field of systems engineering.

Introduction

We now have over forty years of experience in systems engineering,
a field which has grown up to address the planning and construction
of large, complex, typically information-rich, systems to meet real
world needs. In that period, there have been various attempts to
discover appropriate foundations for the field, or to ground systems
engineering in other disciplines. These have ranged from set theory
to systems theory to category theory to psychology [1, 15, 21].

In this paper we explore another approach, that of grounding
systems engineering on an architectural metaphor, based on previ-
ous architectural traditions, especially that of building architecture.
For the past five years, we have been evolving a disciplined ap-
proach to software systems architecture. In this paper, we will
review the principles of our approach and discuss their implications
for the wider field of systems engineering.

In our community there is widespread interest in using the con-
cept of architecture to control and manage the procurement and
evolution of information systems. The current interest in architec-
ture is motivated by the desire to build our systems “faster, better
and cheaper” [9].

Although we are principally interested in system architectures,
much of current architectural thinking is motivated by the issues
of software architecture [20]. In our work, we draw freely from
both the software and systems engineering communities, making
a distinction only when warranted. Since most systems of interest
are software-intensive, this is rarely a distinguishing criterion.

A Practical Architecture Method

Since 1990, we have been refining an approach to the specification
and analysis of system architectures [11]. This work has several
goals:

1. To articulate the foundations of software systems architecture
by defining a framework of key terms and concepts;
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2. To define practical techniques for modeling and analyzing
architectures within that framework;

3. To apply that framework within the context of system acqui-
sition and development to:

� define standards for architectural description;

� enable objective evaluation of delivered and proposed
architectures; and,

� provide architects with automated support for the cre-
ation and maintenance of system architecture descrip-
tions;

This paper will focus on foundational issues; we have presented
our method and experiences elsewhere [6, 7].

De�ning \architecture"

Although it is currently quite fashionable to use the term “archi-
tecture,” there is no widely accepted definition. Intuitively, most
people use it to mean roughly the large-scale structure of a sys-
tem, its major constituents and their interconnections. Beyond that,
there is much discussion and variation [8]. We have adopted the
following definition which is somewhat different than most:

An architecture is the highest level conception of a
system in its environment.

This definition has several consequences:

� Every system has an architecture.

� Systems are situated in their environments. An architecture
reflects the whole system in response to that environment.

� “Conception” is intentionally abstract – perhaps an idea in
someone’s head. To put it to engineering use, we need a con-
crete representation of the architecture. Building architects
produce blueprints and other representations – not architec-
tures per se.

Architecture in Context

By recognizing that an architecture pertains to the whole system,
our definition excludes a number of current uses of that term. An
especially confusing use is prevalent within the defense systems
community, where it is fashionable to speak of a system as hav-
ing multiple architectures: an “operational architecture,” a “system
architecture” and a “technical architecture” [4]. We might as well
describe an office building as having an “occupant architecture,” a



“heating and ventilation architecture,” and a “site architecture”! We
say an architecture has a number of aspects, such as technical, oper-
ational and system concerns. Each may be formalized by defining
one or more views. It is the architect’s job to integrate these aspects
into a single architecture.

Within software architecture, there has been a tendency to “lift”
techniques from design to apply architecturally; the literature is
filled with “functional architectures,” “information architectures”
[5] and “object architectures” [13]. We believe this tendency reflects
a confusion of design entities with architectural goals. We have tried
to separate the two in our work.

Recognizing that an architecture reflects a system in its environ-
ment, it must address a much wider range of concerns than those of
a design. A software design is internally focused on the interfaces,
operations, and modules which constitute a software system. The
“outside” has been abstracted away during requirements analysis.
In approaches which view architecture as a part of high-level de-
sign [14, 20], there is a single implied audience: the designers and
implementors of the system, relegating others, such as the client,
the users, and operators to a subsidiary role.

Whereas a design is internally focused, an architecture is exter-
nally focused – the architect must be cognizant of the system’s en-
vironment. Just as a building architect takes into account a project’s
surroundings, an architecture must be sensitive to the environment
of the intended system. For a software system, the environment
includes the systems with which the target system will interact or
co-exist, the operational concept for that system, and its anticipated
users.

Frequently, the term “architecture” is applied to middleware
frameworks such as CORBA and DCE. More generally, frame-
works, as that term is used in the object-oriented programming
community, offer the prospect of large-scale reuse within a domain
[12]. A framework is a useful way to implement a class of systems
with similar characteristics – but a framework is not an architec-
ture itself, it is rather a building technology applicable to a class
of systems. Frameworks are inwardly focused on how a system
will be built rather than on the outward intent of the system. For
this reason, we prefer to call them software component frameworks.
An architecture will make specific decisions but not necessarily
particular design choices.

Moving outside the internal focus of design, a number of po-
tential audiences for an architecture become relevant, each with
potentially different concerns for the system.

Boehm and others have identified a number of stakeholders of
a system’s architecture [2, 8]. The key stakeholders will vary from
system to system, they could include: acquisition agent, client,
customer, developer, inspector, maintainer, operator, owner, plan-
ner, service provider, user, and vendor. We further distinguish a
subset of the stakeholders called audiences. Audiences are those
stakeholders who would be expected to directly access architec-
tural descriptions. Our approach is therefore “subject-oriented”
rather than object-oriented. Its orientation derives from that of the
stakeholders for the architecture.

An Architecture Process

We have developed a candidate process for specifying and managing
an architecture, shown in table 1. As noted above, this paper will
not focus on that process, which has been discussed elsewhere [7].
The purpose of the table is to provide a context for discussing some
of the architectural elements which would be applicable to systems
engineering.

1. Understand system context

� Needs Analysis

� Program cost and schedule

� Products: needs, goals, vision statements

2. Select views

3. Analyze each view

� Products: a “blueprint” of each view with associated
decisions, rules and open issues

4. Integrate views (for consistency)

5. Trace views to needs (for completeness)

6. Iterate activities 3, 4 and 5

� Until no more unresolved questions

� If there are numerous unresolved issues, revisit step 2

7. Validate

� Against formal requirements

� Conformance of design and implementation (as built)
to architecture (as specified)

Table 1: An Architectural Process

Architectural Needs. As in many branches of engineering, our
method begins with understanding the problem and its constraints
including the requirements, program cost and schedule demands;
i.e., the concerns of the various stakeholders. Our understanding
of these is distilled into three products, developed with the client,
and ideally “owned” by the client, which capture both the specific
requirements for the system, and also the general direction and
intent of the client.

For the large command and control and information systems we
typically deal with, there are one or more requirements specifica-
tion documents, often running into hundreds or even thousands of
pages. Even when well-written, these formal requirements docu-
ments have proven to be too difficult to use effectively to derive
and analyze system architectures. We analyze these requirements
into a set of architectural needs, which capture the general require-
ments, without unnecessary detail. For a recent information system
architecture, we distilled thousands of requirements from several
sources into 138 architectural needs. These needs are maintained
in a data base to preserve traceability of our architectural decisions
back to the full set of formal requirements.

In addition to the “abstracted requirements” reflected by our
needs analysis, we prepare two other statements with the client.
First, a statement of goals reflects the client’s evaluation criteria
– how the client will evaluate whether the system is a success.
Goals include meeting the needs, as well as preferences and desires
which do not occur as requirements. Second, we define a vision
statement. Whereas the goals specify what is to be achieved in the
current system, the vision statement attempts to look into the future
of the system in terms of anticipated missions and new opportu-
nities. It indicates the client’s long-term direction for the system,
including both the current system under development and a view of
its evolution and eventual replacement.

These three products, the needs, the vision statement, and the
goals statement, are “owned” by the client. It is critical that the



client fully subscribe to – and preferably write – the vision and
goals statements, and the needs should originate with the client.
The formalization of the needs, goals and vision are the primary
inputs to the architectural description. The next section describes
the elements of that description.

Architectural Elements

A software architecture is “a set of architectural (or, if
you will, design) elements that have a particular form.”

– Dewayne Perry and Alex Wolf [14]

We wish to distinguish architecture both from requirements and
design. Unlike requirements, which exist in the “problem space,”
architectures reside in the “solution space” of systems to be built.
Whereas a requirements specification avoids making decisions as
to how a system is to be realized, an architecture does make specific
choices pertaining to the form of a solution.

It is useful to view an architecture as a decision making tool or
as comprised of decisions. The key to effective decision-making
is making the right decision at the right time, no more, no less.
Either overspecification or underspecification may lock out future
flexibility. Following Burns and Lister [3] (who were writing about
design), our method distinguishes:

a progression of increasingly specific commitments ...
properties of the system design which [detailed] de-
signers are not at liberty to change. Those aspects
of a design to which no commitment is made ... are
the subject of obligations that lower levels of a design
must address. The process of refining obligations into
commitments is often subject to constraints imposed
primarily by the execution environment.

As distinct from a design, however, architectural decisions are
not determined solely by design and implementation considerations,
but by external ones, too, as described above.

Although it is a consequence of our definition that every system
has architecture, that does not imply that all architectures are equal.
As systems engineers we are interested in the properties of effective
architectures. In our view, an effective architecture shows how to
build a system to satisfy clients’ needs, in the context of that client’s
goals and vision. To do this, we need a means of representing
architectural elements in useful fashion.

Architectural Representation

As noted above, an architecture is abstract – it may exist only as an
idea or conception in someone’s head. That is not good enough for
engineering purposes. One focus of our work has been to develop
techniques for representing architectural information for use by
clients, implementors, and other stakeholders. To do this we have
adopted the following representation principles:

� An architecture is documented as a model.

� A model is comprised of one or more views.

� Each view is modeled in terms of components, connections
and constraints.

� Views are integrated to enable understanding and enforce
consistency of the architecture model.

view ::=
view name,
vantage point
f, componentg+,
f, connectiong+,
f, constraintg+

vantage point ::= purpose, scope
model entity ::=

component j connection j constraint
component ::=

component name
[, component description]
[, attribute part]

connection ::= arrow
constraint ::= arrow
arrow ::=

label, source, target
[, description]
[, attribute part]

rule ::=
statement, rationale,
decision,
needs ref,
exception part

Table 2: Fragment of a Grammar for Architectural Models

To implement these principles, we are developing a formal spec-
ification language for architecture representation. Our architecture
language has both a formal syntax and graphical counterpart (not
shown here). A fragment of the grammar for that language is
shown in table 2. The grammar will define the syntax and seman-
tics of models and architectural entities: components, connections
and constraints, views, rules and the attributes needed to record an
architecture and manage compliance to it.

Views. Building architects do not attempt to capture all salient
characteristics of a building in a single model. Instead, they develop
a number of renderings or views. Each view shows the whole
structure from a particular vantage point. Vantage points are chosen
to highlight key concerns. The views may be presented in a variety
of media. In the sketching stage, the architect freely draws various
views. Later, when blueprints are drawn up as specifications to the
builder, there are well-defined relationships between the views.

Adopting the building metaphor, we have found it useful to
develop architectural models by separating out distinct views of the
model. Each view is motivated by a particular concern and with
the intent of showing one particular aspect of the system, to answer
questions like:

� How should legacy systems be adapted or reused?

� Should data be replicated or centralized?

� How will data storage systems meet security requirements?

� What forms of distribution should new applications support?

� Should a common tool set and methodology be prescribed?

For example, a data-intensive, enterprise-wide information sys-
tem might benefit from a data view. Such a view is concerned with
how data is structured, organized and related. It is not a data model
– which would be developed during design. Rather, a data view



would address enterprise-wide requirements on data, integration
rules for new and legacy data models, distribution and replication
policies, etc.

A key principle of views is completeness: for each view, that
view is intended to cover the whole system from the selected vantage
point. Another principle is that views are not mutually exclusive;
rather, a cohesive understanding of the system is gained through
integration of interrelated views.

It is tempting to prescribe predefined views: perhaps, func-
tional, data, and physical views – other techniques have taken this
approach. However, we do not yet have enough experience to pre-
scribe these, or any, views for all systems. Sometimes, a system’s
most critical architectural concerns fall outside this familiar set.
Instead, we make the selection of views a key step (step 2 of table
1) of the architect’s work [10].

Components, Connections and Constraints. Architectural
views are described in terms of three primitive constructs: compo-
nents, connections and constraints [18]. Pursuing the analogy with
architectural rendering, these are primitives of expression – not of
design.

Components represent the major elements of a view.
Connections represent the major relations between components.

They may be behavioral or structural. Connections include “run-
time” relationships like control or data flow, but are not limited to
these.

Constraints represent laws the system must observe. Con-
straints apply to components and connections. Constraints can
be use to express performance and non-functional characteristics,
style and protocol rules, and “laws of nature” which limit the use
of resources.

In our representation all three types of primitives are first-class
constructs.

Meta Model. We have adopted a uniform representation for
views, based on these three primitives. Uniformity is obtained by
defining logical relationships between the three primitives. This
gives the architect an “open semantics” of systems to work with:
the architect may select an existing notation (with its semantics) or
devise a new one – as long as the the notation meets the minimum
requirements of this “meta model.” Our architecture specification
language will exploit the meta model to permit users to extend the
representation framework for special purposes, via subclassing and
related operations. Another advantageof the meta model, which we
have not exploited to date, is the prospect for automated support.

View Integration. An important part of architecture develop-
ment is the establishment of consistency across views. We do this
via traceability mechanisms. There are several levels of traceability
defined by our method.

Once a view is syntactically checked, using the meta model,
it may be integrated with others. View integration is a necessary
step in a method like ours because of the nature of views – in-
tegration is a meaningful semantic act, not a syntactic projection
or transformation which could be automated. The technique we
use for view integration is based on Ross’ “model tie process”
from Structured Analysis (SADT) [17]. Using the tie process, we
systematically cross-reference related entities from distinct views,
thereby addressing what Shaw calls the “multiple views problem”
[19].

Once the views have been integrated, the (resulting) architec-
tural description is reconciled against the original needs analysis
(step 5). In this step we ascertain that the architecture covers the

stated needs, goal and vision. It is not necessary that each state-
ment of goals, vision, and needs be individually satisfied by the
architecture description. However, it is necessary that all questions
or issues raised by goals, vision or needs are either identified and
resolved by the architecture, or that their resolution is explicitly
delegated to the design.

Later in the development, there is a further level of traceability,
that of establishing conformance of the design and/or implementa-
tion with the architecture (step 7).

Implications for Systems Engineering

The preceding method suggests a very different way to formalize
systems engineering. We would argue that any foundation for sys-
tems engineering must recognize and incorporate a means for deal-
ing with multiple views. For large systems, it is simply not feasible
to construct a single model to represent all systems engineering-
relevant information about a system. We adopt the engineering
principle of “separation of concerns” to motivate the presentation
of an architecture through the construction of multiple views. By
developing separate views, each organized around a well-defined
vantage point, one can clearly isolate and present major concerns,
thereby reducing the perceived complexity of the overall system.
The views tend to be independentbut interrelated: some details will
be found only in one view, others will span two or more views.

Of course, the introduction of multiple views also introduces
Shaw’s multiple views problem (see above). Our approach deals
with this in three ways:

1. Uniform representation (components, connections and con-
straints) across views

2. “Semantic unification” of the relationships among represen-
tation entities via a single meta model

3. Formalized traceability mechanisms for the integration of
views and their content

Uniform Representation. In our work, we have concluded that
architectural information can be captured by entities of three basic
classes, which we can understand formally. This is the basis for our
foundational thinking. The foundation afforded by the architecture
metaphor is essentially descriptive: the basic laws of architecture
are the basic laws of description for the purpose of understand-
ing. Rather than reduce systems engineering concepts to some
mathematical construct (whether sets, functions state machines or
objects), our architectural approach builds in these elements as
first-class constructs, to meet the needs and concerns of the multi-
ple audiences involved in systems architecture. Once these are in
place, we can apply other engineering principles to them.

The idea of foundations based on descriptive uniformity is not
new with us – although this application is. Similar ideas may be
found in the earliest work on Structured Analysis [16, 17].

Uni�ed Meta-model. Consistency is maintained between these
multiple views, while retaining their individual semantic integrity,
by adopting a uniform meta model of components, connections and
constraints. This model can be formalized to the desired degree
to support architecture analysis techniques, model verification and
validation and other kinds of automated tool support. This is the
subject of our current work.

We call this a “meta-model” because (1) it does not prescribe
how architectural information is represented, as long as those rep-
resentations minimally conform to the meta-model; and, (2) a rep-
resentation’s semantics is “open” – determined as much by the



“labels” associated with the entities as the overall graph structure
of its components, connections and constraints.

Summary

There is currently significant interest in developing system architec-
ture to control and manage large systems. We have been developing
a practical architecture method to manage the architectural process,
based on a traditional building architecture metaphor. The basis of
this metaphor is the definition of the term “architecture” and the
role of architecture in system construction. We have furthered the
metaphor by articulating the role and activities of an architect in
system development.

In this paper, we have argued that the architectural metaphor
has wider applicability to system engineering by providing a non-
reductionist, description-based framework for understanding sys-
tem engineering activities and products giving equal weight to the
multiple concerns of diverse participants.
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