
Architecture description in-the-large∗

Rich Hilliard
r.hilliard@computer.org

Abstract

Successful Architecting in-the-large, namely across various architecture genres and domains of application, will
require Architecture Description in-the-large. This position paper addresses the issues of the workshop from
insights of Architecture Description, as those ideas have evolved from Software Architecture. It is a heretical
or minimalist approach maintaining that for the most part Architecting is Architecting, and that the differences
across domains and genres derive from the key architectural drivers, namely: Stakeholders and Concerns. In that
context, I further argue what is needed to better address stakeholder and concerns in context.
Keywords: architecture genres, architecture viewpoints, architecture frameworks, system stakeholders and sys-
tem concerns.

1. Introduction

This paper presents the perhaps heretical ideas that:

(I) architecture genres such as Enterprise Architecture, System-of-Systems Architecture, Systems Ar-
chitecture, Software Architecture, and others yet to be discovered and named, are pretty much the
same stuff; and

(II) to the extent that architectures in these genres vary, the source of this variation is easy to isolate
and express.

When I use the term architecture, I distinguish two senses of that term: architecture1 as a discipline (the
art or science of Architecting) and architecture2 as an intellectual product resulting from the application
of that discipline to a system or other entity of interest.

I come to these heretical ideas based on 30 years of experience with systems and starting from the
perspective of Architecture Description: what and how one writes down things about architectures. Ad-
mittedly, Architecture Description is one narrow bit of Architecting, but the community now has years
of experience there. Perhaps it can shed some light on these larger challenges?

2. On the Workshop Questions

This section does a walk-through of the Workshop Questions (taken verbatim from the CfP but re-
ordered for this presentation), and provides short answers to them that sketch the main elements of my
argument.

∗Position paper presented at the workshop on Exploring Enterprise, System of Systems, System, and Software Architecture at
WICSA/ECSA 2009 (Cambridge UK, September 2009).

http://www.sei.cmu.edu/architecture/WICSA2009ArchitectureWorkshop/


What are enterprise, system of systems, system, and software architectures?
It seems like the systems and software communities have spent the last 20 years trying to define ar-

chitecture2. The SEI website offers us an extensive list from the Software Architecture community [see
How Do You Define Software Architecture?]. Those definitions vary with regard to their specificity
to software, the constituents involved, and many other parameters. The following definition seems
equally applicable to software, systems, systems-of-systems, enterprises and other aggregations of in-
terest:1

architecture: The fundamental organization of a system embodied in its components, their
relationships to each other, and to the environment, and the principles guiding its design
and evolution. [6, 7]

The key ideas in the IEEE 1471 definition are these:

(1) Architecture2 embodies the fundamental concepts about a system, including its components, their
relationships and governing principles. More recently, this has also been expressed this in terms
of “the significant decisions about” a system [P. Kruchten].

(2) Architecture2 recognizes the role and influence on an architecture of the environment in which a
system is embedded. Some even say this recognition of context is what distinguishes Architecture1

from Design, but that is a debate for another time.

(3) Architecture2 is not merely about the static arrangment of a system’s “parts” but its evolution—
whether we are talking about a constructed system (as in this workshop) or a natural system (e.g.,
a cell) and the principles governing that evolution.

Each of these key ideas about Architecture2 has consequences for what we say about the discipline of
Architecture1. More about this below.

What do these architectures have in common and what makes them different?
This two-part question has one answer: Stakeholders and Concerns. The way we come to understand

any complex system in its environment is to look at and understand the influences on that system.
One way to “operationalize” this understanding it to identify, Who cares about this system? and What
exactly do they care about? This is the basis for stakeholders and concerns. It is a truism to say that
complex systems have one or more stakeholders—often with conflicting concerns. For concreteness, let
me quote the current definitions [ISO/IEC WD4 42010]:

stakeholder (of a system): individual, team, organization, or classes thereof, having con-
cerns with respect to a system

system concern: area of interest in a system pertaining to developmental, technological,
business, operational, organizational, political, regulatory, social, or other influences impor-
tant to one or more of its stakeholders

1For the remainder of this position paper, I am going to use system as a shorthand for a long list of aggregations of interest
to include the ones listed above and others such as product lines, product families, software applications, etc. The moral
should be anything you are interested in can be a “system”. I won’t recite the list again, unless there are reasons to distinguish
its members.

2

http://www.sei.cmu.edu/architecture/definitions.html
http://www.iso-architecture.org/ieee-1471/docs/IEEE-P42010-D6.pdf


(I) The idea that complex systems have multiple stakeholders and concerns unifies the architecture
genres we are discussing; the particular stakeholders and concerns which are relevant within each
genre determines the ways in which they are different.

Diverse stakeholders and concerns contribute to what what makes a system complex, and it is also the
basis for why we understand Architecture1 as multi-disciplinary:

“The ideal architect should be a man of letters, a skillful draftsman, a mathematician, fa-
miliar with historical studies, a diligent student of philosophy, aquainted with music, not
ignorant of medicine, learned in the responses of jurisconsults, familiar with astronomy and
astronomical calculations.”

— Vitruvius, De Architectura (25 BC)

WARNING: The next few answers promise to be pretty boring—they are merely applications of (I) as
stated above. Stay tuned!

Where does one type of architecture end and another begin (e.g., how do you know when you
have moved from talking about enterprise architecture to system of systems architecture)?

The boundaries of the genres can be understood in terms of the stakeholders of systems within each
genre and their concerns. Moving from one genre to another it is worth asking, What stakeholders carry
over between genres? How do stakeholders interests shift? What stakeholders are unique to each? What concerns
carry over? What new concerns arise or are reinterpreted?

What do we mean when we say ”we’re designing” one of these architectures (e.g., what activ-
ities are we performing, what types of requirements are we dealing with, what types of design
decisions are we making)?

I would claim that the activities themselves are not very interesting: I admit to being a process cynic,
for the reasons discussed in [4]—an eloquent argument against method in science and equally applica-
ble to prescribing methods in Design and Architecture.

What commonalities exist among activities that are performed for each type of architecture
(e.g., specification, evaluation)?

There are some basic activities of Architecting. It would be a mistake to prescribe a process (for
the reasons alluded to in the previous), but there are some general characteristics I think any form of
Architecting would take:

• Bound the problem

• Understand the context, environment in which problem and solution are situated

• Work the problem within those bounds in terms of:

– Requirements analysis and specification

– Investigate elements of solutions

– Modeling and analysis

3



– Check and integrate the details

• Iterate as needed

Hofmeister et al, discuss a generic process for Software Architecting, aside from some terminology,
there is no reason to believe the same archetype would not work for other domains and genres, or
Architecting in general. I’m perfectly happy with a generic Architecting process along the lines of their
generic model [5]. My version of that process shown below:

Analysis

Evaluation

Synthesis

concerns

Stakeholder

weightings, scores

architectural
requirements

architectural
concepts, 
alternatives, 
decisions

concerns
concerns

Figure 1. A generic model of Architecting

In this model the Stakeholders and Concerns shape both the problem space being Analyzed, and
the solution space being synthesized. Each analysis, architectural decision or evaluation step poten-
tially identifies new stakeholders and concerns. True differences in activities arise when you get into
specialities of the domain of application, the technologies involved, etc., e.g., certifying a aircraft for
flightworthiness.

What do architects for one type of architecture need to know about the other types of architec-
ture?

As a rule of thumb, if one drew a picture of how these genres relate (perhaps cross-cut vertically by
domains of application), one might say downward information flow (e.g., enterprise to system, system

4



to software) bounds the problem, whereas upward information flow (e.g., system to system of systems or
software to enterrprise) constrains the solution. Of course often who constrains whom is determined by
a postmark—who got there first?

What are the relationships among the documentation artifacts of the different types of architec-
tures?

There is probaly a small set of possible relationships, reflecting the types of needed knowledge posed
in the preceding question, such as:

systemA constrains systemB

systemC buildsOn systemD

systemE integratesWith systemF

systemG uses systemH

What is the impact of design decisions made for one type of architecture on the other types of
architectures?

See previous.

What are the challenges (e.g., requirements, design, management, funding, and authority)
unique to each type of architecture?

It’s not clear to me there are any challenges peculiar or particular to all the systems within a genre.

3. So What? or What Next?

The observation that Stakeholders and Concerns reflect basic variations (if any) across architecture
genres is not particularly deep—I hope it is pretty obvious! Still, the observations above and in I suggest
a way forward. This section makes some concrete recommendations in that direction.

If we take the above seriously, then we need good ways to identify, model and analyze stakeholders
and their concerns.

Find the stakeholders and concerns within a genre, domain or system space. If Software Architec-
ture has been any guide, there is no reason to assume the existence of or look for a single solution
across a genre (or domain or space)—at best we may find some typical or recurring cases. During the
development of IEEE 1471 there was no agreement on a single set of viewpoints suitable for all soft-
ware development. Then, as now, there are viewpoints such as 4+1’s Logical, Deployment, Process and
Implementation; SEI’s Views & Beyond: Component and Connector, and Module with wide applicabil-
ity. Yet, these common viewpoints fail to adequate capture critical concerns which may arise in areas
such as Reliability, Scalability, Safety or Information Assurance. For systems with these concerns added
viewpoints are often necessary.

I would expect the same within Systems Architecture, Enterprise Architecture and other genres [8].
There may be some “typical” concerns such as Planning or Resource Management. At the same time,
we may find that, e.g., hospital systems, systems of systems, and enterprises may have more in common
– due to their shared domain of application than two arbitrary systems within the same genre.

If we truly believe there is commonality within and among genres, domains and system spaces, let’s
start a Concerns Catalog, and possibly a Stakeholders Catalog to capture recurring themes. Zachman

5



is not a bad start for enterprises, but misses specialized concerns (again such as Safety, Security, IA).
DODAF is particularly unhelpful in this regard because despite that fact that it enumerates many ar-
chitecture products or models for use, it never “indexes” these products for use. It never tells us why:
What concerns can each of its products address? Do I need architecture product XV–5 for my current project?
A general solution would build on existing work on taxonomy of quality attributes and recent work in
goal-oriented requirements specification and “concern-oriented modeling” from the Aspects commu-
nity.

If we can get a handle on (typical) Stakeholders and Concerns within each genre (or domain or sys-
tem space), we might be able to begin to understand the boundaries and information flows between
genres. Finding the same stakeholder in both may tell us there will be common concerns in each (due
to the nature of her job). Understanding the relations between Stakeholders (organizationally) may offer
insights across genres and domains. This suggests Architecture1 is a lot more sociological than how it
is usually written about. This quote reminds us we have a ways to go, and probably always will:

Unfortunately, in contrast to building architectures, we have yet to agree on what the ap-
propriate software structures and views should be and how to represent them. One of the
reasons for the lack of consensus on structures, views, and representations is that software
quality attributes have matured (or are maturing) within separate communities, each with
their own vernacular and points of view.

— Mario Barbacci [1]

But the Barbacci quote also points out an opportunity: of capturing languages, notations and models
suitable to diverse community when dealing with their concerns. Most technical communities have
requirements and standard practices independent of and prior to the arrival of the Architects. Often,
this means existing models and notations are in use with respect to certain concerns. (Safety is a classic
example, here.)
Remember mega-programming? The evolution of Programming was from raw assembly code to routines
to modules to components. One could aspire to a similar progression in Architecture Description: from
individual models that worked for describing a particular system, to patterns (and the Rule of 3), to
architecture viewpoints (precedented approaches to framing certain system concerns), and reasoning
frameworks [2] (reusable approaches to addressing certain quality concerns) to architecture frameworks
(coordinated sets of viewpoints). Viewpoints and frameworks can be repositories of such commonality.

A viewpoint determines that (1) when addressing concerns like this, (2) for stakeholders like
that, use (3) notations and models like this.

In addition to ordinary syntax and semantics of its models and notations, a viewpoint can include
additional guidance, such as suggested tasks to perform, heuristics and patterns to help get the job done,
and reasoning frameworks appropriate to its models. The viewpoint construct recognizes the multi-
disciplinary nature of architecture discussed above and suggests a concrete container for packaging up
knowledge from a discipline in a convenient form.

A further level of “reuse” is suggested by frameworks—coordinated sets of viewpoint and correspon-
dence rules between them. In some future Nirvana, we could even imagine composition by mixing and
matching framework elements (defined in a common format) to address new systems across genres,
domains and system spaces [3].

6



References

[1] M. R. Barbacci. Analyzing quality attributes. Column in SEI newsletter, The Architect, March 1999.
[2] L. Bass, J. Ivers, M. Klein, and P. Merson. Reasoning frameworks. Technical Report CMU/SEI-2005-TR-007,

Software Engineering Institute, Carnegie Mellon, 2005.
[3] D. Emery and R. Hilliard. Every architecture description needs a framework: Expressing architecture frame-

works using ISO/IEC 42010. In R. Kazman, F. Oquendo, E. Poort, and J. Stafford, editors, Proceedings of the
2009 Joint Working IEEE/IFIP Conference on Software Architecture and European Conference on Software Architecture
(WICSA/ECSA 2009), pages 31–40. IEEE Computer Society Press, 2009.

[4] P. Feyerabend. Against Method: Outline of an Anarchistic Theory of Knowledge. NLB, 1975.
[5] C. Hofmeister, P. Kruchten, R. L. Nord, H. Obbink, A. Ran, and P. America. A general model of software

architecture design derived from five industrial approaches. The Journal of Systems and Software, 80(1):106–
126, 2007.

[6] IEEE. IEEE Std 1471–2000, IEEE Recommended Practice for Architectural Description of Software-Intensive Systems,
October 2000.

[7] ISO. ISO/IEC 42010:2007, Systems and software engineering — Recommended practice for architectural description
of software-intensive systems, July 2007.

[8] M. W. Maier, D. Emery, and R. Hilliard. ANSI/IEEE 1471 and systems engineering. Systems Engineering,
7(3):257–270, 2004.

7


	. Introduction
	. On the Workshop Questions
	. So What? or What Next?

