
Experiences Applying a

Practical Architectural Method?

David E. Emery1, Richard F. Hilliard II2 and Timothy B. Rice2

1 Hughes Aircraft of Canada, CAATS Development Facility, #200, 13571 Commerce

Parkway Richmond, BC V6V 2J3 Canada
2 The MITRE Corporation, Mail Stop B155, Bedford, MA 01730 USA

Abstract. Software architecture has come to be recognized as a disci-
pline distinct from software design. Over the past �ve years, we have

been developing and testing a practical software architecture method at

the MITRE Software Center. The method begins with an initial state-
ment of system goals, the purchaser's vision for the system, and needs,

an abstraction of the system's requirements. Multiple views of the sys-

tem are then developed, to address speci�c architectural concerns. Each
view is de�ned in terms of components, connections and constraints and

validated against the needs. This paper brie
y introduces the method

and describes our experiences with its \alpha" and \beta" applications
to two U.S. Army management information systems.

1 Introduction

Software architecture is becoming recognized as a discipline distinct from soft-

ware design [1]. There are several reasons for the emergence of software architec-

ture, including: the realization that software design does not always address crit-

ical system needs; the emergence of \product lines" where the generic basis of the

product line must be separated from the speci�cs of any one instance/delivered

system [2]; and research into software engineering as a discipline which has lead

many people to compare software with other established disciplines [3]. It has

been the authors' experience that even before the recognition of the notion of

\software architecture" in the research community, \good" systems often ex-

hibit an architectural consistency (and conversely \bad" systems often lack this

consistency.)

The Ada community has led in the construction of well-architected systems

and the consideration of software architecture for construction large systems (see

for example, CCPDS-R [4], [5], CAATS [6], and Tyndall RCS [7]).

This paper provides an overview of a software architectural method devel-

oped at the MITRE Corporation, and provides experiences from the �rst two

applications of the method. Our method has these characteristics:

? In Proceedings Ada Europe '96 Conference on Reliable Software Technology,

Montreux, Switzerland, June 4{10, 1996 , Lecture Notes in Computer Science,

volume 1088, Springer-Verlag. Awarded \Best Paper of Conference".

{ It includes the `acquirer' and end users, as well as the system developer, as

participants in architectural activities.

{ It can be applied to develop an architecture for a new system, or to capture

the architecture of an existing system.

{ It does not prescribe any particular design framework, computational model

or �xed set of views; thus it accommodates varying needs and interests for

a wide range of classes of systems.

{ It supports traceability of architectural products back to both formal re-

quirements and less formal goals and visions.

{ The method is rooted in a line of architectural thought that emphasizes

\context" as opposed to \form."

The remainder of the paper consists of a short history of the method to

introduce our notion of \architecture" and de�ne some client goals for an archi-

tecture. We brie
y summarize the method, which has been detailed elsewhere

[8], [9], [10]. Following that we discuss our experiences on the �rst two major

applications of the method, and provide observations from this experience. We

conclude with a set of lessons learned on architecture and discuss on-going and

future work.

2 \What is a software architecture, and why do I want

one?"

Our ideas about architecture have been formulated over the past �ve years. At

the inception of ARPA's Domain-Speci�c Software Architecture program, one of

us [11] examined the limitations of model-based approaches for \large" domains

like Command and Control. This led us away from domain-speci�c approaches

to considering the problems of general-purpose architecting techniques.

Many of these ideas have crystallized into the current method in support

of our work for the U.S. Army Program Executive O�ce for Standard Army

Management Information Systems (PEO STAMIS), and the Sustaining Base

Information Services (SBIS) program in particular. MITRE was tasked to de�ne

a notion of \software architecture" for information systems and to apply this

notion to several Army projects. Speci�cally, this tasking came about when we

were asked, \What is a software architecture, and why do I want one?"

2.1 Our De�nition of Architecture

Although it seems that everyone is using the term \architecture" these days,

there aren't many helpful de�nitions of the term. Our de�nition has these as-

pects:

{ An architecture is the highest-level conception of a system in its environment.

{ That conception includes the structure and behavior of the whole system in

that environment, to show how the system will meet its requirements.

{ A consequence of this de�nition is that every system has an architecture|

whether or not it is written down.

{ Of course, we are most interested in articulated architectures|those which

are documented or otherwise modeled in some form which can be communi-

cated to others.

2.2 Role of Architecture

Our de�nition has a number of di�erences from those of others which become

evident as we discuss the role of architecture in system development.

An architecture is not just a design; in fact, an architecture might result in

one or more designs. It is a framework by which multiple software developers

produce consistent and integrated components over the life cycle, such that: each

component is part of the integral system; and, the user is unable to distinguish

between components developed by di�erent developers. As a framework it iden-

ti�es tools, methods, and facilities needed to develop an individual system that

conforms with the architecture.

But an architecture has other \audiences" than just developers|it serves as

basis for analysis and decision-making throughout the life cycle. In addition to

designers, an architecture must be usable by end users, acquirers, the system's

owner and operator, etc. It therefore should be able to support technical, cost

and programmatic decisions.

A \good" architecture shows how to build a system to meet its users require-

ments and the often intangible \needs" of these other audiences. It does this by

being a decision-making tool. By formalizing the ad hoc and implicit decision

making of systems engineering, it clearly identi�es decisions such as technology

choices, allocations of function or performance, and the selection of APIs and

other interfaces.

Once identi�ed, decisions fall into three categories, obligations, commitments,

open issues. Following Burns and Lister [12] (who were actually writing about

design), our method distinguishes commitments, obligations and open issues.

a progression of increasingly speci�c commitments ... properties of

the system design which [detailed] designers are not at liberty to change.

Those aspects of a design to which no commitment is made ... are the

subject of obligations that lower levels of a design must address. The

process of re�ning obligations into commitments is often subject to con-

straints imposed primarily by the execution environment.

The architecture resolves some of these decisions by making commitments.

Commitments are captured as architectural rules imposed upon the designer.

E.g., on SBIS the architecture resolved that there would be a single enterprise

data model. In other cases, the decision is obligated to the designer to make;

e.g., each application will de�ne its data view in terms of the SBIS data model.

When it is unclear which of these options may be taken, the decision remains

an open issue for the architecture, subject to further investigation.

3 An Overview of the Method

In this section we walk through the steps of a candidate process for architecture

development, the principles governing it, and how architectures are represented.

1. Understand program
{ Needs Analysis

{ Program cost and schedule
{ Products: needs, goals, vision statements

2. Select views

3. Analyze each view
{ Products: a \blueprint" of each view with associated decisions, rules and open

issues

4. Integrate views (for consistency)
5. Trace views to needs (for completeness)

6. Iterate activities 3, 4 and 5

{ Until no more unresolved questions
{ If there are numerous unresolved issues, revisit step 2

7. Validate

{ Against formal requirements
{ Conformance of design and implementation (as built) to architecture (as spec-

i�ed)

Table 1. An Architectural Process

As in many branches of engineering, our method begins with understand-

ing the problem and its constraints including the requirements, program cost

and schedule demands; i.e., the concerns of the various stakeholders. Our under-

standing of these is distilled into three products, developed with the client, and

ideally \owned" by the client, which capture both the speci�c requirements for

the system, and also the general direction and intent of the client.

3.1 Goals and Vision: The Client's Responsibility

It is important that the client be an active participant in the architectural pro-

cess. To this end, we ask the client to prepare two architectural products, a

\goals statement" and a \vision statement." The goals re
ect the client's eval-

uation criteria|how the client will evaluate whether the system is a success.

These goals include meeting the formal needs, as well as preferences and desires

which do not occur as requirements. The vision indicates the client's long-term

direction for the system. This includes both the current system under develop-

ment, and also provides a view of its evolution and eventual replacement.

3.2 Needs: An abstraction of requirements

For the kinds of systems we typically deal with, there are one or more require-

ments speci�cation documents, often running into hundreds or even thousands

of pages. Even when well-written, these formal requirements documents have

proven to be too di�cult to use e�ectively to derive and analyze system archi-

tectures. We analyze these requirements into a set of needs, which capture the

architecturally-relevant requirements, without unnecessary detail.

Needs are developed using classical requirements analysis techniques [13],

[14]:

1. Abstract system requirements to system needs

2. Analyze needs for architectural relevance

3. Convert to architecture need

4. Review and verify coverage

5. Document and gain buy-in from program

The step which classical techniques do not provide much guidance for is de-

termining the architectural relevance of a requirement. This requires experienced

architects.

3.3 View Selection

With the needs, goals and vision in place, we begin to architect the system.

We document an architecture as a model, expressed as a number of views. The

purpose of multiple views is to manage complexity and separate concerns|a

single model would be too complex to capture all aspects of a system's archi-

tecture. Instead, each view focuses on one or more key concerns of the system.

A key principle of views is completeness: for each view, that view is intended

to cover the whole system from the selected vantage point. Another principle is

that views are not mutually exclusive; rather, a cohesive understanding of the

system is gained through integration of the interrelated views (see Traceability,

below).

Unlike other techniques which pre-select a set of viewpoints [2], we do not.

The selection of appropriate views is a critical early activity of the architect,

driven by the critical concerns of the program.

3.4 Components, Connections and Constraints

Each view is modeled individually using three primitives: components, connec-

tions and constraints.

Components represent the major structural elements of a view. E.g., functions

in a functional view, processors and data stores in a physical view.

Connections represent the major relations between components. These in-

clude \run-time" relationships like control or data
ow as well as other depen-

dencies.

Constraints represent laws the system must observe; constraints apply to

components and connections. Constraints include performance and non-functional

requirements, style and protocol rules, and laws of nature which constrain re-

sources.

The modeling of views is de�ned by the \C3 meta model," a grammar which

states the permissible syntactic and semantic relationships between these three

kinds of modeling primitives [15].

3.5 Traceability

There are several levels of traceability de�ned by our method.

Once a view is syntactically checked, using the meta model, it may be in-

tegrated with others (step 4). View integration is a necessary step in a method

like ours because of the nature of views; integration is a meaningful semantic

act, not a syntactic projection or transformation which could be automated. The

technique we use for view integration is based on Ross' \model tie process" from

Structured Analysis (SADT) [16]. Using the tie process, we systematically cross-

reference related entities from distinct views, thereby addressing what Shaw calls

the \multiple views problem" [17].

Once the views have been integrated, the (resulting) architectural de�nition

is reconciled against the original needs analysis (step 5). In this step we ascertain

that the architecture covers the stated needs, goal and vision. It is not necessary

that each statement of goals, vision, and needs be individually satis�ed by the

architecture de�nition. However, it is necessary that all questions or issues raised

in goals, vision or needs are either identi�ed and resolved by the architecture, or

that the architecture de�nition explicitly delegates their resolution to the design.

Later in the development, there is a further level of traceability, that of estab-

lishing conformance of the design and/or implementation with the architecture

(step 7).

4 The SBIS Architecture

4.1 The SBIS Program

Mission. Like many other enterprises, the Army needs to downsize its opera-

tions over the next decade, while creating the capability to respond with greater

exibility to changing mission requirements.

The objective of the Sustaining Base Information Services (SBIS) program

is to acquire and implement a Government-owned and Government-operated

(GO/GO) Open Systems Environment (OSE) infrastructure and to transition

all active Army component automated information systems to that OSE by 2002.

Such an infrastructure is intended to provide a common user interface and ser-

vices to help eliminate proprietary, \stovepiped" Army management information

system applications. It is intended to provide greater
exibility for access to infor-

mation regardless of operational environments (ranging from Army installations

to forward-deployed elements from those installations), database management

systems, networks or physical location of the information, in accordance with

the Army Enterprise Strategy.

The SBIS OSE infrastructure is based on current and emerging OSE Stan-

dards. Adherence to these standards as they continue to evolve ensures that the

Army's information services remain independent of technology and vendor, while

supporting a selection of vendor products. The design allows an ongoing infusion

of new technology and emphasizes procured rather than developed items.

4.2 SBIS Needs, Goals and Vision

The SBIS goals and vision statements were formulated by the client working

in concert with the SBIS system engineer and the architecture team. The SBIS

goals statement is shown in table 2. The SBIS vision statement is shown in table

3.

{ Design SBIS to evolve

� Use Commercial o�-the-shelf (COTS) products vs. \built to speci�cation"
items whenever possible

� Assume that user needs will change over time

{ Design SBIS for change
� COTS products used in SBIS will change as the market evolves

� Hardware will change, becoming more heterogeneous with time

� Use of standards will allow SBIS to adapt to changes in hardware and COTS
software

Table 2. SBIS Statement of Goals

SBIS Needs. A needs database was constructed early in the architectural e�ort

and has been maintained throughout the project. It currently captures about 140

needs|in contrast to hundreds of formal requirements re
ected in the Statement

of Work, and \capstone" requirements document. In addition, each of the tens

of SBIS applications to be supported has its own Functional Description docu-

ment, typically containing numerous user requirements. Since the predominance

of these requirements are functional speci�cs within the overall concept of Army

management information systems, they do not have a direct impact on the ar-

chitecture, and thus are bit re
ected as needs.

Each need is recorded with a unique identi�er, a statement of the need,

cross-references to the formal requirements from which it is derived, and other

information. We currently maintain the needs database as a spreadsheet.

1. SBIS will support day-to-day information processing needs of an Army installation

and the units it supports, even if these units are deployed.
2. SBIS will support low-skilled end-users by providing integrated computer-based

training, extensive help capabilities, and a consistent end-user interface.

3. SBIS will support a set of evolving and expanding applications, including legacy
and new applications.

4. SBIS will support consistent development of applications by multiple organizations.

5. SBIS performance will increase over time, re
ecting increases in application per-
formance requirements.

6. Scaling and reliability will be tailorable based on needs of installations and their

supported units.
7. SBIS reliability will increase over time.

8. SBIS will employ `open concepts':

{ To take advantage of emerging technologies as they become stable,

{ To ensure overall a�ordability and `value for the buck,'
{ To ensure that applications and data will be isolated from changes in basic

computer hardware, network topology, user interface methods, and database

implementations.

Table 3. SBIS Vision Statement

4.3 SBIS Views

For SBIS, we initially created four views. We have subsequently added a �fth

view, to address security concerns. Each is described below.

Application View. As described by the SBIS vision, the system has strong needs

for
exibility, portability, interoperability and forms of \openness." As SBIS

evolves, new and legacy applications must coexist. The Application View is a

\template" for applications new and old. For users, it de�nes a uniform \look

and feel" for SBIS applications. For application designers, it establishes con-

trolled interfaces and partitioning principles such that all applications may \plug

and play" in SBIS, availing themselves of common services. For vendors, it es-

tablishes identi�able opportunities for new products and enhancements within

a well-de�ned market. The Application View exhibits a 5-layered structure of

components (from the top): Presentation { User Interface { Application Logic

{ Data Access { Data Storage. It is layered, in that each component only com-

municates with its direct neighbors through a single connection, manifest by a

well-de�ned API. Each such pair of components stand in a client-server relation-

ship. Applications are designed to be distributable across any of these layers, on

a per-application basis, and governed by rules of the Distribution View (below).

Data View. This view is concerned with how SBIS data is structured, organized

and related, and the manner in which applications may utilize this data.

The Data View addresses: Army-wide requirements on data, such as the

mandated use of the DoD Data Model; that numerous legacy applications have

implicit or explicit data models of their own; that there is a need for consistent ad

hoc query access capabilities; and the demands for distribution and replication

of data.

It is not a data model|an SBIS-wide enterprise data model is under develop-

ment as a part of the design process. Rather, the major components of the Data

View are the many SBIS data models (from enterprise, to application-speci�c,

to legacy, to physical models). Connections between these models represent the

types of transactions the system will need to implement. Constraints in the

Data View re
ect the logical relations between these models (that the SBIS-

wide model must be a subset of the DoD model, that each application data

model must be a projection of the DoD model, etc.)

Distribution View. The Distribution View is concerned with the allocation of

applications and data to actual computing elements (including processors, data

bases, networks and end-user workstations) and geographic locales. In the case

of SBIS, most distributed processing is accomplished via existing local area net-

works. However, at some SBIS sites the only available connectivity is via a dial-

up phone line, substantially reducing the bandwidth and reliability of the con-

nection. More importantly, the Army's approach to conducting operations has

changed. Today, a unit being deployed expects to take \a piece of home" with it

in the form of connections back to its supporting installation to provide payroll,

�nance, inventory, and other support. An installation may suddenly �nd that

some of its elements have been moved from down the street to Kuwait, Somalia

or Haiti. Thus, the Distribution View must handle both traditional LAN-based

connections and ad hoc connections based on commercial broadband carriers,

satellite communications, dial-up telephone lines, or even tactical radios. Rather

than attempting to specify a single distribution paradigm to cover this range of

situations and application and data distribution needs, the Distribution View

speci�es a set of rules for the designer to use in making decisions for each appli-

cation and potential distribution case.

Security View. SBIS has strict requirements for handling medical and �nancial

data, as well as interfaces to command and control systems. The Security View

establishes rules for the protection of sensitive data and other resources. The

components of the Security View comprise the subjects, objects and information

domains of a security model [18]. Connections represent the forms of permissible

access. Constraints include the security policies governing subjects' behaviors

and access to protected data and resources.

Development/Maintenance View. It could reasonably be said that all of the

views described above are \development" views, since a critical audience for

each one are the developers. However, multiple organizations are involved in de-

veloping and maintaining the system which includes legacy and COTS elements.

A uni�ed development view is needed to integrate these disparate elements in

a consistent fashion. This view describes the rules for documentation and the

management of software artifacts in a multi-organization setting, through a set

of building codes and construction rules.

4.4 Results and Accomplishments

As requested by the Government client, the original documentation of the SBIS

architecture took the form of a set of annotated brie�ng charts. In this for-

mat, the architecture de�nition has been central to making the notion of a

Government-owned/Government-operated infrastructure concrete throughout the

program. Getting the client involved in the setting of goals and vision has es-

tablished his direct involvement in the architectural process.

The architecture de�nition has been the basis for reconciling con
icting re-

quirements between user proponents and for evaluating design alternatives such

as component selection. Make vs. buy (e.g., COTS vs. developed Ada code) op-

tions are analyzed in the architectural context. The SBIS context (as expressed in

the goals) also led away from an early communication-intensive design proposal.

In the same way, the architecture is used to communicate a single integration

framework for these disparate components: new code, COTS and legacy applica-

tions. The Data Access layer, for example, de�nes a single, common procedural

interface to all data sources (speci�ed with Ada/SQL) whether new, COTS or

legacy. The approach is now being extended to an enterprise-wide \Interface

Control Document Policy" for standard Army MIS applications to specify their

interfaces in a common fashion.

At all stages of the architecture activity, and now in the development phase,

we have used the architecture de�nition for life cycle costing studies, to identify

\driving requirements" and to estimate maintenance and support costs.

5 The AMIS Architecture

5.1 The AMIS Program

MITRE was asked to support a government \tiger team" in a quick evaluation of

another military information system (AMIS) and the state of the program over

a 2{3 week period. The AMIS is intended to provide automated management

information support to the U.S. military's reserve components, much as SBIS

is to provide to similar support to the active Army. We used our architectural

method to develop short goals and vision statements for AMIS. The goals and

vision statements were developed by team members with experience in the do-

main, and were subsequently validated with the project management. We then

produced a list of key needs. From this, we developed a strawman architecture

to understand the issues. The primary result of this 1-week e�ort was a list of

architectural issues that AMIS needed to solve.

We used this list to discuss issues with the contractor, and produced some

alternatives. Our method allowed us to identify and isolate some questionable

requirements that (when expressed as needs in our method) drove parts of the

system architecture and contributed substantially to the overall system cost.

Using our goals and vision statements, we triggered a reassessment of some of

these needs. By adjusting the security requirements, we showed that the system

could save millions of dollars, through accomplishing the overall goals using

alternative facilities (both automated and manual).

5.2 Architecture Validation

The tiger team led to a longer-term (3 month) investigation to validate their

preliminary �ndings. For this e�ort, we systematically applied our method, albeit

in a compressed time frame. Because of the strong similarities to SBIS, at each

stage we used architectural products from that program as \�rst drafts" for

AMIS.

A Customer Focus Team (CFT)|representing the AMIS users|was formed.

We worked with them to a�rm the earlier strawman goals and vision statements.

The CFT used the SBIS needs database to begin development of a full set of

AMIS needs. Many could be used as-is or easily restated, others were deleted,

a number were added. The needs were then prioritized by the CFT as input to

the architecture.

In parallel with the needs analysis, we started with the extant SBIS views:

Application, Data, Distribution, and Development/Maintenance. Subsequently

we added a Security View (the recognition of the need for this vantage point was

later fed back to SBIS).

Using these draft views and the AMIS needs as they became stable, we

were able to quickly sketch a new architecture for AMIS. The Application View

was a generalization of what was already being done; the Data View was quite

consistent with the approach to data engineering already being taken on the

program; the Distribution View re
ected opportunities that simply were not

present when the original e�ort was begun; and the Development/Maintenance

View focused on program management level concerns for maximising use of

COTS and reuse of existing Ada code. The Security view allowed us to capture

and compare alternate approaches to system security. In particular, we produced

several architectural alternatives, which showed that the right choice of security

mechanisms could achieve substantial cost reductions.

5.3 Experiences

The major goal for a `tiger team' is to identify critical issues. Our architectural

framework gave us a set of tools for analyzing a program, by producing the initial

architectural products. With these products, we did a strawman architecture,

which identi�ed where the architecture was a�ected by speci�c system needs.

Thus rapidly identi�ed a set of issues that had signi�cant architectural impact.

By adjusting the needs, we produced alternate architectures, which were then

used in cost analysis.

The method worked very well to focus the team. Through the Needs pro-

duction, we gained a reasonable familiarity with the system requirements. Our

work on Goals and Vision allowed us to identify the truly important parts of the

system, and were critical in identifying Needs that could be changed without

a�ecting the overall system function. Our strawman software architectures (sev-

eral versions, based on varying needs) was su�ciently detailed to allow economic

analysts to estimate system costs. Thus the architectural approach produced al-

ternative system designs and associated costs, using a consistent method.

6 Lessons Learned with Architectures

6.1 Our Architectural Method

We have now used our method both for architecture synthesis and analysis.

In addition to the information systems described above, we are using it for

a portable (laptop) command and control system at present. In the analysis

mode, we have used it to identify weaknesses and risks in proposed designs. In

the synthesis mode, it allows us to rapidly isolate key decisions and trade-o�s.

The method and the resulting products seem accessible to key decision mak-

ers: needs, as we have de�ned them, are easily understandable by stakeholders|

perhaps more naturally than formal requirements. The factoring of a complex

system into one or more views also helps to communicate with key personnel.

We have found the principles governing views to be useful in getting started

and bounding the architecture problem. By applying these principles and the

vocabulary of components, connections and constraints uniformly, we have at-

tained a level of rigor wherein the notation itself rules out possible solutions. Of

course, this means not anyone can simply start \architecting"|individuals must

be trained in the principles, and our method seems to require a high degree of

expertise on the part of its principals.

The architecture descriptions we delivered for AMIS and SBIS were in the

format of annotated brie�ngs|as required by our clients. We believe we have

reached the limits of usability for this format, at least for large systems. For

our on-going SBIS work, the architecture speci�cation has been converted to a

textual form. We are considering HTML for other e�orts.

6.2 Evolution of the Discipline of Software Architecture

Principles of the Method. As we have evolved our method, we have extracted

the following principles we believe to be useful to any architectural approach

and the basis of our success:

{ Architecture documentation must be understandable by diverse audiences,

including users and clients, not just developers

{ There's a need for a general-purpose \blueprinting" technique

� Applicable to single systems, product lines, domains

� Independent of design method (e.g. object-oriented)

� Independent of computational model

{ Always separate concerns

� Requirements 6= Architecture 6= Design

Comparison to Other Work. These principles have led us to a conception of

architecture, much closer to its traditional (building) sense, than is currently

employed in software. Most current work focuses on the internal structure of

systems, making architecture a part of design, rather than a contextual activity,

situating the system in its environment of users and other stakeholders.

We believe we have made two important technical contributions in our work.

First, we capture constraints as �rst-class entities of an architecture, on par with

components and connections. Second, we use these three primitives as a unifying

notation across di�erent views|whereas others have selected view-particular

constructs (whether functions, objects, etc.).

7 Conclusions

We have developed an architectural method that emphasizes placing a system

into its context, and captures this context through the goals and vision state-

ments. We abstract the requirements into a set of needs, which are then used

to develop the subsequent architectural products, a set of blueprints, or views,

of the system. Each view is expressed in terms of components, connections and

constraints, governed by a meta-model. A key ingredient of our approach is trace-

ability between views, which we believe we have the conceptual mechanisms to

handle.

During the development of the method thus far, we have used only text

processing and graphical presentation tools for architecture speci�cation. This

has been intentional|we did not want to force what we were doing into existing

tools without knowing our real needs for automation. Now, we believe we have

enough experience with the method to take the next step; that is the subject of

future work.

Acknowledgments. The applications described here were under the sponsorship

of the U.S. Army Information Systems Engineering Command (ISEC). Our de-

velopment of the practical architecture method is sponsored by the MITRE Soft-

ware Center Core Technology program. Other MITRE contributors to the def-

inition and application of the method include: R. Baldwin, C. Byrnes, R. Harris,

K. Heideman, J. Hustad, M. Kinnebrew, J. Knisley, J. Moore, T. Nixon, R. Ring-

dahl, S. Schwarm, and D. Waxman.

References

1. D. Garlan, editor. Proceedings of the First International Workshop on Architecture

for Software Systems, Seattle, WA, April 24{25 1995. Published as CMU{CS{TR{

95{151.

2. Philippe B. Kruchten. The 4+1 view model of architecture. IEEE Software,
28(11):42{50, November 1995.

3. Dewayne E. Perry and Alexander L. Wolf. Foundations for the study of software

architecture. ACM SIGSOFT Sofware Engineering Notes, 17(4), October 1992.

4. Walker E. Royce. Reliable, reusable Ada components for constructing large, dis-
tributed multi-task networks: Network Architecture Services (NAS). In TRI-Ada

Proceedings, Pittsburgh, October 1989.

5. Walker E. Royce. TRW's Ada process model for incremental development of large
software systems. In Proceedings of the 12th International Conference on Software

Engineering, Nice, France, March 26{30 1990.

6. Philippe B. Kruchten and C. J. Thompson. An object-oriented, distributed archi-
tecture for large scale Ada systems. In Proceedings TRI{Ada '94, Baltimore, MD,

November 1994.

7. Dan DeJohn. The Tyndall Range Control System: bringing network computing to
C2 systems. In Charles B. Engle, editor, TRI{Ada '94 Proceedings, pages 474{485.

ACM, 1994.

8. David E. Emery and Richard F. Hilliard. \Architecture," methods and open is-
sues. In D. Garlan, editor, Proceedings of the First International Workshop on

Architectures for Software Systems, Seattle, WA, 1995. Published as CMU{CS{

TR{95{151.
9. Richard F. Hilliard, Timothy B. Rice, and Stephen C. Schwarm. The architectural

metaphor as a foundation for systems engineering. In Proceedings of Sixth Annual

International Symposium of the International Council on Systems Engineering,
1996.

10. Richard F. Hilliard and David E. Emery. Patterns : Design :: Blueprints : Archi-

tecture, 1996. Work in progress.
11. Richard F. Hilliard. Comments on kogut and clements. email.

12. A. Burns and M. Lister. A framework for building dependable systems. The Com-

puter Journal, 34(2), 1991.
13. Michael S. Deutsch and Ronald R. Willis. Software Quality Engineering. Prentice-

Hall, 1988.

14. Douglas T. Ross and Kenneth E. Schoman. Structured Analysis for requirements
de�nition. IEEE Transactions on Software Engineering, SE-3(1), January 1977.

15. Richard F. Hilliard. Representing software systems architectures or, components,

connections and (why not?) �rst-class constraints and views. In Proceedings 2nd

International Workshop on the Architecture of Software Systems, 1996. to appear.

16. Douglas T. Ross. Removing the limitations of natural language (with the principles

behind the RSA language). In Herbert Freeman and Philip M. Lewis II, editors,
Software engineering: proceedings of the Software Engineering Workshop held in

Albany, Troy, and Schenectady, New York, from May 30{June 1, 1979. Academic

Press, New York, 1980.
17. Mary Shaw. Comparing architectural design styles. IEEE Software, 28(11):27{14,

November 1995.

18. DoD. Trusted computer systems evaluation criteria. Technical Report DoD
5000.28{STD, Department of Defense, 1985.

This article was processed using the LaTEX macro package with LLNCS style

