
Characterizing Relations between Architectural Views

Nelis Boucké1, Danny Weyns1, Rich Hilliard2,
Tom Holvoet1, and Alexander Helleboogh1

1 DistriNet Labs, K.U. Leuven, Belgium
{nelis.boucke,danny.weyns,tom.holvoet,
alexander.helleboogh}@cs.kuleuven.be

2 Consulting software systems architect
r.hilliard@computer.org

Abstract. It is commonly agreed that an architectural description (AD) consists
of multiple views. Each view describes the architecture from the perspective of
particular stakeholder concerns. Although views are constructed separately, they
are related as they describe the same system.

A thorough study of the literature reveals that research on relations between
views is fragmented and that a comprehensive study is hampered by an absence of
common terminology. This has become apparent in the discussion on inter-view
relational concepts in the revision of IEEE 1471 as ISO/IEC 42010 (Systems and
Software Engineering — Architectural Description).

This paper puts forward a framework that employs a consistent terminology
to characterize relations between views. The framework sheds light on the usage,
scope and mechanisms for relations, and is illustrated using several representa-
tive approaches from the literature. We conclude with a reflection on whether the
revision of ISO 42010 aligns with our findings.

Keywords: architectural views, view relations, viewpoint, architectural descrip-
tions, integration of views, consistency, models, IEEE 1471, ISO/IEC 42010.

1 Introduction

The architecture of a software system defines its essential structures, which comprise
software elements, the externally visible properties of those elements, the relationships
between them [3] and with their environment [21]. It is commonly agreed that an ar-
chitectural description (AD) consists of multiple views. Views are used to achieve sep-
aration of concerns where each view describes the architecture from the perspective of
related stakeholder concerns [21]. Although views can be constructed separately, they
must be related in that they describe the same system.

Relying on implicit relations, e.g. relating elements having the same name and type,
might be sufficient for simple architectures but is insufficient for more complex systems.
An important part of the architect’s job is to understand, describe and reason about how
the different views relate to each other [8,40]. In this paper, we explicitly focus on the
relations between architectural views; not on relations between elements within views.

Relations are essential for establishing consistency and for maintaining that consis-
tency over time. Software architects need relations to manage the multitude of views.
Developers need relations for an integrated picture of the architecture that is a prereq-
uisite for detailed design and implementation. Other stakeholders need to see how their

R. Morrison, D. Balasubramaniam, and K. Falkner (Eds.): ECSA 2008, LNCS 5292, pp. 66–81, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Characterizing Relations between Architectural Views 67

concerns are realized and how these realizations relate to concerns of other stakehold-
ers. Finally, relations provide the basis for automation in architectural tools of con-
sistency checking, and integration or synchronization of multiple architectural views
during design.

Problem Statement. In the architecture community, there is a common understanding
of what an architectural view is. There are several seminal works on views, including
Perry and Wolf [36] and Kruchten’s 4+1 view model [26]. More recently, multiple views
form the basis for approaches such as Documenting Software Architectures [8] and
Software Systems Architecture [40]. Also, the concepts of architectural description and
view have been standardized by ANSI, IEEE, ISO and IEC.1

Such common understanding however is lacking for relations between views. This
lack of consensus became apparent in the recent discussions on the incorporation of
relations between views in the ongoing revision of ISO 42010. A thorough study of the
literature reveals that research on relations between views is fragmented and hampered
by an absence of common terminology. Authors typically compare to approaches with
similar purpose (e.g. automatic consistency checks). However, they tend to neglect other
relations with similar technical characteristics but devised for another purpose (e.g.
enforcing design decisions).

The fragmentation in research also becomes apparent through the myriad of terms
in use for related or overlapping concepts. A sample of terms from recent research
in this area illustrates the point: [30] uses constraints, rules, standard constraints, ex-
tensions constraints, integration constraints and custom constraints; [18] uses design
constraints, invariants and heuristics; [28] uses rule and specializes rules in constraints
and obligations; [14] additionally uses policy constraints; [4] uses viewpoint correspon-
dences; [8] uses relations and mapping; [12] uses refinement and overlap relations,
relationships and consistency rules that apply to the relations; [2] uses relations and
transformations for the same thing; [38] uses boolean rule, general design rule, con-
straints logic, dependency links, links, design rule and transformation rule; [9] uses
links, relations, rules, correspondences and correspondence rules; [43] uses traceabil-
ity links, dependency links, dependency relations, relations, trace relation; etc. This
makes it difficult to characterize and compare approaches for describing relations be-
tween views.

Contributions. The revision of ISO 42010 provides an opportunity to offer better
guidance to architects for capturing relations between views within an architectural de-
scription. This paper contributes a proposed framework that structures approaches for
explicit relations between views providing a common ground for relations. The frame-
work is based on a thorough study of the literature and on our experience. The goal is
to take a step to disentangle and bring clarification to the work on relations between
views. The framework sheds light on the usage, scope and underlying mechanism. Ap-
plication of the framework is illustrated with several representative approaches from the

1 The abbreviation ISO 42010 is used for the published version of ISO/IEC 42010:2007, Sys-
tem and Software Engineering — Architectural Description [24]. ISO 42010 is identical in
content to ANSI/IEEE Std 1471-2000, Recommended Practice for Architectural Description
of Software-Intensive Systems [21], and is currently undergoing revision. The abbreviation
42010 WD2 is used for the current working draft of this revision [22].

68 N. Boucké et al.

literature. Based on this, we reflect on whether view relations in the ISO 42010 working
draft aligns with the findings in the literature.

Overview. To avoid confusion on terminology issues, section 2 introduces the basic
architectural terminology used in this paper. Section 3 proposes the framework to char-
acterize relations between views, and illustrates its use with representative approaches
from the literature. Section 4 reflects on the proposal for view correspondences in
42010 WD2 with respect to the proposed framework. Finally, we conclude in section 5.

2 Basic Architectural Concepts

This section introduces the basic architectural concepts and terminology that we will
use in the remainder of the paper. There are several known definitions of architec-
ture and architectural views in the literature, the SEI [3,8], Siemens [20], ISO 42010
or RM-ODP [23]. We adopt the conceptual model of ISO 42010, to serve as a con-
sistent set of basic terminology. This does not mean that our scope is limited to the
standard; we studied a broad range of approaches in the literature.2 ISO 42010 has
two parts. The first part is a conceptual model for architectural descriptions. The con-
ceptual model introduces and interrelates such concepts as architectural description,
concern, viewpoint, view and model. The second part puts forward required content for
any ISO 42010-conformant architectural description, independent of the specific archi-
tectural languages in use. Here, we only use the conceptual model.

Figure 1 shows a portion of the ISO 42010 conceptual model relevant for this paper.
An architectural description (AD) is “a collection of products to document a specific
architecture”. An AD is organized into one or more architectural views, where a view
is defined as “a representation of a whole system from the perspective of a related set of
concerns”. Each view is constructed according to an architectural viewpoint, defined as
“the conventions for constructing and using a view; a pattern or template from which to
develop individual views by establishing the purposes and audience for a view and the
techniques for its creation and analysis”.

One of ISO 42010’s contributions was to explicitly distinguish between view
and viewpoint, in this sense: A viewpoint is a way of looking at an architecture; the
view is the result of looking at a specific system’s architecture in this way.3 First-class
viewpoints first appear in Ross’ Structured Analysis [39] and are elaborated upon by

2 In 2007, IEEE 1471 was adopted by ISO as ISO 42010. At present, IEEE and ISO are jointly
revising the standard.

3 Not every architectural approach makes an explicit distinction between view and viewpoint.
The term viewpoint appears in ISO RM-ODP [23], in a very similar fashion; although
viewpoint specification is employed where IEEE 1471 uses view. In RM-ODP a viewpoint
specification is defined as “the application of a viewpoint to a specific system”. The book
Documenting Software Architectures (DSA) [8] introduces viewtypes as “a viewtype defines
the element types and relation types used to describe the architecture of a software system
from a particular perspective.” DSA further proposes there are three viewtypes: the module
viewtype, the component-and-connector viewtype, and the allocation viewtype. In the present
framework, these could be considered a three-way classification of viewpoints, in terms of
their representational mechanisms (element and relation types).

Characterizing Relations between Architectural Views 69

Fig. 1. A portion of the ISO 42010 conceptual model

Finklestein et al. [16]. In ISO 42010, viewpoints are intended to provide a represen-
tational approach for addressing specific architectural concerns: “those interests which
pertain to the system’s development, its operation or any other aspects that are critical
or otherwise important to one or more stakeholders”. A system stakeholder is any “in-
dividual, team, or organization (or classes thereof) with interests in, or concerns relative
to, a system”.4 Each architectural view is composed of one or more architectural mod-
els. Each model contains a concrete description of architectural elements and relations,
and obeys the conventions of the governing viewpoint with respect to the viewpoint
language(s) and model type(s) employed therein. When a view is composed of multiple
models, relations can arise between models within a view as well as between views.

The authors of ISO 42010 recognized the issue of view consistency, but did not
specify a mechanism for enforcing that consistency except to require the recording any
known inconsistencies. We return to the current proposal for introducing relations into
the ISO 42010 working draft below section 4.

3 A Framework for Characterizing Relations between Views

Starting from a thorough study of literature and our experiences, we have identified
several criteria to characterize relations between views. Each of the criteria emphasizes
a particular aspect of view relations. Together, the criteria make up a framework that

4 The standard uses concern in the sense of E. Dijkstra’s separation of concerns.

70 N. Boucké et al.

Fig. 2. Overview of the criteria for the framework in three orthogonal dimensions

allows structuring and comparing approaches for relations between views. Figure 2
shows an overview of the criteria. The criteria are grouped along three dimensions:
Usage, Scope, and Mechanism.

In this section, we describe the criteria and discuss representative examples from the
literature. It is not our ambition to be exhaustive in all possible criteria or references,
but rather to offer an initial impetus towards defining a framework for characterizing
relations between views. At the end of this section, we discuss possible extensions of
the framework.

3.1 Usage

We have identified four main use cases for relations between views: (1) consistency
checking; (2) composition; (3) tracing; and (4) model transformation. There is no one-
to-one mapping between particular types of relations and their use; relations can be used
for different purposes. Some of the use cases are not goals in themselves but can serve
a further purpose. For example, tracing is typically used for backtracking of decisions
and to allow easier changes to the architecture.

Consistency Checking. Consistency checking is about determining whether the infor-
mation in several views does not conflict. We discuss three example uses of relations
between views for consistency checking: general-purpose consistency checking, design
constraint checking, and consistency checking of service compositions.

Nentwich et al. [30] put forward a general-purpose approach for automatic consis-
tency checking of heterogenous and distributed software engineering documents. The
approach uses constraints underpinned by a first-order logic specification. The asso-
ciated xlinkit tool generates “inconsistency relations” between elements. A software
architect can use the inconsistency relations to identify the elements that cause inconsis-
tencies between several views,5 and possibly alter particular elements to resolve incon-
sistencies. xlinkit is not limited to finding inconsistencies between architectural views.
The approach has also been used for the identification of inconsistencies in distributed
product catalogs [29], requirement specifications [31], UML diagrams [29], web service
compositions [14].

Garlan et al. [18] use the Armani language to express design constraints in Acme and
the associated AcmeStudio tool. Acme is a general-purpose, component and connector
(C&C)-based ADL with particular support for architectural styles. Design constraints

5 The authors do not distinguish between viewpoints and views. A view as defined in section 2
is called the viewpoint specification in their approach.

Characterizing Relations between Architectural Views 71

can be defined for architectural styles that impose restrictions on how an architectural
design is permitted to evolve over time. For example, for a layered architectural style,
the constraints will describe that a higher layer is allowed to use a lower layer but not
the other way around.

Dijkman and Dumas [11] propose an approach for consistency checking in service
composition between four interrelated views.5 namely interface behavior, provider be-
havior, choreography, and orchestration. The views are formalized using Petri nets. By
specifying relations between the views, the approach enables static verification of a web
service composition.

Other examples of consistency checking are described by Boiten et al. [4] and
Dijkman et al. [12] in the context of RM-ODP [23], Fradet et al. [17] use graphs and
constraint expressions on these graphs, and Radjenovic and Paige [38] developed an
ADL and consistency checking in the context of dependable systems. Radjenovic and
Paige emphasize that to reach a strong sense of consistency between views, the number
and complexity of the constraints increases significantly.

Other approaches deal with this issue of consistency in ADs without first-class re-
lations. The ArchStudio tool for xADL [10] supports plug-ins to analyze an AD. The
plug-ins can be used for automatic consistency checking over views. In this case, rela-
tions are programmed in the component. In Software Systems Architecture [40], Rozan-
ski and Woods provide an extensive checklist of possible relations between different
types of views. The list allows software architects to check whether an AD is consis-
tent; however, the relations between views are described only informally.

Composition. Composition of views (sometimes also referred to “merging” or “inte-
gration” of views) allows the integration of information from several views. Composed
views are useful to get a unified perspective, to understand the interactions between
elements from different views, and to perform various types of analysis.

In his doctoral thesis, Egyed [15] presents a framework for integrating multiple het-
erogenous views. This framework exists of a set of integration activities, including the
identification and cross-referencing of related model elements that describe overlap-
ping and thus redundant pieces of information (called mapping). These relations are
then used during the differentiation and transformation activities for integrating views
with each other. The integrated views serve as a basis for several types of analysis, such
as checking consistency.

Boucké et al. [6] introduce three types of relations (unification, refinement and com-
position) between structural views and demonstrate how these relations allow composi-
tion of structural views. Following the ‘Having divided to conquer, we must reunite to
rule’ philosophy [25], the authors state that views can be used to describe concerns, but
that relations and the associated composition are essential to bring the views together.
Tool-supported composition allows one to easily generate overlays to understand and
reason about the integration of several architectural views. The authors have integrated
the relations in xADL and the ArchStudio tool suite [5].

Most composition approaches do not distinguish relations from compositions but
program the relations directly in a composition algorithm or in composition opera-
tors. Abi-Antoun et al. [1] describe an algorithm and associated tool for differentiating
and merging C&C views. The authors argue that architects often face the problem of

72 N. Boucké et al.

reconciling different versions of architectural models, e.g. by using specific informa-
tion from two versions to produce a new version that includes changes from both ear-
lier versions. Sabetzadeh et al. [41] envision the use of explicit relations for merging
views. Giese and Vilbig [19] present an approach to compose the behavior of several
C&C models. The authors mention that views are related, but relations are not first
class—instead programmed within the composition algorithm.

Tracing. Tekinerdoğan et al. [43] document explicit trace relations between architec-
tural concerns, the architectural elements that address the concerns, and between archi-
tectural elements in general. In case the architectural elements related to a particular
concern that are spread across different architectural views, the proposed trace relations
span multiple architectural views. With respect to evolution of the software, one can fol-
low the trace links to update and synchronize architectural views, keeping the software
architecture consistent.

Model Transformation. A model transformation takes as input a model conforming
to a given metamodel and produces as output another model conforming to a given
metamodel. Model transformation is central to the domain of model driven architecture
(MDA) [32]. We discuss two approaches using relations in the context of MDA: an
approach using a refinement relation and another approach using relations for automatic
transformation.6

Architectural stratification proposed by Atkinson and Kühne [2] combines the
strength of separation of concerns and aspect-orientation with component-based frame-
works and model-driven architecture. The goal of architectural stratification is to relate
different architectural strata7 so that they best represent a system’s crosscutting con-
cerns. Each stratum represents a software architecture on a certain level of abstraction.
The authors use stepwise refinement to relate the strata. In each step, a refinement trans-
formation is applied that refines connectors introducing a particular concern. Relations
are thus defined as refinement transformations.

Cordero and Salavert [9] use relations on the metamodel level with the goal of auto-
mated transformation of architectural models. Example relations are: ‘each module is
related to a component’ and ‘each uses relation between modules to a connector’. The
combination between the module view and the relations on the metamodel level allows
one to automatically generate a component and connector view. The approach proposed
by Dijkman et al. [13] is similar, but focuses on the RM-ODP views.

Recently, a standard for model transformation has been defined by the Object Man-
agement Group, the Meta Object Facility Query/View/Transformation Specification
(QVT) [34]. QVT advocates explicit specification of relations before performing trans-
formations. QVT provides a conceptual model and basic architecture for model-driven
transformation tools. Because the standard is very recent, efforts are still on the way to
conform approaches and tools to the QVT model.

6 Alternatively model transformations could also be considered as a mechanism, where rela-
tions are implemented by transformations between models. We placed it under usage, as model
transformations typically also embodies a process, and it is in this model transformation pro-
cess that relations are used.

7 An architectural stratum is a kind of architectural model as defined in section 2.

Characterizing Relations between Architectural Views 73

3.2 Scope

Scope refers to the extent or range of view relations. From the literature study, we
identified four criteria for the scope of a relation: (1) intra vs. inter model type; (2) level
of detail; (3) metamodel vs. model; and (4) horizontal vs. vertical.

Intra vs. Inter Model Type. Intra model type relations are relations between the same
type of models. An example is a relation between two C&C models. Inter model type
relations are relations that involve models of different types. For example, relations
between a C&C model and a statechart model.

Several approaches we discussed in previous sections define relations between C&C
models only. Examples are Garlan et al. [18], Atkinson and Kühne [2], and Boucké
et al. [6]. Dashofy et al. [10] support inter model relations, in particular relations be-
tween types, structural elements, and component instances. xlinkit constraints [30] can
be defined on any XML document, and as such also supports inter model relations.

Level of Detail. Relations can be described between complete views, between models,
and between architectural elements inside views.

Clements et al. [8] use sibling and child relations to relate architectural models.8 Sib-
ling models document different parts of the same system. These models form a mosaic
of the whole view, as if each partial view were a photograph taken by a camera that
panned and tilted across the entire view. Child models document the same part of the
system but in greater details. This is a coarse-grained kind of refinement. Sibling and
parent/child relations are specified at the level of complete models; they do not allow
specifying details about which particular architectural elements are related.

Architectural unification proposed by Melton and Garlan [27] supports fine grained
specification of relations, up to the level of component interfaces and properties that are
associated with the components.

Horizontal vs. Vertical Relations. The term horizontal is used for relations between
views at the same level of abstraction. Vertical relations are either relations between
views at different levels of abstraction (such as refinements) or relations with other rep-
resentations (such as requirements, detailed design or even implementation). The terms
intra phase and inter phase are also used in this context, for horizontal and vertical,
respectively.

The approach to architectural stratification [2] is a good example of the use of verti-
cal relations. The strata correspond to models at different levels of abstraction and are
step-by-step refined via transformation. Both Nentwich et al. [30] and Radjenovic and
Paige [38] propose approaches with explicit support for both horizontal and vertical re-
lations. The latter propose transformation rules to capture relations between subsequent
development stages. Muskens et al. [28] is a language-neutral approach that addresses
intra and inter phase view relations.

Most other approaches do not define an explicit process to use relations in a vertical
way. For example, Armani constraint relations are typically used to specify invariants

8 The authors use the term ‘view packets’; in the terminology of section 2, these can be considred
architectural models.

74 N. Boucké et al.

over several models at one level. However, it is possible to define a process on top of
Acme and Armani that uses constraints to support things like refinement.

Metamodel vs. Model. A metamodel is an explicit model of the constructs and rules
to build specific models within a domain of interest. In the terminology of section 2,
the metamodel refers to the part of the viewpoint language that defines an individual
model type. View relations may be stated with reference to a metamodel or between
metamodels.

A well-known example of metamodel relations are the constraints in the superstruc-
ture of the UML 2.0 definition [33]. The superstructure defines the language elements
of UML 2.0 models and the constraints on how those language elements can be used
within diagrams as well as across multiple related models.

Cordero and Salavert [9] require that each module is related with one component,
and that each usage association is related with one connector. This enables automatic
transformations between the models (section 3.1).

xlinkit constraints include expressions that reference specific points in an XML docu-
ment [30]. Expressions can refer to elements at the model level as well as the metamodel
level.

3.3 Mechanism

Support for relations between views requires constructs in the AD to represent those
relations. We have identified three classes of mechanisms from the literature to describe
relations between views, namely: (1) direct references; (2) tuples; and (3) expression
languages.

Direct References. Elements from one view can refer directly to elements of another
view. In this case, the description of the relations between architectural elements of
different views is mingled with the view descriptions.

Dashofy et al. [10] use direct references between the architectural views of xADL.
xADL allows several views, including a view specifying component types (types view),
views showing the structure of the system by connecting component types (structural
view) and views showing component instances (instance view). Components in a
structural view can refer to their types. Component instances can refer to the structural
components they adhere to and instances can refer to an internal structure (refinement)
described in a structural view.

AADL [42] uses packages to structure architectural documentation. Packages group
architectural elements (component types and instances) into logical blocks, so that there
is a clear connection between the concepts of package and architectural view. The re-
lations between the packages are directly described in the packages; i.e. a component
instance can directly refer a component type in another package.

Tuples. In mathematics, a relation over sets is defined as a subset of the Cartesian
product of the sets. Elements in the relational set are called tuples. Relations modelled
as tuples are typically complex in the context of ADs. Architectural views typically
contain several architectural models, each model defining several types of elements

Characterizing Relations between Architectural Views 75

with possibly complex internal details. This may require one to annotate the tuple with
more details of how the elements are related.

Documenting Software Architecture [8] introduces a ‘mapping table’ to describe the
relations between views, as a part of the information “beyond” the views. Mapping
tables define a set of tuples of elements from different views (one-to-many, many-to-
many, many-to-one). Each table entry is annotated with a textual description to indicate
whether the correspondence is partial and to provide additional details of the relation
(such as corresponding interfaces). Tables can be used for any relation based on tuples.

Boiten et al. [4] also define relations between elements in a table, and annotate each
entry with the type and the level of detail of the relation. The authors define relations be-
tween two RM-ODP Engineering views, and between the Engineering view and Com-
putation view. Relations have a formal underpinning in ObjectZ. The details of the
relations sometimes contain expressions as defined in the next section.

Expression Language. In general, an expression in mathematics is a combination of
names and values, operators, grouping symbols (such as brackets), and possibly vari-
ables (free and bound) arranged in a meaningful way. Expressions containing variables
may use quantifiers (such as ∀ and ∃). An expression language defines which expres-
sions are well-formed, and therefore can be used and meaningfully interpreted. In the
context of ADs, the expressions impose constraints or rules over (sets of) architectural
elements. The complexity of the expression language may vary widely, depending on
factors such as the formal system (e.g. first-order logic) on which it is based, the under-
lying viewpoint languages being related, etc.

The previously mentioned xlinkit tool [30] for automatic consistency checking be-
tween architectural views uses constraints. The tool processes XML documents, using a
formal underpinning based on an extension of first-order logic. It is possible to describe
things such as:

∀c ∈ ‘components’ (∃m ∈ ‘module’ (c.modulename == module.name))

The expressions ‘components’ and ‘module’ are XPath [44] expressions that select the
sets of elements involved in the relation as a tree path in the XML document.

Muskens et al. [28] introduce a general approach for detecting inconsistencies be-
tween different views based on relational partition algebra. Its expression language
includes named relations and operations such as inclusion, composition, intersection,
union, inverse and transitive closure on those relations, but is quantifier-free. The ap-
proach introduces the interesting notions of prevailing vs subordinate views, that can
be used in horizontal or vertical view relations. The distinction is used, for example,
to report violations in the subordinate view, taking the content of the prevailing view
as fixed. An example is a constraint between a message sequence diagram and a class
diagram that requires that the dependencies between classes implied by the message se-
quence diagram are present in the class diagram. Checking this constraint is not trivial,
since inheritance must be taken into account:

((CALLER;CALLEE−1) ↑ TY PE) ⊆ (DEPENDENCY ↓ INHERITANCE∗)

This rule states that all calls between caller and callee objects, lifted (↑) to the types
(leading to dependencies between the types of these objects), must be a subset of the

76 N. Boucké et al.

dependency set of the class diagram, lowered (↓) to inheritance (taking subclasses into
account). The upwards arrow and downwards arrow are algebraic functions for respec-
tively lifting or lowering the level of abstraction.

3.4 Discussion

Starting from a thorough study of the literature and our experience, we have proposed
a framework for analyzing approaches to relations between views in three dimensions:
usage, scope and mechanism. The illustrations from the literature provide a first indi-
cation of its usefulness, but the practical value of the framework for software architects
remains to be proven. Although we believe that the framework adequately captures
the existing work on relations between views, we do not claim that the framework is
complete. One may discover additional use cases, and/or refine or extend the current
dimensions.

An interesting criterion to add could be the way relations are formalized, and what
underlying mechanism is used to support those relations. The nature of the formal-
ization has implications on what analyses can be performed and what outcomes or
results can be generated from those analyses (e.g. proofs of consistency, counterex-
amples, etc.). The underlying mechanism supporting relations can vary widely. Some
approaches use first-order logic and a theorem prover to search for inconsistencies.
Some establish consistency of two representations by formalizing them in ObjectZ and
finding a common refinement.

4 Reflection on Relations between Views in ISO 42010

The revision of ISO 42010 provides an opportunity to capture common concepts and
terminology in the area of views and relations between views. We first explain the pro-
posal for relations in the current working draft of ISO 42010 (42010 WD2). Next, we
compare the 42010 WD2 proposal with our findings about the literature, embodied in
the framework outlined in the previous section.

4.1 Relations between Views in 42010 WD2

The working draft proposes a new concept: view correspondence (VC). A VC records a
relation between two architectural views to capture: a consistency relation, a traceability
relation, a constraint or obligation of one view upon another. Mathematically, a VC is
a binary relation. The intent is that an AD might include several VCs to express one or
more relations among its views.

Example: Consider two views of a system, S, a hardware view, HW (S), and a soft-
ware component view, SC(S). If SC(S) includes software components, e1, . . . e4,
and HW (S) includes hardware platforms, p1, . . . p4, a view correspondence between
HW (S) and SC(S), specifying which components execute on which platforms,
might be:

ExecutesOn = {(c1, p1), (c1, p4), (c2, p2), (c2, p3), (c3, p3), (c4, p4)}

Characterizing Relations between Architectural Views 77

In the context of the framework, this is a tuple-based specification between different
types of models (inter model type). The level of detail is architectural elements: each
item in the relation is a complete component or platform. ExecutesOn describes a
horizontal relation between two concrete models.

In addition to VCs, 42010 WD2 introduces viewpoint correspondence rules (VCRs).
A VCR expresses a required relation between two architectural viewpoints and is re-
alized by VCs on views resulting from the application of those viewpoints within
an AD.

Example: Every software component, ci, as defined by a software component viewpoint
applied to system S, SC(S), must execute on one or more platforms, pj , as defined by
a hardware viewpoint applied to that same system S, HW (S).

ExecuteOnRule = ∀ci ∈ SC(S) : ∃pa ∈ HW (S) : (ci, pa) ∈ ExecutesOn

In the context of the framework, this is an expression with quantifiers in an expression
language between different types of models (inter model type). The level of detail is
architectural view elements: each variable is a complete component or platform. The
rule describes a horizontal relation between two concrete models.
A VCR imposes the following requirements on VCs (in 42010 WD2):

– For each VCR that applies to an AD, there shall be a VC identified.
– A VCR holds in an AD if its associated VC can be shown to satisfy the rule.
– A VCR is violated in an AD if its associated VC can be shown not to satisfy the

rule.

4.2 Comparison to Framework

Since 42010 WD2 is still a working draft, the effectiveness of the view correspondence
proposal remains to be proven. In this section we compare the proposal with our findings
in the literature, embodied in the framework of section 3. The discussion is structured
according to the criteria of the framework.

Usage. 42010 WD2 contains an open list of possible uses, but stays neutral to what
purpose relations are used, which is consistent with the method-neutral stance of the
standard. However, a number of limitations which we have identified in the context
of scope may imply restrictions on the possible use of relations. We describe these
limitations next.

Scope: Model vs. Metamodel. There is a similarity between model and metamodel on
the one hand and the concepts of VC and VCR on the other hand.
A VC is a relation between two views, often expressed as a relation at the model
level. The similarity between a VCR and a metamodel relation is less obvious.
Metamodels (or model types) are part of the viewpoint language and as such not
explicitly represented in ISO 42010. A VCR is defined between viewpoints, ex-
pressed as a relation between viewpoint languages. From this point of view, a VCR
can be considered as a relation at the metamodel level.

Notice that VCR and VC are tightly coupled concepts. Such coupling is typi-
cally less explicit between metamodel relations and model relations in the literature.

78 N. Boucké et al.

Scope: Inter vs. Intra. The use of inter vs. intra model type relations is less clear in
42010 WD2. In ISO 42010 a view is a representation of the whole system with
respect to some concerns. Intra model type relations would be part of the same
(viewpoint) language, and would therefore typically be models within the same
view. Inter model type relations would be part of different (viewpoint) languages,
which may or may not be models in the same view.
This contrasts with our observation of the literature: intra model relations are typi-
cally not limited to models that are in a single view. For example, it is quite common
to have multiple C&C models in different architectural views.

Scope: Level of detail. VCs and VCRs are not restricted to a particular level of detail,
and as such cover the different levels of detail of relations that we have seen in the
literature.

Scope: Horizontal vs. Vertical. 42010 WD2 does not state anything about horizontal
and vertical relations. The concepts of the standard can be applied in a horizontal
or vertical manner.

Mechanism. A standard should be mechanism-neutral. 42010 WD2 does not make
explicit statements about the mechanism to be used for view correspondences or
viewpoint correspondence rules.

We give a side remark on the term “rule” in VCR, which may be confusing. The
idea is that each VCR imposes an obligation on views that must be demonstrated
by a VC. The term rule is often used for a specific mechanism to specify relations,
suggesting the use of a mathematical expression in the sense of section 3.1. A VCR
can just as well be represented as a direct reference or a tuple between language
elements.

We have two other small remarks on the terminology. Firstly, the term ‘correspon-
dence’ is used in the context of RM-ODP, but outside this scope the more neutral term
‘relation’ seems to be used more often. Secondly, the term viewpoint correspondence
rule could lead to confusion, since the obligation is imposed on a view. View correspon-
dence rule seems closer to the intent of the proposal.

In summary, the 42010 WD2 proposal largely aligns with our observations of the
literature. Yet, there is some unclarity with respect to: (1) the advice that intra model
relations are typically within a single view; (2) the role of model types; and (3) the
terminology of view correspondences and viewpoint correspondence rules. It is hoped
these can be clarified upon in future revision drafts.

5 Conclusion

Views and view relations have been studied for a long time. However, existing work
on view relations is fragmented. The framework presented in this paper shows that
there is a common ground for relations. There are strong arguments for making rela-
tions first-class concepts in ADs, treating them on equal terms as architectural views.
As soon as an AD contains multiple views, these views are related since they describe
the same system. Making the relations explicit improves the clarity of the architectural
documentation. It forms the basis for consistency checking, for automatic analysis and

Characterizing Relations between Architectural Views 79

verification of quality attributes and system wide properties, for tracing design deci-
sions, etc.

An important observation is that existing ADLs, such as AADL, xADL, Acme, π-
ADL [35], Fractal ADL [7] and AO-ADL [37] offer support for multiple types of ar-
chitectural elements, but do not offer first-class support for architectural views in a way
advocated by ISO 42010. ADLs lack facilities for specifying and relating several archi-
tectural views that cope with a diversity of architectural concerns. To the best of our
knowledge, the AIM ADL for embedded systems [38] is the only notable exception.
Imperative to exploit such view-based ADLs will be tool support. A tool can interac-
tively suggest view relations based on particular heuristics, such as similar names and
similar architectural patterns. Visual editors can simplify the specification of relations
between views. On the fly generation and visualization of overlay views, or highlighting
the elements involved in a relation, can improve the understanding and use of relations
between views.

As a closing remark, a first-class concept of relations is just the start. A lot of work
must be done to concerning practical problems like conflicts between views, integration
of views, comparisons between different approaches in modeling the same views, and
how to enforce consistency amongst views.

Acknowledgement

We are grateful to Christina von Flach, Peter Eeles, Bedir Tekinerdoğan, Hasan Sozer,
Tomi Männistö, Thorsten Keuler and the other attendees of the Birds-of-a-Feather ses-
sion on Relations between Views at WICSA 2008 for the interesting discussions. We
also express our appreciation for the valuable input and feedback from Dimitri Van
Landuyt, John Klein, Rich Paige and Steven Op de beeck.

This research is partially funded by the Interuniversity Attraction Poles Programme
Belgian State, Belgian Science Policy, and by the Research Fund K.U.Leuven. Nelis is
supported by the Institute for the Promotion of Innovation through Science and Technol-
ogy in Flanders (IWT-Vlaanderen). Danny is supported by the Foundation for Scientific
Research in Flanders (FWO-Vlaanderen).

References

1. Abi-Antoun, M., Aldrich, J., Nahas, N., Schmerl, B., Garlan, D.: Differencing and merging
of architectural views. Automated Software Engineering 15(1), 35–74 (2008)

2. Atkinson, C., Kühne, T.: Aspect-oriented development with stratified frameworks. IEEE
Software 20(1), 81–89 (2003)

3. Bass, L., Clements, P., Kazman, R.: Software Architectures in Practice, 2nd edn. Addison-
Wesley, Reading (2003)

4. Boiten, E., Bowman, H., Derrick, J., Linington, P., Steen, M.: Viewpoint consistency in ODP.
Computer Networks 34(3), 503–537 (2000)

5. Boucké, N.: xADLComposition: a tool for view composition in xADL,
http://www.cs.kuleuven.be/∼nelis/xADLComposition

6. Boucké, N., Holvoet, T.: View composition in multi-agent architectures. Special issue on
Multiagent systems and software architecture, International Journal of Agent-Oriented Soft-
ware Engineering (IJAOSE) 2(2), 3–33 (2008)

http://www.cs.kuleuven.be/~nelis/xADLComposition

80 N. Boucké et al.

7. Bruneton, E., Coupaye, T., Leclercq, M., Quéma, V., Stefani, J.B.: The fractal component
model and its support in java: Experiences with auto-adaptive and reconfigurable systems.
Softw. Pract. Exper. 36(11-12), 1257–1284 (2006)

8. Clements, P., Bachman, F., Bass, L., Garlan, D., Ivers, J., Little, R., Nord, R., Stafford, J.:
Documenting Software Architectures, Views and Beyond. Addison-Wesley, Reading (2003)

9. Cordero, R.L., Salavert, I.R.: Relating software architecture views by using MDA. In: Ger-
vasi, O., Gavrilova, M.L. (eds.) ICCSA 2007, Part III. LNCS, vol. 4707, pp. 104–114.
Springer, Heidelberg (2007)

10. Dashofy, E., van der Hoek, A., Taylor, R.: A comprehensive approach for the development
of modular software architecture description languages. ACM Transactions on Software En-
gineering and Methodology (TOSEM) 14(2), 199–245 (2005)

11. Dijkman, R.M., Dumas, M.: Service-oriented design: a multi-viewpoint approach. Interna-
tional journal of cooperative information systems 13(4), 337–368 (2004)

12. Dijkman, R.M., Quartel, D., van Sinderen, M.J.: Consistency in multi-viewpoint design of
enterprise information systems. Information and Software Technology (2007)

13. Dijkman, R.M., Quartel, D.A.C., Pires, L.F., van Sinderen, M.J.: An approach to relate view-
points and modeling languages. In: Proceedings. Seventh IEEE International Enterprise Dis-
tributed Object Computing Conference, pp. 14–27 (2003)

14. Dingwall-Smith, A., Finkelstein, A.: Checking complex compositions of web services
against policy constraints. In: MSVVEIS, pp. 94–103. INSTICC PRESS (2007)

15. Egyed, A.: Heterogeneous view integration and its automation. PhD thesis, Los Angeles,
CA, USA, Adviser-Barry William Boehm (2000)

16. Finkelstein, A., Kramer, J., Nuseibeh, B., Finkelstein, L., Goedicke, M.: Viewpoints: a frame-
work for integrating multiple perspectives in system development. International Journal of
Software Engineering and Knowledge Engineering 2(1), 31–57 (1992)

17. Fradet, P., Le Métayer, D., Périn, M.: Consistency checking for multiple view software ar-
chitectures. SIGSOFT Softw. Eng. Notes 24(6), 410–428 (1999)

18. Garlan, D., Monroe, R.T., Wile, D.: ACME: Architectural description of component-based
systems. In: Foundations of Component-Based Systems. Cambridge University Press, Cam-
bridge (2000)

19. Giese, H., Vilbig, A.: Separation of non-orthogonal concerns in software architecture and
design. Software and Systems Modeling 5(2), 136–169 (2006)

20. Hofmeister, C., Nord, R., Soni, D.: Applied software architecture. Addison-Wesley Longman
Publishing Co., Boston (2000)

21. IEEE1471. Recommended practice for architectural description of software-intensive sys-
tems (ANSI/IEEE-Std-1471) (September 2000)

22. ISO. Second working draft of Systems and Software Engineering – Architectural Description
(ISO/IEC WD2 42010). Working document: ISO/IEC JTC 1/SC 7 N 000

23. ISO. ISO/IEC 10746-2 Information Technology – Open Distributed Processing – Reference
Model: Foundations (September 1996)

24. ISO. ISO/IEC 42010 Systems and Software Engineering – Architectural Description (July
2007)

25. Jackson, M.A.: Some complexities in computer-based systems and their implications for
system development. In: Proceedings of Comp. Euro. 1990. IEEE Computer Society Press,
Los Alamitos (1990)

26. Kruchten, P.: The 4+1 view model of architecture. IEEE Software 12(6), 42–50 (1995)
27. Melton, R., Garlan, D.: Architectural unification. In: CASCON 1997: Proceedings of the

conference of the Centre for Advanced Studies on Collaborative research, p. 18 (1997)
28. Muskens, J., Bril, R.J., Chaudron, M.R.V.: Generalizing consistency checking between soft-

ware views. In: WICSA 2005: Proceedings of the 5th Working IEEE/IFIP Conference on
Software Architecture, pp. 169–180. IEEE Computer Society, Los Alamitos (2005)

Characterizing Relations between Architectural Views 81

29. Nentwich, C., Capra, L., Emmerich, W., Finkelstein, A.: xlinkit: a consistency checking and
smart link generation service. ACM Trans. Inter. Tech. 2(2), 151–185 (2002)

30. Nentwich, C., Emmerich, W., Finkelstein, A., Ellmer, E.: Flexible consistency checking.
ACM Trans. Softw. Eng. Methodol. 12(1), 28–63 (2003)

31. Nuseibeh, B., Kramer, J., Finkelstein, A.: Expressing the relationships between multiple
views in requirements specification. In: International Conference on Software Engineering,
pp. 187–196 (1993)

32. OMG. Model Driven Architecture (MDA)
33. OMG. Unified Modeling Language 2.0: Superstructure (August 2004)
34. OMG. Meta Object Facility 2.0: Query/View/Transformation Specification (August 2007)
35. Oquendo, F.: Pi-adl: an architecture description language based on the higher-order typed pi-

calculus for specifying dynamic and mobile software architectures. SIGSOFT Softw. Eng.
Notes 29(3), 1–14 (2004)

36. Perry, D.E., Wolf, A.L.: Foundations for the study of software architecture. SIGSOFT Softw.
Eng. Notes 17(4), 40–52 (1992)

37. Pinto, M., Fuentes, L.: Ao-adl: An adl for describing aspect-oriented architectures. In: Mor-
eira, A., Grundy, J. (eds.) Early Aspects Workshop 2007 and EACSL 2007. LNCS, vol. 4765,
pp. 94–114. Springer, Heidelberg (2007)

38. Radjenovic, A., Paige, R.F.: The role of dependency links in ensuring architectural view
consistency. In: WICSA 2008: Proceedings of the Seventh Working IEEE/IFIP Conference
on Software Architecture (WICSA 2008), pp. 199–208 (2008)

39. Ross, D.T.: Structured Analysis (SA): a language for communicating ideas. IEEE Transac-
tions on Software Engineering SE-3(1), 16–34 (1977)

40. Rozanski, N., Woods, E.: Software Systems Architecture. Addison-Wesley, Reading (2005)
41. Sabetzadeh, M., Nejati, S., Easterbrook, S., Chechik, M.: A relationship-driven approach to

view merging. SIGSOFT Softw. Eng. Notes 31(6), 1–2 (2006)
42. SAE: Society of Automotive Engineers. Architecture analysis and design language (AADL)
43. Tekinerdogan, B., Hofmann, C., Aksit, M.: Modeling traceability of concerns for synchro-

nizing architectural views. Journal of Object Technology 6(7), 7–25 (2007)
44. W3C. XML path language (XPath), http://www.w3.org/TR/xpath

http://www.w3.org/TR/xpath

	Introduction
	Problem Statement.
	Contributions.
	Overview.

	Basic Architectural Concepts
	A Framework for Characterizing Relations between Views
	Usage
	Consistency Checking.
	Composition.
	Tracing.
	Model Transformation.

	Scope
	Intra vs. Inter Model Type.
	Level of Detail.
	Horizontal vs. Vertical Relations.
	Metamodel vs. Model.

	Mechanism
	Direct References.
	Tuples.
	Expression Language.

	Discussion

	Reflection on Relations between Views in ISO 42010
	Relations between Views in 42010 WD2
	Comparison to Framework

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

