Architecture Quality Assessment*
version 2.0

R. Hilliard M. Kurland S. Litvintchouk T. Rice S. Schwarm
August 7, 1996

Abstract

This document describes an Architecture Quality Assessment (AQA) instrument for the evaluation of system
architectures. The AQA isintended to provide an objective and repeatabl e basisfor assessingan architecture’squality
in both generic and program-specific aspects. The AQA may be used to: evaluate a candidate architecture; review
the technical progress of an on-going architecture development; assess a complete, delivered architecture prior to its
acceptance and system implementation; or, compare two or more alternate architecturesin a consistent fashion. This
version isthe product of athree month proof of concept phase and has been tested in limited trial use. Future versions
will increase the depth and breadth of architectural coverage.

1 Introduction

1.1 Purpose

This document defines an Architecture Quality Assessment (AQA) for the evaluation of system architectures. The
AQA isintended to providean objective and repeatabl e basisfor ng an architecture’ squality in both generic and
program-specific aspects. The results of an AQA are meant to be a direct input to the decision maker (such as a PEO
or PM) for architecture-related issues on major system developments. The assessment can then be used to highlight
potential risksfrom which to formulaterisk reduction strategies, or as abasis for other programmatic decisionsrel ating
to acceptance of the architecture, program schedule or cost adjustment, award fee or progress payment determinations.
For example, the AQA may be used to:

o evaluate a candidate architecture;

o review thetechnical progress of an on-going architecture devel opment;

o assess acomplete, delivered architecture prior to its acceptance and system implementation; or,
e compare two or more aternate architecturesin a consistent fashion.

Future: Add an appendix describing how to conduct each of these kinds of assessment.
The AQA consists of:

o aconceptua foundation, or frame of reference, for talking about architectures, architectura descriptions and
architectural methods. Thisframe of reference is used to frame questions about the architecture under review;

o theidentification of quality areas and factors which contributeto architectural quality;

o aset of measures, in the form of questions, to be used to assess an architecture against the identified quality
factors;

*This document is Copyright ©1996 by The MITRE Corporation. The version here isthe last one produced under the Proof of Concept phase
— for the latest version, contact Rich Hilliard, rh@mitre.org. Join the Architecture Evaluation List (arch-eval-list-request@spectre.mitre.org)
for dissemination and discussion of other related materials.

¢ a methodology for applying the assessment in a repestable fashion to address program-specific and general
quality concerns;

e atechnique for interpretation of assessment results and their correlation to architecture-related system and
program risks.

1.2 Scope

The scope of the AQA isthearchitecture-related activity of amajor system program, which includes the devel opment
and ddlivery of the software system architecture. Traditionally, the use of the term “architecture’ or “system architec-
ture” has been implicitly limited to the hardware and physica aspects of asystem. We adopt the term software system
architecture to include both the large-scale structure and behavior of the whole system — including those traditional
architectural concerns pertainingto hardware and physical aspects of the system —aswell as to emphasi ze the dominant
role of softwarein today’slarge, complex systems, and the need to recognize that role during the architecture activity.
But thistermisin no way intended to limit the scope of architectural assessments to software issues.

We usethe (vague) term architecture activity to reflect thefact that we do not assume any particular lifecyclemodel,
life cycle phases, or acquisition policiesleading to those life cycle choices. The architecture activity takes placein a
context determined by the system requirementsand other programmatic goa sand constraints; theresulting architectural
description is the primary input to the overall system design and serves as the basis for system interoperability and
evolution. It also effects other considerations, including devel opment environment and approach.

The architecture activity may be carried out by the Government, or its agents (such as MITRE), by a Contractor,
or by ajoint team. The AQA isequally applicablein any of these cases, making no assumption as to who isinvolved
in the architecture activity.

The AQA specifically excludes from its assessment other concerns and sources of risk not related to architecture.
Excluded from this assessment are (among other topics): the overall system development process, the capabilities of
the developersto carry out that process, the vaidity and relevance of requirements which led to the architecture, and
the resulting system design and implementation.

In no way is the AQA designed to assess the capability of the architect or architectura organization. Nor isthe
AQA intended to be an evaluation of the developer’s capability to produce the system. Other characteristics of the
system, such as design quality and code quality are not intended to be addressed by this instrument but by other
approaches. The AQA isnot intended to be an evaluation of the devel oper, the processes used to develop the system,
or the requirements specification.

For reasons of objectivity and repeatability, the AQA isnarrowly focused on the artifacts of thearchitecture activity.
This includes any architectural documentation, possibly including items such as simulations, models and anayses
related to the architecture. At the same time, the AQA neither presumes nor prescribes that architectural information
take any particular form—e.g., the AQA does not presume or prescribe theform or content of an architecture document
“deliverable’. It is anticipated that architectural documentation will take many forms. Similarly, we do not assume
that such documents depict architectural descriptionswith any regular or standard notations. At present, much of this
informationislikely to beinformal, graphicor textual information. However, undocumented architectural information,
such as that which might be learned from conversation or “hearsay” is not considered admissible information by this
instrument. In the future, more formal means of capturing architectural expression may exist to facilitate these
assessments.

Architecture development takes place against a background of program concerns arising from (among others):
the mission and operational environment, user needs, and client (customer) expectations. To meaningfully assess
architectural quality, these concerns must be taken into account within the evaluation and interpretation of AQA
results. Prior to an AQA, an analysis establishes these concerns in a rigorous fashion, resulting in documented
statements of Needs, Goas and Vision (see 1.4.1). Typically, these statements are “owned” by the client and serve as
the baseline against which the architecture will be assessed. These statements will be used to identify, examine and
give weight to system priorities consistent with client expectations withinthe AQA.

To make objective quality analysis possible, we have to distinguishthe content and use of architectura information
from other types of system information, such as requirements and design-level descriptions. There are no arbitrary
boundaries here — they vary from program to program. Requirements often capture a mixture of user requirements
and the needs of other stakeholders (e.g., maintainer’'s need to easily modify certain aspects of the system). System

architecture is the precursor of system design. Following the IEEE Architecture Working Group [8], we define the
architecture of asystem as:

An architectureis the highest-level concept of a system in its environment.

An architecture addresses:

The large-scale structure and behavior of the system

Required external interfaces and their protocols

Key decisions to meet program needs which can not be |eft to the devel oper, including:

— Choice of key technologies and the rationale for their selection

— Design commitments, such as the selection of an Open Systems Environment (OSE) profile
— Degrees of freedom: the types of changes that must be anticipated

— Legacy system integration strategy

Basisfor selected dternatives

| dentification of high risk implementation areas

Guidance to the designers, implementors and maintainersfor realizing and evolving the system

Rendition of the system in afashion suitablefor client and other stakeholder’s examination and input

System designisafurther refinement of the system concept — providing implementation detail sto the components,
theirinterfaces, and the connecti onsbetween these components, whilesatisfying al governing architectural constraints.
This activity of system design generates information to address:

o Traceability between system elements and requirements contained in a system specification or comparable
specification vehicle

o Preiminary timing budgets for components that need to support end-to-end response time of a capability or
function

e Sizing budgets of software allocated to processing platforms

o |dentification of requirements that are cost driversor are high risk

o Initia identification of the costs for building and maintaining the system, and
o |dentification of an approach for testing the system

Theintent of the AQA isto determineoverall architectural quality and whether the architecture addresses program-
specific concerns. The AQA providesa basisto identify architecture-related risks resulting from this assessment. An
unfavorable assessment of the architecture is an indication that the evolving system may be considered to be at risk.
Favorableratingsin all quality areas do not necessarily mean that the system design will satisfy system requirements,
since system architecture and design are distinct activities — however, the likelihood of thisis less than that of an
unfavorabl e assessment.

1.3 About this Document

This document provides the complete methodol ogy for applying the AQA. It includes al questionsto be asked for an
architecture, and the means for scoring and interpreting the results. The rational e for decisions made in the definition
of the AQA isalso provided.

The AQA is an evolving technique. This version is the product of a three month proof of concept phase. It
has been subjected to limited testing through trial use. Future versions will provide increased depth and breadth of
architectural coverage. Future areas for expansion are marked in this document by Future. Comments on thisversion
and suggestionsfor future versions are encouraged and appreciated. (See Instructionsfor Comment Submission A.)

1.3.1 Acknowledgments

The authors which to thank Ed Green and John Maurer for their support, and especially Don Neuman for his
encouragement and sponsorship of this project. David Emery provided useful, detailed comments on an earlier draft
of the AQA. The authors also wish to acknowledge the contributions of the following individualsin the speciaties
noted: Richard W. Bentz Jr. (D062) and Jeffrey A. Clark (D062), Religbility and Availability; Charles J. Ludinsky
(G04B), Communications, DonnaL. Cuomo (D047) and Jane N. Mosier (GO4E), Usability; David L. Baldauf (G021)
and Marion C. Michaud (G021), Security; and Thomas M. Whedler (D07S), Sefety.

1.4 Methodology

This section describes the steps of an AQA, the methodol ogy used for conducting one, the materia s needed to perform
that assessment, and the form of the resulting products.
The steps of areview are as follows:

1. Perform Analysis of Needs, Goal s and Vision, when oneisnot available (see 1.4.1)
2. Gather relevant documents and other artifacts related to the architecture (see 1.4.2)
3. Evaluate documentation against measures and score results (see 1.4.3)

4. Interpret results and identify architecture-related risks (see 1.4.4)

5. Document results for the client (see 1.4.5)

The evaluation methodology used in the AQA followsthat of the MITRE Software Quality Assessment Exercises
(SQAE) [21]. The SQAE methodology identifiesthree levels of concerns. quality areas; quality factors and quality
measures. We adopt that methodol ogy here, without discussion.

We have identified six quality areas (see 2) which contributeto architectura quality. The quality areas arein turn
addressed by eight quality factors (see 3). Each quality factor consists of a number of quality measures. Each measure
takes the form of a question.

141 Analysisof Needs, Goalsand Vision

Inreferring to goalsand visions, | havein mind apractical rather than avery principled distinction. As
isusud in human affairs, it isthe practical perspective that matters most. Such theoretical understanding
aswe haveisfar too thin to carry much weight.

By visions, | mean the conception of a future society that animates what we actualy do, a society in
which a decent human being might want to live. By goals, | mean the choices and tasks that are within
reach, that we will pursue oneway or another guided by a vision that may be distant and hazy.

— Noam Chomsky [4]

Architecture assessment as defined by the AQA takes place in the context of the system- and program-specific
concerns for that architecture. For the purposes of thisassessment, these concerns must be recorded in some consi stent
fashion, prior to the actual evaluation of architecture documentation. This section addresses the form of that statement
of concerns, and the manner by which such a statement may be prepared, if a suitable one does not aready exist.

For the purposes of the AQA, an understanding of system- and program-specific concerns are captured through
the activity of analysisof needs, goalsand vision (or “system of systems analysis’ or simply “needs analysis’). Needs
analysis produces three work products. a needs repository, a goal s statement and a vision statement.

o The needs repository contains needs of the system. Needs may be thought of as digtilled, architecture-rel evant
system requirements.

e The gods statement captures the client’s success criteria

e Thevision statement reflects the client’s long-term direction for system and its evolution.

Figure1: Needs, Goasand Visionin Architecture Devel opment

Available
Vision\ Funding
1 Architecture L R—

Goals| — 7| z |

/‘ Sysltem
\ Needs Design
o

Operational System
Requirements | o | Requirements

echnology
Trends

Needs :Architecture: : Requirements : System

Figure 1.4.1 places these products in the context of a notional systems development. These work products flow
from the client’s expectations and environment and are typically articulated in collaboration with the architect. The
client’s environment encompasses the client’s business environment (policies, legacy, and operational requirements
— reflecting the mission) and the technical environment (trends and emerging standards) in which the system will be
built.

The goals of the system flow from the vision statement and the needs flow from the goals. These relationships
also imply atempora precedence within the system’s life cycle: needs must be addressed immediately, thevisionis
addressed over thelong term (perhaps as much as 20 years out, but highly dependent on thelife cycle of the architected
system) and in the interim, the goal's reflect success criteria (perhaps measured at incremental releases or other major
milestones).

These work products form the foundation upon which the subject architecture will be judged, as they enumerate
the client’ s expectations of the architecture to be assessed. Therefore, they are used to bound the problem space of the
system for the purposes of the AQA. Sincethey are used to reflect client expectations, these products should bedirectly
derived from/by the client. Idedly, the client “owns’ these products — and often has prepared them independently
of any assessment. At a minimum, in order for an AQA to be successful, the client is expected to “buy in” to these
productsas valid.

The vision statement requires thinking beyond the immediate objectives of the current users in acquiring and
developing a new system. It should be linked to the client’s long-range planning and speculation (for large systems,
perhaps 10to 20 years), to potential futureusers and new missions. It should not berestricted by predefined alocations
of functionsto organizations, systems, or persons.

The capabilities described in the vision are not prerequisites for a successful architecture; however, architectural
flexibility sufficient to accommodate those capabilitiesis sought by the architect. The vision statement providesinsight
into new capabilities the system might need to providein the future. The vision statement also providesinsight into
the potential future changes (advances) mission of the system, as well as anticipated technol ogy advances. Examples
of vision statements can be found in [10, 20]

The goals statement is intended to be representative of those technical and mission objectives that are relatively
well defined and achievable in a predetermined time frame. The goals of a system should be consistent with — or
even derived from — the vision statement. Goals are linked with the users short-range planning and are considered
invariantswithin that time frame. Goalstypically represent quantifiable, as well as qualifiable, success criteriafor the
program; often, they embody those concerns which will establish the emergent properties or “ilities’ of a system and
its architecture (see 3.5). A goals statement might address the behaviora characteristics of the system in terms of its

design. Goals might express where and how flexibility is desired, or where and what performance is desired. For an
example god s statement, see [10].
The needs of a system define the problem space in a concise form. It is useful to think of the slogan:

Needs are to architecture as requirements are to a system.

Needs differ from requirements in several ways. Needs are more stable than requirements over the life cycle of the
system and thusitsarchitecture. Whereas detail ed requirements may change astheusers day-to-day activitieschange,
the need for that day-to-day activity does not. A need is not necessarily testable. A single need often represents
the synthesis, or abstraction, of one or more individua requirements. A need captures those concerns that will drive
key decisions by the architect, such as decisions pertaining to performance, technology or cost drivers. Examples of
needs might include identification of aprescribed set of technical standards (aso-called “technical architecture”), user
interaction timelines, distribution or policy needs.

The needs repository records the collected needs for the system in an orderly fashion. It captures the concerns of
the client as well as al the stakeholders of the system. The needs repository a so captures the environmenta concerns
of the stakeholders. These concerns may include security, devel opment environment, legacy interaction or migration.
The successful capture of the needs of program will be succinct. Thisis critical to keep the architect from getting
bogged down in excessive detail. For example, for a system which may have as many as 5,000-10,000 requirements,
it would not be unusual for the needs to number under 200.

For each need, the repository records a concise statement of that need, its source, its priority, and its classification
based on quality measures or concerns. Needs originate from two types of sources. Thefirst isany documentation that
isavailable capturing system and operational requirements of the system. The second istheclient or other contributing
stakeholder with whom the need originates, such as users of the system. The prioritization communicates to the
architect the rel ative importance of various needs when considering potentia tradeoffs.

The accurate derivation of the needs for a program s critical to the definition of itsarchitecture. A typicd stage of
needs analysisisto insure that the needs repository indeed “covers’ the full set of requirements. Once an architecture
isdeveloped, dl architectural elements may be traced back to architectural elements.

When the needs, goals and vision statements do not exist, they must be derived prior to an architecture assessment.
Thesework products should bedrafted, coordinated with the client, and authenti cated by the client and key stakeholders.

1.4.2 Architecture-Related Documentation

The team performing the AQA needs to gather the relevant architectural documentation for assessment of the subject
architecture. These materials may includewritten documents or other artifacts such as mathematical models, formal or
executable specifications, or simulations. Idedly, the architectural documentation should be identified in concert with
the architect, and should be focused on architectural information. There is no standard or required set of documents
in which architectural information resides, so this step is crucia in obtaining appropriate information for the AQA.
Relevant itemsinclude:

¢ Vision statement, outlining basic needs of users both today and projected into the future; and how architecture
meets those needs today and is planned to meet those future needs as well.

o Goasstatement, outliningthe client’s criteriafor success.

o Needs repository, identifying the needs for each class of stakeholders. The needs should be prioritized, both as
an absolute list across all classes of stakeholders, and as prioritized sublists of needs for each separate class of
stakeholders.

o Identification and description of system stakehol ders.
o Concept of operations for the system (CONOPS).
o Enterprise models of the projected operational environment for the system.

o Background information on application domain and any basic technologies to be employed by the architecture
(eg., COTS,; special agorithms).

o Lifecycle mode for the system, including devel opment, maintenance, and projected logistics support.

o |dentification of the notations and representations that will be used to represent the architecture to al of its
stakeholders. The description of the approaches used for devel opment, mai ntenance and ogi sticssupport should
specify in some detail the roles for the various classes of stakeholderswho areinvolved in these activities.

o Description of the architectura method employed, including any special or unusual descriptive notationsfor the
architecture.

o Descriptionsor other models of the subject architecture, using the identified notations.

o Rationale for the architecture. Explanation of the choices made in the architecture, and the reasons behind
those choices. Two ways (there are likely others) that adequate rational e can be provided for part or all of the
architectureare: comparison against “ straw man” architectura alternatives; analysisof how well the architecture
performsin various scenario(s) of interest to the different classes of stakeholders.

o Suggested Figures of Merit (FOMs) for the architecture. These are metrics or measures of the architecture's
effectiveness over time as perceived by the various classes of stakeholders. The FOMs should be selected for
their ability to be assessed objectively (and, hopefully, quantitatively).

Once an set of architectural documentation isidentified and agreed upon, the AQA team records the identification
of thisset, and beginsits study of the architecture, reading and analyzing the collected documentation.

1.4.3 Evaluation and Scoring

When the AQA team is sufficiently familiar with the architectural documentation, the actual assessment can begin.
Thisinvolves evauating each of the measures below (3).

There are two types of questionsin the AQA: iteratorsand discretes. Iterators are questions whose answers take
the form of alist. The results of an iterator are then typically used to instantiate one or more other questions. For
example:

What stakehol ders does the architecture technique identify? (List.)
For each stakeholder (listed above):
Ask one or more questions regarding that stakeholder ...

To make the scoring and interpretation of results repeatable, al questions (other than iterators) are discretes —
responses to these questionsrange over a discrete set of values show in the table bel ow.

Value Description
IDEAL Subject is explicitly addressed, and receives best possible treatment.
GOOD Sound treatment of the subject relative to expectations.
MARGINAL Treatment of subject meets minimal expectations.
UNACCEPTABLE Treatment of subject does not meet minimal expectations.
INCOMPLETE Treatment of subject exhibitsalevel of detail whichisinsufficient to make ajudgment.
NON-APPLICABLE This measure is not applicable to the subject of interest.

Table 1: AQA Scored Vaues

The results of individual questionswill be aggregated in severa ways to yield aggregate results for each factor,
area, and to identify probable architecture-related risks (next section). In the aggregate — at the factor and arealevel —
scoring will be:

ACCEPTABLE, UNACCEPTABLE, or INCOMPLETE. where ACCEPTABLE subsumes IDEAL, GOOD and
MARGINAL and there are no NON-APPLICABLE results at the area and factor level. For analysis purposes, each
of the discretesis coded as a numerical value. We provisionally adopt the scheme used by the SQAE, where IDEAL,
GOOD, MARGINAL, and UNACCEPTABLE are coded as: 1, .75, .25, and O, respectively. INCOMPLETE and
NON-APPLICABLE are also coded as O, but are tallied differently.

144 Interpretation of Results

Once all applicable questions have been answered, the results are may be weighted and aggregated to yield values for
each factor, area, and risk. The matrices governing these aggregations are presented bel ow.

The rules for aggregation and weighting will initially be hypothesized — as data is gathered from multiple AQAS,
these rules will be tuned.

145 Reporting of Results

There are three primary products of the AQA review:

o Executive Summary
¢ Detailed Evaluation and I nterpretation

¢ Open Issues and Questions

The Executive Summary provides an overview of the overall quality results and any outstanding issues, relative to
the system’s needs analysis. The Detailed Evaluation provides the scores at al levels of aggregation, the weightings
used, and the identified risks. In some cases, clients want to take the results of the AQA back to the architect to
provide feedback, or to highlight unresolved issues in the architecture. For this purpose, Open Issues and Questions
are documented in aform that may be submitted to the architect for clarification.

15 Assumptions

This section documents assumptions made during the construction of the AQA which apply to its execution.

o The AQA evauation methodol ogy and question set shall be publicly knownand openly availabletothearchitects,
and generally, to the organizations whose architectures are being evaluated. The vision and goals statements,
and needs repository, against which the architecture isto be evaluated, shall likewise be available.

o All questions shall be answered from existing architectural documentation. Interviews, hearsay, or other
undocumented forms of communication shall not be taken into consideration.

e The AQA shall be conducted by evaluators who are independent of the program being evaluated. There shall
be a separate reporting chain for the AQA evauator team to the architecture’ s client (or whoever commissioned
the AQA) which isindependent of project management.

e An AQA shall require minimal preparation on the part of personnel of the program, for Government, MITRE
or Contractor personnel on the program; architecturally-relevant materials should be available via the ordinary
Data Accession List (or equivaent).

e The evauators shall be individuals with strong systems engineering experience, and familiarity with modern
architectural principlesand relevant system specialties.

1.6

Architecture Ter minology

Because architectural methods and descriptions are in their infancy, thereis alack of standardized terminology and
concepts applicable to architecture. Yet, for purposes of objective, repeatable evauation, we need some uniform
and neutral of talking about architectures to frame questionsin the AQA. Therefore, for the purposes of architecture
assessment, we adopt the terminology of an architecture metamodel, originaly developed by MITRE for Army SBIS

[9].

Future: Should a widely accepted terminologica framework for architecture become available in the future (such as
|EEE’s Recommended Practice for Architectural Description), this AQA should consider its adoption.
This section outlines the basic concepts and terminology to be used in posing questionsin the AQA.

© N o o W N R

10.

11.
12.

13.

14.

15.

16.

. An architecture is documented as an architectural description.

. An architectural description consists of one or more views.

. Each view presents the system from a well-defined vantage point to address a specific set of concerns.
. Each view is documented in terms of a number of architectural elements.

. An architectural element may be a component, connection or constraint.

A component depicts amajor element of aview.

. A connection depicts arel ationship between components.

. A congtraint depicts depicts a condition/law which an element must satisfy/obey. A constraint acts upon a

component or connection.

. A feature is acomputational element of a component; e.g., afunction or port.

An interface specifies a component of a system. An interface should specify both the festures a component
provides to other components or to the environment, as well as those festures the component requires from
other components or from the environment. [This is extremely important for embedded systems-we usually
specify how components respond to requests, rarely do we specify what they do to other components or to the
environment—side effects—in the course of satisfying those requests.]

Interfaces may either be safe interfaces (statel ess) or be communication interfaces (have state).

A component is shared safely among other components if either it is safe, or all these other components are
directly connected to it.

A connection between interface features is correct iff the implied transfer of information is consistent with all
constraints on the features.

Connectability of interface features is an easily checked property of their features necessary for correct connec-
tion.

An architectura commitment is a*“propert[y] of the system design which [detailed] designers are not at liberty
tochange.” [3]

An architectura obligationis an “aspect[] of a design to which no commitment is made ... [is] the subject of
obligationsthat lower levels of a design must address.” [3]

2 Architecture Quality Areas

We haveidentified six quality areas related to architecture and their interrel ationships.

1The definitions of “feature” and those related to interfaces, sharing and connectability are based on RAPIDE [17].

10

2.1 Understandability

An architecture is useful only insofar as it is expressible to others. Architecture understandability is a prerequisite to
each of the other quality areas — if an architecture can not be understood, it can not be readily implemented, maintained
or evolved. We assess understandability in terms of the conceptua foundations underlying the architecture, the
techniques used to create it, the description used to record and analyze it and the qualities of that resulting description.
Understandability islargely generic rather than program specific.

2.2 Feashbility

The foremost question to be asked about an architecture pertains to its feasibility — Does the architecture provide a
sufficient basis upon which to develop a system which is an instance of that architecture and satisfies program needs.
Feasibility is a prerequisite to the system’s implementability, maintainability and evolvability. If the architecture does
not exhibit feasibility, the system may not be readily or economically implemented and user or client needs may not
be met. Inthe AQA, feasibility is restricted to the architecture — the AQA does not address the feasibility (capability)
of the development team to implement the architecture, or the feasibility of itsapproach.

2.3 Openness

An architecture exhibits opennessiif it describes a system which can operate in an open system environment. An open
systemishbuilt to exploit publicinterfaces and services, exhibiting minimal dependence on proprietary systemsor APIs.
Such interfaces allow smooth upgrade of system components conforming to those interfaces, increased portability to
new platforms, and minimal machine dependencies.

Note: Openness aso contributes to simplicity because standardly defined interfaces routinely have well-defined
behaviors.

24 Evolvability

An architectureisevolvableif it exhibitsadegree of changeability to meet new user or client needs, and may be adapted
to new, unanticipated missions, while preserving the integrity of the original architecture. Evolvability is measured
against the vision statement. Prerequisites. Feasibility and Maintainability.

25 Maintainability

Once a system is built, an architecture has implications for the maintainability of that system. Oneingredient of that
maintainability isthe maintainability of the architectureitsalf.

2.6 Client Satisfaction

The quality areas above (Understandability, Feasibility, Openness, Evolvability and Maintainability) are general char-
acteristics pertaining to the quality of asystem’s architecture. For agiven system, they may be assessed independently
of that system’s mission, requirements, etc.

However, akey ingredient of the quality of an architecture must be its ability to yield a system which meets its
requirementsin the context of its mission. These concerns are (necessarily) project- and system-specific. The purpose
of thisarea, Client Satisfaction, isto provide a point for the collection of these project- and system-specific concerns.

As with the other quality areas, Client Satisfaction is analyzed through a number of contributing factors. To do
so, we must “tune”’ the contributing factors to project- and system-specific concerns. This requires input from the
program. Wedo thisintheform of aneeds analysis, , prior to AQA. The needs analysis determines overarching needs,
goasand vision for the system. The needs analysisisthen used to:

o Determine relevance and applicability of measures (specific questions) to the system under assessment.
¢ Determine thresholds and prioritization of measures and factors to the system under assessment.

o Inventory system-specific items for assessment.

11

3 Quality Factors

This section identifiesthe quality factors which contributeto the quality areas of the previous section. For each factor,
a brief descriptionis presented, followed by a set of measures, used to evaluate the factor. The correlation of factors
to areasis described below (see 4).

3.1 Conceptual Foundations

Thisfactor addresses whether the architectureis being devel oped against awell-defined set of concepts, or conceptual
foundation. The purpose of thisfactor is to determine the well-foundedness and intellectual accessibility of thisframe
of reference — not necessarily its appropriateness for this system. It investigates, for example, whether terms and
concepts pertaining to software systems architecture, like “architecture” and related concepts are well-defined. For a
discussion of relevant terminology and concepts, see[12].

Note: Thissection issomewhat abstract by itself. An example here would be helpful to clarify how we are using
theterm “conceptua foundations’. Consider the Air Force's CCPDS-R: TRW devel oped NAS (Network Architecture
Services), an infrastructure framework to support the devel opment of message-based command and control systems.
The NAS conceptual framework established a set of architectural constructs: sockets, circuits, processes, tasks, etc.,
for the architect to use. Underlying this, were the theoretical foundations based on Ada's tasking model. Other
humorous examples of what happenswhen there isamismatch between foundationsand the desired architecture: such
as a certain program’s Object View consisting of data and functions; and Danny Cohen's “globa clock” for SDI —
which happily ignored relativistic effects in adistributed system.

Key Entities. conceptual foundations, terms and concepts, intended stakeholders

. What, if any, conceptual foundations underliethe development of the subject architecture? (List.)
. Arethe conceptua foundationsidentified and documented?
. Do the conceptua foundationsinclude a definition of “architecture’?

. Arerelevant terms and concepts identified and defined as a part of the conceptual foundations?

a A W DN B

. Arethedefinitions of relevant terms and concepts self-contai ned so that they are comprehensible and accessible
to others? (Published, etc.)

6. Do the conceptual foundations provide, at a minimum, ana ogues for each of the terms defined above (see 1.6)?
(Map subject terms and concepts to those of the metamodel .)

7. Isthe purpose of an architecture well-defined within the conceptual foundations?
8. Isthe scope of an architecture well-defined within the conceptual foundations?

9. Arethe audiences and intended stakeholders for an architecture clearly identified within the conceptua founda
tions? (List the intended stakehol ders and audiences.)

10. For each audience and stakeholder: Do the conceptua foundationsidentify those needs which the architecture
isintended to address?

11. Are the conceptual foundations well-founded? |.e, is there a cited theory, practice or other discipline upon
which the architectural foundations are based?

12. Isthere areference model depicting relation of architecture to therest of the system?
13. Arethefoundations documented? Are they expressed such that they may be objectively anayzed?

14. Do the conceptual foundationssupport any forma model of system architecture such that resulting architectural
descriptions may be reasoned about or analyzed?

15. Arethe conceptua foundationsappropriate for the domain of application of the subject system?

12

16. Are the conceptua foundations appropriate for the class of systems of which thisis an instance? (real-time,
embedded, distributed, dynamic, legacy, MIS, ...)

17. Isthere adocumented rationalefor the conceptua foundations?

18. Arethere precedents for use of these foundationsfor related or similar systems?

19. Were dlternative foundations considered?

20. Isthere ademonstrable commitment to the foundations from the architect’s organization?

21. Havetheimplicationsand ramification of the foundationsbeen analyzed? Have trade-offs been considered?

3.2 Architecture Documentation

This factor addresses the quality of the documentation set (including actual documents and any other artifacts, such as
simulations, mathematical models, executable prototypes, etc.) of the architecture, relative to the conception of that
architecture, and anticipated usage of the documentation by the client, system devel opers, and other stakeholders. The
intent of thisfactor isto establish that a conception of the architecture isreflected in actual documentationin a usable
form.

Key Entities: Architectural documentation

. Isthe architecture documented?
. What architecture documentation is available? (List.)

. Isthe architecture documentation consistent with the conceptual foundations?

A W DN P

. Does the architecture documentation meet the purpose, scope of architecture as defined by the conceptual
foundations?

. Isit feasible to identify the relevance of the documentation for the various stakehol ders?
. Isthearchitecture documentation accessible to relevant audiences and stakehol ders?
. Doesit clearly identify architectural assumptionsand decisions?

. Isthe architecture expressed in a manner which is appropriateto its audiences?

© 00 N o O

. Istheformat of documentation appropriate to the size and scope of the architecture?
10. Isthe architecture documentation available in a machine-readable format?
11. Doesdocumentation provide an overview of the architecture?

12. Does documentation provide guidance to its contents and to other relevant documentation?

3.3 Architecture Description Techniques

Thisfactor dealswith the quality of means (hotationsand conventions) by which architectural informationisexpressed
within the architecture documentation including any notationsfor representing architectural constructs.

Note: This section draws upon the SEI's Descriptive framework for Architecture Description Languages [14] and
Hilliard’scomments on an early draft of same.
Future Revisit thisfactor to consider understandability vs. expressivity, elegance vs. obscurity. At present, the best
score would go to ahighly expressive, unconstrained notation — e.g., English.

Key Entities: Architectural e ements (i.e., components, connections, constraints, and views), notations

1. How are architectural elements represented notationally? (List.)
2. What architectura elements are identified for capturing architectural information? (List.)

13

© 00 N oo o~ W

10.
11.
12.

13.

14.
15.

16.
17.
18.
19.
20.

21
22

23.
24,
25.
26.
27.

. Isthe set of architectural elements well-defined?

. Isthe syntax of architectural elements well-defined?

. Isthe semantics of architectural e ements well-defined?

. Aretherules for representing architectural elements documented?

. Does technique support meaningful naming?

. Does the technique address naming of architectural elements, the form and scope of names?

. Arearchitectura elements typed?

Can architectural element types be defined by the user (architect)?
Can architectural e ements be associated with additional information? (such as function, realization)

Arethere guides or handbooks for architects and other audiences describing the architectural elements and their
usage?

Does the technique permit the expression of various architecturd styles? (eg., pipe-and-filter, event-driven,
client-server, blackboard)

Does the technique place limits on the styles it may be used to express?

Doestechniqueallow theexpression of variousarchitectural topologies? (e.g., layered, object-oriented, message-
passing, transactional, rule-based)

Does technique place limits on the expression of architectural topologies? (such as hierarchy, DAG, bag)
Can technique be used to capture other, known architectural concepts?

Does technique provide mechanisms which permit the expression of deferred architectural decisions?
Does architectural technique have provisionsfor inter-view cross references?

Does architectural technique have provisions for presentation control? (such as text vs. graphics, report
generation)

Does architectural technique facilitate ease of change of architectural descriptions?

Does technique have constructs to effectively manage architectural complexity (e.g., views, packages or mod-
ules)?

Isthe architecture technique ergonomically engineered for human?

Istechnique well-known?

Does technique support means to distinguish architectural information from design?
Doesthe architectural technique allow expression of commitments?

Doesthe architectural technique allow expression of obligations?

14

34

Analyzability

This factor addresses whether the architecture description, as developed using the notations and techniques of the
previous section, may beanayzed for consi stency, compl eteness and other characteristics. It further addresseswhether
these anayses may be supported by procedures or automated tools. Anayzability contributesto: (1) the quality of
the architectural documentation, insofar as analysis improves its consistency and completeness; and (2) the quality
of the resulting system, to the extent that analysis of the architecture enables the architect to anticipate future system
properties.

Key Entities: analysis techniques, analysistools

1.

2.
3.
4,
5.

What does one need to know to analyze an architecture, given the conceptual foundationsand their theoretical
underpinnings?

What kinds of analyses are defined by the method to be applied to an architecture description? (List.)
Iseach applicable or relevant emergent property (3.5) addressed by at |east one analysis technique?
What additional kinds of analyses may be applied to an architecture description? (List.)

Does representation have a machine-readabl e, storable form?

For each anaysistechnique listed above:

1.
2.
3
4,
5
6

Does the technique support “mechanical” (systematic) checking of architectural descriptions?

Isthere aformal model underlying this checking?

. Doesthe technique alow analysis of dependencies between el ements?

Does the technique alow anaysis of the behavioral conseguences architectural constraints?

. Doesthe techniqueallow analysis of the behavioral consequences of architectural decisions?

. Using the technique, can quantitative measures (performance, accuracy, precision, ...) be associated with

architectural elements?

Does the technique allow for aggregating quantitative measures and developing budgets of same? (such as
resource utilizationand “flow")

How well does the technique “play with” other analysis techniques?

3.4.1 Accountability

Completeness Analysis.

1.
2.
3.

Does the technique define one or more criteriafor completeness of the architectural description?
Arethere pre-defined rules for checking compl eteness?

Arethere provisionsfor theuser (i.e., architect, or other stakeholder) to define additional rules for completeness
checking and perform them?

Consistency Analysis.

1.
2.
3.

Does the technique define one or more criteriafor the consistency of an architectural description?
Arethere pre-defined rules for checking consistency of the architectural description?

Are there provisionsfor the user (i.e., architect, or other stakeholder) to define additional rules for consistency
checking?

15

Extra-Architectural Links. This section measures “traceability” between architectura documentation and other
artifacts.

Future: Add apictureto clarify the notional document types and their rel ationships: needs repository, goalsand vision
statements, handbook of architectural technique, architectural documentation, architectural description, requirements
specifications, etc.

1. Does the architectural technique have provisions for recording the history of and changes to the architectural
description?

. Doesthearchitectural techniquehave provisionsfor capturing assumptionsmadein thearchitectural description?
. Doesthe architectural technique have provisionsfor tracing architectura decisionsto needs?

. Does the architectural technique define how architectural e ements may be linked to needs?

a A WO DN

. Doesthearchitectural techniquedefine criteriaof consistency between architectural descriptionsand information
in other documents?

6. Arethererulesfor checking consistency between architectura description and other documents?

3.4.2 Conformance

1. Does architecture as documented conform to the conceptua foundation’s definition of architecture?

2. Doesthe architectura description alow the resulting design to be tested or verified for conformance?
3. Arethere precedents where this architecture has led to a conforming implementation?
4

. Do conceptual foundations provide a way for an architecture to address operational, technical and system
concerns?

Future: Conformance to architectura frameworks or guidelines (such as DoD’s Joint Technical Architecture [6] or
the X/Open Architectural Framework [22].

3.4.3 Tool Support
1. Aretheretoolsto support each of the analysis techniques listed above?

2. Aretheretoolsto support the creation of architectura models?

3. What tools support the creation, maintenance and analysis of architectural models? (List.)

3.5 Emergent Properties

Complex systems often are meant to exhibit desired properties or characteristics which can not be localized to specific
components or connections. Such properties are called emergent. Many of the desirable properties of engineered
systems are emergent, rather than loca —typically the“ilities’ cited in requirements or other sources. To achieve these
propertiesin the delivered system, that system’s architecture must take some cognizance of these properties.

Not every architecture needsto give equa weight to al of these properties—their relevance or weightingfor agiven
architecture will vary with stakehol der needs and priorities. This section serves as a checklist of these properties, and
provides a set of measures for each —to relate their coverage in the architectural documentation against stakeholders
concerns.

1. Based on the needs, goals and vision statements for the system, what are the critical emergent properties which
should be addressed by the target architecture? (List.)

2. Iseach critical emergent property addressed by a suitable analysis techniques?

16

351 Security

Security aspects of a software system'’s architecture entail consideration of three distinct areas. confidentiality which
assumes that information is not disclosed to unauthorized entities or processes, integrity those characteristics which
ensure that resources operate correctly and datain the system is accurate, and the denial of service which isthe result
of any action or series of actionsthat prevent any part of a telecommunication or automated information systems from
functioning [1].

Security becomes aconcern when classified or unclassified but sensitive dataisto be processed in thetarget system.
Other concerns which may need to be addressed by the assessment include whether or not the architecture addresses
multiple clearances and additional access restrictions predicated on categories and compartments. If security is a
concern then the following questions apply.

1.
2.

10.

11.

12.
13.
14.

Does the architecture identify each expected user type and their clearances?

Doesthearchitecture identify the components comprising the trusted computing base (e.g., servers, PCs, routers,
gateways, cryptographic support, operating systems, database management systems)?

Does the architecture address the classification levels of the data that is to be handled by each element?

Doesthe architecture identify the environment where the elements will reside? (i.e., whether or not components
and connections will be contained in a protected environment)

Does the architecture identify how each user type will access the system (e.g., protocols such as FTP, Telnet)
and the potential vulnerabilitiesarising from this access?

Doesthe architectureidentify the type of access (C,R,U,D) that will be needed for each user type?

Doesthearchitecture address the external systems and classification level s of the datato be exchanged with each
system?

Doesthearchitecture addressthetype of mechanismsthat will beused to exchange datawith theexternal systems
(communication protocols such as Internet, FTP)?

Isthearchitecture capable of being expanded to accommodate future security goal s? (e.g., the ORD may indicate
that the threshold is System High and the objectiveis to support a multi-level secure mode of operation)

If encryption is needed for data flowing through unprotected environment, are the components and connections
that will support encryption identified?

If encryptionisneeded, isthe encryptiontypeidentified in thearchitecture? (E.g., Class|, Classified information
or Class 1, Sensitive but Unclassified)

If encryption isaneed, does the architecture address key management?
Doesthe architecture identify the critical data to which integrity mechanisms will be applied?

Does the architecture identify the components and connections that will support the implementation of data
integrity?

35.2 Dependability

Dependability is defined to be the “quality of service provided by a particular system”. Dependability includes
reliability, availability, and safety. The following definitions are assumed in the remainder of this section [19]:

1. Availahilityis defined to be the conditiona probability that a system is operating correctly (without failure) and

2.

isavailableto performitsfunctionsat an instant of time.

Reliabilityis defined to be conditional probability that a system performs correctly (without failure) throughout
an interva of time given that the system was performing correctly at the beginning of the interval of time.

17

3. Failureisthe deviation of the delivered service from the specified service where the service specification is an
agreed description of the expected service [2].

4. Safety is the freedom from those conditions that can cause death, injury, occupationa illness, or damage to or
loss of equipment or property or damage to the environment [7].

5. Hazard is a state or set of conditions of a system that, together with other conditionsin the environment of the
system, will lead inevitably to an accident [16].

Reliability and Availability. During the architectura phase of system development, a number of strategies will be
examined for meeting reliability and availability needs. These alternative strategies and the resulting trade-offs should
be captured in the architecture documentation.

In most circumstances, systems will evidence either areiability need (e.g., for critical missions such as aircraft
flight control) or an availability need (usually associated with a command and control-like missions). Seldom will it
be necessary to evaluate an architecture against both the reliability and availability needs.

There is astrong relationship between mechanisms that support fault tolerance and these two emergent properties.
Therefore, the AQA has includes measures to address the identification of single point failures and components that
support fault tolerance.

1. Does the architecture identify component numbers and types (e.g., PCs, workstations, mainframes, bridges,
routers, gateways, operating systems, data stores)?

. Istherean initia prediction of availability for each of the mgjor architecture aternatives?

. Doesthe architecture address the critical failuresand their relationship to the components and connections?
. Doesthe architecture address the critical failures and the resultant impacts on the architecture?

. Doesthe architecture identify single points of failure and redundancies?

. Istherean initial prediction of reliability for the each of the primary architecture aternatives?

N~ o o0~ wWwDN

. Does the architecture identify how the system will handle off-nominal conditions (e.g., loads that exceed the
stated need)?

Safety. For those systems where thereis some risk with respect to loss of life, injury, environmental harm, or loss of
equi pment, the architecture should address safety.

1. Doesthe architecture identify the components and connectionsthat address system safety?
2. Doesthe architecture documentation identify the hazards to be addressed by these el ements?
3. Arethere any hazards that have not been addressed by the architecture documentation?

4. Doesthe architecture introduce new hazards? Have they been recognized and addressed?

3.5.3 Usability

For interactive systems, the means by which the various end users of the system will interact with the system should
be addressed by the architecture. Usability isthe “effort required to learn, operate, prepare input, and interpret output
of the system” [18].

Future: Usability isoneimportant case of operability, for which the stakehol ders are the end users of the system, other
cases will be dedlt with in future versions.

1. Doesthe architecture address a user interface concept?

2. Does the architecture enforce a common “look and fed” that will help ensure that there is a consistent user
interface for appropriate classes of users?

18

3

4
5

. Does the architecture identify the elements (e.g., toolkits, special input/output devices) that support the user
interface?

. Does the architecture support the usability goals of client?

. Doesthe architecture support customization and extension of the user interface by users and others?

3.5.4 Interoperability

Interoperability may be defined as [13]:

1.

The ability of systems, units or forces to provide services to and accept services from other systems, units, or
forces and to use the services so exchanged to enable them to operate effectively together, or

. The condition achieved among communications-electronics systems or items of communications-€lectronics
equi pment when information or services can be exchanged directly and satisfactorily between them and/or their
USers.

. Doesthe architecture identify the externa systemsthat are to interoperate with the subject system?

. Does the architectureidentify the protocolsthat will be used to support the interoperations between the subject
system and the external systems?

. Does the architecture identify the data elements (and their attributes) that are to be exchanged between the
subject system and the externa systems?

. Doesthe architecture identify the services that are to be provided by the external systemsin order to support the
operations at the subject system?

. Does the architecture identify the services that are to be provided by the subject system in order to support the
operations at the various external systems?

. Doesthe architecture identify any behavioral or other constraints on interoperability of data and services?

355 Physical Characteristics

Physical characteristics which include component footprint (the dimensions of a component), weight, and power

(eg.

, the need for UPS, the cycles per second) constraints have become less of an architectural driver. Technological

advances in eectronics (e.g., miniaturization, less power consumption) have led to the decreased emphasisin power
weight, and footprint as architectural drivers.

Future: This section will be the subject of further elaboration as needed for specific systems. It is expected that for
most systems only a subset of the following questionswill be applicable.

1
2
3
4
5

. Does the architecture address weight needs?

. Does the architecture address footprint needs?

. Doesthe architecture address set up and tear down needs?
. Doesthe architecture address power needs?

. Does the architecture address environmental and climatic concerns (such as temperature, humidity, and sand)?

3.5.6 Survivability (Future)

Survivability is the ability of the system to provide continuous and adequate performance of critical services and
functions even after a successful attack. An attack may be a result of nuclear weapons effect, jamming, terrorism,
conventiona weapons, terrorism, and information warfare.

19

3.5.7 Performance Characteristics

Performance characteristics which include mean response time, average throughput and the variance of both of these
characteristics as seen by the users, will often influence the architecture. To support the analysis of the architecture
with respect to performance characteristics, the following definitions are assumed:

1. A hard deadlineistime constraint which cannot be violated without a critical system failure.

2. A soft deadline can tolerate some violation of atime constraint without causing a critical failure.

The following measures are used to assess whether the architecture has potentia risks in meeting performance
needs.

1. Doesthe architecture documentation identify the hard and soft deadlines and loading constraints?

2. Does the architecture documentation identify the key externa events that are related to the soft and hard
deadlines?

3. Doesthearchitectureidentify thecomponentsthat areinvolvedin scheduling common resources (e.g., processes,
tasks, network bandwidth)?

. Doesthearchitectureidentify thetempora relationship between the componentsand the hard and soft deadlines?
. Does the architecture documentation identify the scheduling strategies that will be used to meet constraints?
. Does the architecture address priority inversions?

. Does the architecture identify the granularity for the clocks that will support scheduling?

0 N o o b

. For distributed systems that requires synchronized clocks, does the architecture address the synchronization of
clocks?
3.5.8 Modes of Operation (Future)
A number of target systems may have the need to support two or more modes of operation and different states.
1. Doesthe architecture address the modes of operations?

2. Doesthe architecture address the transitions between states?

35.9 Affordability (Future)
Affordabilityisthe conditionthat the lifecycle cost associated with the system is withinthe expected costs of theclient.

1. Does the architecture contain sufficient information in order to perform a preliminary cost for acquiring and
maintaining the selected system?

2. Isthe preliminary cost for acquiring the system and maintaining the system within the client’s budget?
3. Does the architecture documentation contain sufficient information with respect to aternative architecturesin
order to obtain preliminary estimates of the costs associated with these aternative systems?
3.5.10 Supportability (Future)

Supportability isthe ahility for the architecture to support the client’slogistical needs. For AQA, thisassessment must
be considered to be preliminary and will be qualitative.

20

3.6 Patternsand Idioms

Thisfactor assesses the quality of the architecture with respect to itsidentification and use of organizing principlessuch
as computational models, programming and design idioms, and “patterns’. The use of such principles demonstrates:
(1) awareness of system concerns; (2) intent to address them; and, (3) provision of solutions compatible with other
constraints. Thisfactor contributesto understandability and feasibility.

A patternisdefined asasolutionto aparticular system development problem, in aparticular context. For example,
many embedded systems require hard deadline scheduling of tasks. Possible architectural patterns applicable to this
problem include periodic (cyclic executive) scheduling and rate monotonic scheduling. Idedly, a pattern should be
capable of being defined and described separately from any system in which it is employed. One could attempt to
“reverse engineer” such patterns out of actual architectures in which they have been used, but thisis both inefficient
and possibly inaccurate — since a pattern may need to be tailored for some specific aspects of a particular architecture.

Key Entities: adescription of a pattern may include dl of the following [5]:

1. The Name of the pattern.
2. The Problemthe pattern istrying to solve.

3. The particular Context in which the pattern solves a problem. For example, the use of an enterprise-wide
data model probably makes sense in a problem context where distributed data management is a concern — the
architecture for an air-to-air missileis probably not an appropriate context for this pattern.

4. Forces, or Tradeoffs, which explain how the use of the pattern trades off among various properties of the
architecture in order to improve some of its properties, possibly over others. Force is the explanation of the
potential tension among certain potentia properties; use of the pattern represents a conscious tradeoff in this
tension. For example, theuse of a“cyclic executive’ approach to hard deadline scheduling emphasizes simplicity
and prior expertise, over Evolvability and openness of theresulting architecture. Alternative scheduling policies
might make different tradeoffs.

5. The Solution describes the structure and behavior of the result, or how to build that result.
6. Examples and Visual Analogies. These help explain the pattern.

7. Force Resolution or Resulting Context: This explains what forces (issues and properties) the pattern leaves
unresolved, and what other patterns might be applied to resolve these remaining issues. If not resolved by the
architecture, these may become obligationsto designers. For the example of an enterprise-wide data model,
issues left unresolved include resolution of “impedance mismatches’ among components that support data
models different from the enterprise-wide model. Patterns like the use of “wrappers’ or “trandators’ can
reconcile such different models with the enterprise-wide model.

8. The Rationale provides a justification for the pattern. A justification can be theoretica (e.g., the mathematica
theory of rate monotonic scheduling), or practical (e.g., prior case studies in which the pattern was successfully
employed).

Programming or design idioms may be thought of as one type of pattern Solution that is expressed in a particular
programming language or design language. A pattern may characterize a programming or design idiom, along with
descriptions of how, when or why to use that particular idiom [15].

We anal ogize architectural idioms as representing the Solution parts of corresponding architectural patterns. Note
that whether a particular pattern should be considered as “architectura” or as “programming/design” is not aways
clear-cut, and that this distinction may shift over time. As programming languages improved, programmers became
increasingly capable of dealing with many patterns and idiomsformerly considered “architectural” (e.g., those dealing
with multitasking). Unfortunately, we currently lack appropriate, robust formalisms for defining architectura idioms.
Thus for the present, most architectural idiomswill still need to be represented in an ad hoc manner, using colloquial
English, mathematics, diagrams, €tc., as appropriate to the particular pattern.

For the reasons just discussed the assessment of architecture-related patterns is less “cut-and-dried” than other
factorsin this assessment. The stepsin patterns assessment are as follows:

21

1. Identify the key system problems that the architecture must solve. (List.)

2. Discover and inventory the predominant architectural patterns, and associate the patterns to system problems.
(List patterns and their associated problems.)

3. Assessthe discovered patterns with respect to the pattern attributes given above.

The concept of “architectural pattern” isrelated to the concept of emergent or non-loca properties of a system (see
3.5). Asnoted above, a pattern solves an architectural problem in away that may improve certain properties of the
system even if other properties are unimproved or even made worse.

To evaluate each pattern used in a particular architecture, one would start by attempting to identify al of the above
attributes for that pattern. Inability to do so might detract from the credibility of that pattern. Having identified the
attributes, the next step would beto evaluate them. For example, how credibleisthe Rationa e for each pattern?

3.6.1 Inventory of Pattern Categories

Architectural patterns may be organized into several broad categories. Two important categories of patterns are
those that deal with issues of “execution time” (including events and behaviora abstractions) and “space” (including
decentralization and distribution). A third category of patterns attempts to trade off such time-oriented properties
against such space-oriented properties. Patterns of information management and communications (key problemsin
C3l) may befound in any of these three categories, depending on the particular “forces’ and tradeoffs the patterns are
intended to deal with. Other useful patterns may attempt to deal with any of the emergent properties enumerated (see
3.5).

Future: Thisisan open set, which we have only begun to populate.

o Note that there are other aspects of temporality besides execution time. For example, each architecture, each
system, and each of their components and technologies has a finite lifetime. While issues of the lifetime and
evolution of the architecture will be considered as part of this overal effort, defining appropriate “patterns of
evolution” will be left as asubject for future research.

e Add category to address |egacy-system related concerns.

¢ Incorporate Maier’s principlesfor systems-of-systems (coll ective phenomena).
Patterns of Communication. If needs dictate that processing will be allocated to two or more processing € ements
to be interconnected by some type of communications media, then the architecture documentation should address the
communication entities that comprise part of the target system architecture. Communication entities are defined to
be the components and connections that provide for the control and direction for the information flows of the subject

systems. These communication entities may be partitioned into two distinct categories, entities which have been
dictated to the system architect by the Needs or entitiesthat will be selected by the system architect.

1. Istheinformational flow (information processing flows based on what the system is supposed to do) depicted in
the architecture documentation?

2. Does the architecture identify the components that are involved in controlling, facilitating, or directing the
information?

3. Doesthe architecture reflect the communication entitiesidentified in the Needs?

4. Does the architecture identify the constraints for the communication entities (e.g., bandwidth, reliability, cost,
and distances)

5. Doesthearchitectureidentify if the communication entities have the capacity to handlethe expected information
flow?

6. Doesthe architecture indicate if the communication entities can interoperate with one another??

7. Doesthe architecture indicate if non-standard entities (non-COTS) being used to support communications?

22

8.

10.

Does the architecture documentation identify the communication infrastructures where the system will be
deployed? (In some cases, some systems may be deployed overseas and may make use of the host country’s
communication infrastructure. There is a possibility that the infrastructure may not be adequate to support the
expected information flow)

Has sufficient aternative communication paths (distinct sets of communication entities) been identified in the
architecture to assure that the architecture has adequately addressed the threat (e.g., HF communication and
aternatives)?

Does the architecture address system control network management (e.g., mechanisms to handle changes in
information flow control)?

Patterns of Execution Time. Patterns of execution time may include solutionsfor problems of:

Coordination among architectural components

Synchronization with respect to one or more time bases (clocks)

Granularity of time

Reaction to significant events and the processing needed to cope with such events
| dentification of which deadlines are “hard” vs. “soft”

Dedling with “hard” deadlines

Dealing with “soft” deadlines

| dentification of relative prioritiesfor processing

| dentification of bounded delays vs. unbounded delays

Development of adequate schedules for dispatching of tasks, processes, etc.

Patterns of Space. Patterns of space may involve solutionsfor problems of

Satisfying the decentralization requirements (e.g., redundant “hot standby”) and distribution requirements (e.g.,
defense system with geographically distributed weapon sites for “area defense”)

Tradeoffs among centralized control vs. decentralized control

If distributed processing isnot arequirement (as it often is!), then considerations of when to employ distributed
processing (as a design choice) and when not to

Identifying how the information of the system is to be modeled and managed (e.g., ERA modd, relationd,
object-based, object-oriented)

If more than one such information model is to be used in the system, then identifying how “impedance
mismatches’ among these models are to be resolved

If different information models are to be used over the lifetime of the system, then identifying how migration
from one model to another isto take place. (e.g., migrating from Ada 83 to Ada 95; migrating from relational
database management to object-oriented database management)

Characterizing the information content of the system, and partitioning the information content among the
components of the system

| dentifying which elements (data and/or processes) must be kept consistent (coordinated) across the system

| dentifying which elements must be replicated (for improved performance or reliability)

23

| dentifying which components are producers vs. consumers of data
| dentifying which components are reactive vs. pro-active

| dentifying which aspects of information flow are “pull” and which are “ push”

Patterns of Spacevs. Execution Time. These patterns may involve solutionsfor problems of:

3.6.2

3.7

The tradeoff between consistency of data (or coordination of processing) and the need to achieve high per-
formance. (For example, it may be necessary to tolerate some inconsistency in order to achieve adequate
performance [11].)

How information isto be routed among different processing elementsin the system. This may involvetradeoffs
among bandwidth, rea time performance, reliability, etc.

Quality of Patterns

. Isthere a patterns solution to each critical stakeholder need?

. Isthe expressed architectural style appropriateto the present system?

. Isthe expressed topology appropriate to the present system?

. Isarchitectural technique suitable for descriptions of the size and complexity of the system?

. Which views does pattern apply to?

Are pattern’s Context and Forces accountabl e to needs?

. Are choices of patterns made consistent with needs for architecture and other pattern choices.
. Check pattern’s force resolution rel ative to compl eteness.

. Are patterns expressed in aform appropriate to designers (e.g., design rules)?

Quality of Description

This section providesmeasures for the assessment of particular elements of the architectural description. Quality of de-
scriptionincludes: simplicity, descriptive consistency, and descriptive completeness which rel ate to the characteristics
of the resulting architectural description— not the system itself.

Key Entities. concept/term, view, component, connection, constraint, pattern

3.7.1 General

N~ o oA W DN R

. Does architecture identify architectural decisionswhich have been made (commitments)?

. Does architecture identify architectural decisionswhich have yet to be made? (open issues)

. Does architecture identify decisions which have been deferred to designers (obligations)?

. Istherationdefor architectura decisions provided? Were trade-offs, alternatives considered and documented?
. Iseach architecture-relevant addressed by the architecture description?

. Have consistency checks been performed and recorded for architectural description against other documents?

. Arethere redundant € ements?

24

3.7.2 Views

1

. What views are evident in the architecture description? (List.)

For each view:

1
2
3
4
5

. Doesthe view represent awell-defined purpose and an easily stated viewpoint?

. Doesthe view identify the major concernsit isintended to address?

. Doesthe view identify the major stakeholder classesit isintended to address?

. Doesthe view address all concerns of the stakeholder classes it isintended to address?

. Doesthe view elements of afew related e ement types?

3.7.3 Between Views

1

2
3

. Are components between views linked to show relevant relations (e.g., identity, part-whole or other implemen-
tation relations)?

. Do components exist in different views with the same names?

. Areidentically named componentsin a defined relationship with each other (redundant, coincidental, linked)?

3.7.4 Components

For each component:

1
2
3
4
5.
6
7
8
10.

11.

12.

13.

. Does the component have awell-defined purpose, and identified role within the present view?

. Does component include the expression of the decisions that it embodies?

. Does component have an associated rationale for decisions it embodies?

. Isthe component expressed at an appropriatelevel of granularity, relative to the concerns addressed by theview?
Isthe component expressed at an appropriateleve of granularity to support the patternsit playsarolein?

. Isthe component expressed at an appropriatelevel of granularity to meet stakeholders' stated needs?

. Are those components which must be kept coordinated (or synchronized) clearly identified?

. Are those components which must be replicated clearly identified, and a rationae provided for each such
replication?

. Are those components which can operate concurrently clearly identified?
Are those components that may be shared safely among other components clearly identified? (See section 1.6.)

Does each component clearly identify the features it uses from its own interface? (Note: A component must
not use features or functionality that are not included in its own interface. On the other hand, a component is
not obligated to use every “required” feature in itsinterface. However, if it does not than the interface may be
over-specified.)

Is component substitution possible based on interface conformance? (Note: If the interfaces are specified
properly, than the functionality of the architecture should not be affected by such a change. However, some
emergent properties (cf. 3.5) might be affected by a such achange.)

Are component side effects clearly identified? (See section 1.6 for aworking definition of “side effect”.)

25

3.7.5 Interfaces

1

. Does the component have one or more defined interfaces? (List.)

For each interface:

1
2
3
4
5

. Doesinterface include an expression of itsroles?

. Doestheinterface clearly specify the featuresit providesto other components and/or to the environment?

. Doestheinterface clearly specify the featuresit requires from other components and/or from the environment?
. Arethoseinterfacesthat are “safe’ (stateless) clearly identified? (See section 1.6.)

. Which other components (internal or environmenta) might be affected by a change to thisinterface (as changes
to either provides or requires)?

3.7.6 Connections

For each connection:

1
2
3
4
5
6
7
8
9

10.
11.
12.
13.
14.

Does the connection have a well-defined role within the present view?
Isthe protocol provided by the connection specified?
Isthe type of the connection specified?

Does the connection identify the interfaces (of components) which it uses or assumes?

. Does the connection include the expression of the decisionsthat it embodies?

. Does the connection have an associated rationale for decisions it embodies?

. Isthe connection expressed at an appropriatelevel of granularity, relative to the concerns addressed by theview?
. Isthe connection expressed at an appropriatelevel of granularity to support the patternsit playsarolein?

. Isthe connection expressed at an appropriate level of granularity to meet stakeholders' stated needs?

Are those connections which must be kept coordinated (or synchronized) clearly identified?

Arebehaviord (e.g., concurrency) and other constraints on the connection clearly identified?

I's connection substitution possible based on protocol conformance?

Areany connection side effects clearly identified?

Isit clear whether each connection between interfaces is correct?

3.7.7 Constraints

1

. Arecongtraints identified within the view?

For each constraint:

1
2
3

. Isthe congtraint specified in sufficient detail for the view?
. Isthe congtraint source identified?

. Arethearchitectura elements governed by the constraint identified?

26

3.8

Management Context

This factor addresses measures in the larger context in which architecture development is carried out. This includes
life cycle issues, and the procedures and methods used to develop and maintain architectural documentation and

desc

riptions. Whereas the previous factors introduced above are blatantly product-oriented, the present factor, has a

process aspect toit. Theintent of thisfactor isto assess whether the architecture under assessment has been devel oped
using some architectural method which iswell-defined and documented. The reason for thisis not for the sake of the
process itself, but to ascertain that the method provides a basis for improving the resulting product.

Key entities: Architectural methods and procedures

10.
11.

12.

13.
14.
15.
16.
17.

4

1
2
3
4
5.
6
7
8
9

. Isarchitecture being devel oped using a defined method for specifying architecture?

. Isthe architecture method documented?

. |s documentation stable?

. |s documentation mature?

Isthere awell-defined review procedure for architectural documentation and descriptions?
. Isthere awell-defined architecture maintenance procedure?

. Isthe architecture documentation under version management and control ?

. Isarchitecture documentation under Quality Assurance control?

. Isthe method consistent with the conceptual foundations?

Isthere a rel ationship between the architecture activity and other life cycle processes?

Are there well-defined rel ationshi ps between Architecture activity and other familiar processes such as system
planning, acquisition and engineering activities?

Are the rel ationshi ps between architectural document and other products (requirements analyses, system speci-
fications, system design document, software requirements specifications, trade studies) explicitly stated and are
they well-defined?

Isthere aclear separation of concerns between issues addressed by architecture and those of other phases?
Isthe architectural description consistent with the documented architectural method?

I's configuration management defined for the architecture documentation?

Isgranularity of configuration management adequate to control changes to views and e ements?

Isthe architecture description stable?

Relation of Factorsto Quality Areas

Future: Thissection will describe thecontributionof each of thequality factorsto each of thequality areas, summarized
in table. The particular contributions and weighting of factors to areas will be partially determined by client’s needs
statement. Note: For the proof of concept phase, the weightings of each group of measures in the factors above will
be the same (1).

27

Factors x Areas

Understandability

Feasibility

Openness

Evolvability

Maintainability

Client Satisfaction

Conceptual Foundations

1

Architecture Documentation

Architecture Description Techniques

Analyzability

Emergent Properties

Patterns and Idioms

Quality of Description

Management Context

PR R PR Rr -

RPlR R PR PR -

PR R PR PR -

PR R PR R R -

PR R PR PR -

PR R PR PR -

Table 2: Contributionsof Factorsto Areas

28

5 Architecture-Related Risks

Future: This section will delineate architecture-related risksto a program. Riskswill be organized around each of the
quality areas identified above. Symptoms of those risks will be derived based upon the quality factors.
Examples of architecture-related risks (organized by qudlity areas):

o Understandability

— Architecture documentation does not effectively communicate to client or other stakehol ders.
— Architecture documentation does not effectively communicate design basisto designersand implementors.

Feasibility
— Architecture documentation does not provide sufficient information to design and implement system.
— Architecture has not addressed key system modes of operation or mission needs.

Openness

— System cannot readily interoperate with external systems.
— Upgrades and element replacement is not possible.

Evolvability

— System is not flexible for new missions.
— System is not readily enhanced for new functionality.
— System cannot be upgraded to new technologies.

Maintainability

— Architectural principles not sufficiently articulated that they may be maintained during modifications to
the system.

Client Satisfaction

— Architecture development is not integrated with overall program concerns.
— System cannot meet required or desired capabilities.

References

[1] Air Force Systems Security Memorandum Command, Control, Communications, and Computer Systems Security
Glossary, January 1993.

[2] AlgirdasAvizienis. Dependable computing: From concepts to design diversity. Proceedings of the |EEE, 74(5),
May 1986.

[3] A.Burnsand M. Lister. A framework for building dependable systems. The Computer Journal, 34(2), 1991.

[4] Noam A. Chomsky. Powers and Prospects: Reflections on Human Nature and the Social Order. South End
Press, 1996.

[5] Jm Coplien. Software design patterns: Common questions and answers.
[6] Joint technica architecture. http://www.itsi.disa.mil/jta, 1996.
[7] Military Standard System Safety Program Requirements, January 1993.

29

[8] Walter J. Ellis, Richard F. Hilliard, Peter T. Poon, David Rayford, Thomas F. Saunders, Basil Sherlund, and
Ronald L. Wade. Toward a recommended practice for architectural description. In Proceedings of 2nd |[EEE
International Conference on Engineering of Complex Computer Systems, Montreal, Quebec, Canada, October
21-25, 1996, 1996.

[9] David E. Emery and Richard F. Hilliard. “Architecture,” methods and open issues. In D. Garlan, editor,
Proceedings of the First International Workshop on Architectures for Software Systems, Seattle, WA, 1995.
Published as CMU-CS-TR-95-151.

[10] DavidE. Emery, Richard F. Hilliard, and Timothy B. Rice. Experiences applyingapractica architectural method.
In Alfred Strohmeier, editor, Reliable Software Technol ogies — Ada-Europe ' 96, number 1088 in Lecture Notes
in Computer Science. Springer, 1996.

[11] The epsilon-seridizability (ESR) home page, 1996.
[12] Richard F. Hilliard. Dimensions of architectural thinking. MI1, 1995.
[13] DoD Dictionary of Military and Associated Terms, joint publication 1-02 edition, March 1994.

[14] Paul Kogut and Paul
Clements. Features of architecture representation languages. http://www.stars.reston.unisysgsg.com/arch/sei-
feature-model -draft.ps, 1995.

[15] Doug Lea. Patterns-discussion fag.
[16] Nancy G. Levenson. Software Safety and Computers. Addison-Wesley, 1995.

[17] David C. Luckham, James Vera, and Sigurd Meldal. Three concepts of system architecture. Technical Report
CSL-TR-95-674, Stanford University, July 1995.

[18] J McCdll, P. Richards, and G. Walters. Factorsin software quality. Technica report, 2?7?27, 1977.
[19] D. K. Pradhan. Fault Tolerant Computer System Design. Prentice Hall, 1996.

[20] Thomas F. Saunders, Barry Horowitz, and Matt L. Mleziva New process for acquiring software architecture.
Technical Report M 92B0000126, The MITRE Corporation, 1992.

[21] Software quality assessment methodology. http://avatar.mitre.org:8000/Top_Page.html.
[22] X/open architectural framework. http://www.xopen.org/public/arch/, 1995.

A Instructionsfor Comment Submission

Commentson the Architecture Quality Assessment (AQA) should be sent to Rich Hilliard (rh@mitre.org). Comments
should use the following format:

Itopic Title summarizing comment
Ireference AQA (version)-section.subsection(paragraph)
Ifrom Author Name
Ikeywor ds keywordsrelated to topic
Idiscussion
text of discussion

where versionistheversion ID of the present document, section isthe section number (1 .. 5), likewisefor subsection,
and paragraph is the paragraph number within the lowest level heading. The lkeywordslineisoptional.
Multiplecomments per e-mail message are acceptable. Please use adescriptiveSubject lineinyour e-mail message.

30

When correcting typographical errors or making minor wording suggestions, please put the correction directly as
the topic of the comment; use square brackets [] to indicate text to be omitted and curly braces toindicatetext to be
added, and provide enough context to make the nature of the suggestion self-evident or put additional informationin
the body of the comment, for example:

Itopic [c]Character
Itopicit[']smeaning is not defined

31

