
Work in progress: comments appreciated! Send to: richh@mit.edu

Chapter 10

LESSONS FROM THE UNITY OF
ARCHITECTING

Rich Hilliard

Abstract: This chapter discusses insights for the harmonization of Software Engineering
and Systems Engineering practices through the lens of one particular practice
area: Architecting. These insights derive from the unity of architecting—the
observation that whether one is architecting software, or systems, or
enterprises, there is an essence which these endeavors share. This essence is
elucidated through a case study of ISO/IEC/IEEE 42010:2011, the
international standard for Architecture Description (originally
IEEE 1471:2000) in the form of lessons learned from the development and use
of that Standard over the past 15 years. These lessons are then applied more
generally to Software and Systems Engineering. I focus on two areas: the role
of first-class concerns as a unifying dimension in the engineering of any
complex system; and on the need for knowledge mechanisms, of which
methods and practices are one form, to enable continuing progress to be made.
I demonstrate this by sketching how Essence and similar method frameworks
can be improved by incorporating first-class concerns and lessons learned.

1. INTRODUCTION

This chapter offers a case study and lessons learned from Architecting as
a basis to examine the commonalities, differences and hoped-for
harmonization of Software and System Engineering, via what I will call the
unity of architecting in these (and other) fields. This chapter is not about
how to architect.1 This chapter is about lessons learned from experiences in
Architecting and how those lessons may be useful to addressing the topic of
this book on Software Engineering in the Systems context. The chapter is
directed to practitioners interested in applying these lessons and to method

1 For that, see All about ISO/IEC/IEEE 42010, and references therein:
http://www.slideshare.net/dJdU/all-about-isoiecieee-42010-2014r5.

To appear in Software Engineering in the Systems Context, editors:
Ivar Jacobson and Harold “Bud” Lawson

 Work in progress: comments appreciated! Send to: richh@mit.edu

2 Chapter 10: Lessons from the Unity of Architecting

developers, educators and researchers in the hope of furthering the
understanding of foundations and their practical application to our field.

First, I look at the case of the first formal standard for Architecture
Description, IEEE Recommended Practice for Architectural Description of
Software-intensive Systems (IEEE Std 1471:2000). I examine the initial
scope and goals of this effort, the design choices made, experiences using
the Standard, and its subsequent adoption by ISO and joint revision as
Systems and software engineering — Architecture description
(ISO/IEC/IEEE 42010:2011).

Next, I distill some lessons learned from Architecting with relevance for
Software Engineering and System Engineering and for bridging gaps
between those disciplines. Several of these insights are codified as what I
call the unity of architecting (discussed below).

Finally, I apply these lessons to offer some practical suggestions for how
Software and System Engineering harmonization can proceed, looking in
particular at: first-class concerns, which was a central concept in IEEE 1471
and motivated many of the best practices codified in the Standard; and
knowledge mechanisms – of which methods and practices are one form – and
their role in mature engineering disciplines. I demonstrate this by sketching
how Essence can be improved through the introduction of first-class
concerns and guidelines for knowledge mechanisms.

2. ARCHITECTING: A CASE STUDY

IEEE Std 1471:2000, Recommended practice for the Architectural
Description of Software-intensive Systems, now superseded by
ISO/IEC/IEEE 42010:2011, Systems and software engineering —
Architecture description, specifies best practices for Architecture
Description. If Google hits, unit sales and literature citations are any
indication, the Standard has been very influential.

Work on IEEE 1471 began in 1995. As chartered by the IEEE Computer
Society, its initial scope was “software architecture” because the early and
mid 1990s were a very fertile time for work in that field (Kruchten, Obbink,
and Stafford, 2006; Shaw and Clements, 2006). However, as work
progressed, its authors realized that the best practices being codified were
not limited to Software Architecture, but equally applicable to Systems
Architecture and Enterprise Architecture settings. This scope was reflected
IEEE 1471:2000, Recommended Practice for Architectural Description of
Software-intensive Systems, the first formal standard addressing the
architecture of systems, where

PART I: Framing the Situation 3

“the term system encompasses individual applications, systems in the
traditional sense, subsystems, systems of systems, product lines, product
families, whole enterprises, and other aggregations of interest”
(IEEE Std 1471, 4.1)

The application of the Standard to Systems Engineering was first
discussed in (Maier, Emery, and Hilliard, 2004) and is now reflected in
standards such as ISO/IEC/IEEE 15288 (6.4.4) for system life cycle
processes.

ISO adopted the IEEE standard in 2007 as ISO/IEC 42010. Subsequently,
ISO and IEEE produced a joint revision, published as ISO/IEC/IEEE 42010,
System and software engineering — Architecture description, extending the
ideas of the first edition to architecture description languages and
architecture frameworks. The conceptual model and best practices of the
Standard have found widespread use in software, systems and enterprise
architecting.2 As a foundation for architectural thinking, the Standard has
been applied to Architecture Evaluation (ISO/IEC 42030, in progress),
Conformity Assessment,3 tools for architects (such as SysML, UPDM and
MEGAF (Hilliard et al., 2012)) and to Architecture Frameworks (such as
TOGAF).

3. LESSONS LEARNED

This section will distill and discuss some of the lessons learned from
ISO/IEC/IEEE 42010 (most of which were already present in the 2000
edition, IEEE 1471). The next section will sketch how these lessons can be
applied to harmonizing Systems and Software Engineering practices.

3.1 Pick your Battles

Some products, including systems, standards, methods and practices, try
to do too much. This often results in these products being unnecessarily large
and complex, built upon assumptions or prerequisites that the user must
accept to use the products. When the assumptions of the product do not
match those of the user, the product is less likely to be adopted, and less
likely to be used properly or effectively. Users will often avoid a “big bang”

2 ISO/IEC/IEEE 42010 Annotated Bibliography, http://www.iso-architecture.org/
42010/docs/bibliography-42010.pdf for many references to applications of the Standard.

3 Architecture Description Conformity Assessment, http://softsysarchitect.net/adca.

 Work in progress: comments appreciated! Send to: richh@mit.edu

4 Chapter 10: Lessons from the Unity of Architecting

change to what they are doing versus introduction of small improvements—
and rightly so.

An alternative approach is to stay focused: minimize assumptions; do one
thing really well; and anticipate that any product will be used in combination
with other products. Developers of systems, standards, methods, practices,
tools and other products can facilitate those combinations by Picking their
Battles to avoid over-specification.

Pick your Battles is so pervasive, it could be called a “meta-strategy” –
simply good engineering practice. It is closely related to Divide and Conquer
and Separation of Concerns (to be discussed extensively in the rest of this
chapter). It underlies other practices, such as: Establish System Boundaries
and Bound the Problem. It is useful to recognize that any system of interest
has a boundary—that boundary may change as more is learned, but at any
point it is useful to distinguish a definite “inside” and “outside” and
underlies another lesson (Architecture is contextual, see below).

There are many applications of Pick your Battles in
ISO/IEC/IEEE 42010. The rest of this section will highlight a few.

3.2 Architecture vs. architecture description

The Standard defines the architecture of a system as

“fundamental concepts or properties of a system in its environment
embodied in its elements, relationships, and in the principles of its design
and evolution” (ISO/IEC/IEEE 42010:2011, 3.2)

Beyond that definition, the Standard has very little to say about
architecture at all! The Standard does not address what a “good” architecture
is. Rather than focus on architectures, whose properties may vary with
application domain, with technologies, and in other ways, the Standard
focuses on best practices for documenting architectures. An architecture
description (AD) is an explicit work product expressing an architecture of a
system, usually via models, text and graphics. The best practices as codified
in the Standard focus on what makes a good AD (not on what makes a good
architecture). Making good ADs should improve the ability of architects and
system stakeholders to communicate and understand one another in
achieving good architectures and hopefully better systems.

3.3 System theory agnostic

As noted above, in the Standard an architecture is defined relative to a
system. So, what is a system? The Standard takes no position on what
constitutes a system—leaving this to users of the Standard. As systems will
vary with domain of application and other considerations, it is intended that

PART I: Framing the Situation 5

users of the Standard will “bring their own” system theory—defining system
and criteria for systems as they choose (see Lawson 2015). In the Standard,
system is used as a placeholder; if the user considers considers !system is
used as a placeholder; if the user considers S to be a system, the Standard
offers best practices for documenting an architecture for S. Following the
Standard, in this chapter I will use system to include software, systems and
enterprises without prejudice.

3.4 Life cycle, process and method agnostic

Just as the Standard is agnostic to what constitutes a system, it also does
not take a position on the life cycle, processes or methods that the architect
should use. This philosophy is somewhat different from much of current
practice—where there is a major emphasis on defining life cycles,
establishing processes for system and software construction and providing
detailed definitions of suitable methods. Instead, the Standard is intended to
be compatible with and usable in a variety of settings: including various life
cycles, various process models and with various architecting methods. This
allows users of the Standard to choose life cycle processes, methods and
practices appropriate to their particular situation. This degree of freedom
recognizes that there are many possible usages for an AD. The Standard is
therefore intended to be usage neutral over a range of AD uses, including: as
basis for design and development; to baseline an existing system; to compare
and conduct tradeoffs among alternate architectures; as a reference
architecture; as a product line architecture; as basis for acquisition or
procurement; as planning tool; as input to tools or other analyses, etc. (see
4.4 of the Standard for extensive list of usages).

3.5 Multiple views

The Pick your battles meta-strategy, in particular with reference to the
notion of Separation of Concerns, is also embodied in the best practices of
the Standard itself—an architecture description is specified in terms of
multiple architecture views, such that each view:

• is addressed to identified system stakeholders and
• answers identified concerns of those stakeholder.

In fact, this tenet of Architecture Description—stakeholder- and concern-

driven views—is a fundamental organizing principle, following from and
formalizing much of current practice in Architecting. This is discussed in
detail below—for its applicability to Software and Systems Engineering in
general (not only to Architecting).

 Work in progress: comments appreciated! Send to: richh@mit.edu

6 Chapter 10: Lessons from the Unity of Architecting

3.6 Architecture is contextual

As in the built world, architecting takes place in an environment—
because systems exist in environments. System engineering has traditionally
focused upon the operational environment. Software engineering has focused
on the users in the operational environment and the stakeholders in the
development environment. Architects often must consider the wider
environment (Lawson, 2010). In the Standard, the environment of a system
is:

“context determining the setting and circumstances of all influences upon
a system” which invariably “includes developmental, technological,
business, operational, organizational, political, economic, legal,
regulatory, ecological and social influences.” (ISO/IEC/IEEE 42010, 3.8)

A consequence of establishing a system boundary (discussed above) is
recognizing that some things are within the architect’s span of control while
some things are outside of that control. In addition to establishing a system
boundary, it is critical in successful architecting to recognize the particulars
of the environment and understand those influences upon the system.

One practical approach to understanding that environment is via
understanding and identification of the system’s stakeholders—anyone with
a stake in the system is by definition part of its environment; and further, to
identify and analyze the areas of concern of each of those stakeholders.

3.7 Interest-relativity

As noted immediately above, complex systems have many stakeholders
who are parties (individuals, groups and organizations) with interests in the
system. In the Standard, these interests are called concerns, following
Dijkstra’s introduction of the phrase “separation of concerns” into Software
Engineering in 1974. (More on this history in Moving Ahead, below.)
Concerns span both the “problem space” and “solution space” as well as the
“horizontal and vertical dimensions” of a system (Jacobson and Lawson
2015).

Understanding of stakeholders and their concerns is the basis of
successful architectures because the diversity of stakeholders and their
concerns creates the richness of the environment (as above) which in turn
determines the complexities which architects face and which must be
handled by any solution.

PART I: Framing the Situation 7

acceptability, accessibility, accountability, accuracy, adaptability,
administration, affordability, agility, assurance, auditability, authentication,
autonomy, availability, backup, behavior, benefit, business alignment,
business goals, business strategies, capacity, certification, communication,
compatibility, completeness, complexity, compliance to regulation,
conceptual integrity, concurrency, confidentiality, configurability,
configuration management, consistency, continuity of operation, control,
correctness, cost, credibility, customer experience, customizability, data
accessibility, data integrity, data privacy, degradation, dependability,
deployment, disaster recovery, disposability, distribution, documentation,
durability, ease of learning, ease of use, economy of mechanism,
effectiveness, efficiency, environmental protection, error handling,
evolvability, extensibility, failure management, fault tolerance, feasibility,
fidelity, flexibility, functionality, generality, implementability, information
assurance, integrity, inter-process communication, interchangeability,
interference, internationalization, interoperability, intuitiveness, known
limitations, learnability, legal, licensing, localizability, logistics,
maintainability, manageability, mobility, modifiability, modularity, monitoring,
network topology, openness, operability, operating costs, optimizability,
organization, performance, persistence, platform compatibility, portability,
predictability, price, privacy, provability, quality of service, recoverability,
regulatory compliance, reliability, repeatability, reporting, reproducibility,
resilience, resource constraints, resource management, resource utilization,
response time, responsiveness, reusability, robustness, safety, scalability,
schedule, security, serviceability, simplicity, stability, state change, structure,
subsystem integration, supportability, survivability, sustainability, system
features, system properties, system purpose, technological constraints,
testability, throughput, timeliness, traceability, trustworthiness,
understandability, usability, usage, user-friendliness, vendor lock-in,
versatility, workflow management ...
Figure 10.1 Common concerns for systems and software

3.8 Role of concerns

Haec autem ita fieri debent ut habeatur ratio firmitatis utilitatis
venustatis.

(Well building hath three conditions: firmness, commodity, and delight.)

Marcus Vitruvius Pollio

Architects must address a wide range of concerns for a successful system.

Even Vitruvius recognized three key concerns (in the quote above). Figure
10.1 lists a number of concerns common to software and systems as
examples, but is by no means exhaustive.

 Work in progress: comments appreciated! Send to: richh@mit.edu

8 Chapter 10: Lessons from the Unity of Architecting

A fundamental goal of the Standard, beginning with the 2000 edition,
IEEE 1471, was to codify and motivate the use of multiple views in
architecture descriptions which was already in practice (Perry and Wolf,
1992; Kruchten, 1995) and was inspired by earlier work in Requirements
Engineering (Ross 1977; Finkelstein and Sommerville, 1996). The
motivation for multiple views was simple: each architecture view answered
different, complementary questions and taken together expressed the whole
architecture.

Concerns in the Standard name the areas of interest held by the various
stakeholders of an architecture. The Architect engages with stakeholders,
elicits and collects their stated concerns, identifies other concerns from
experience and considers these areas of interest as a part of understanding:
what needs to be done; what should be documented and ultimately how to
address the issues that arise in architecting the system.

In ADs conforming to the Standard, concerns must be identified (i.e.,
recorded); and each concern is linked with the stakeholders holding that
concern. To create the views of the architecture, the Architect selects
viewpoints for use in the AD, such that each concern must be framed by at
least one viewpoint.

By creating models and organizing them into views within the AD, the
Architect addresses the concerns—otherwise, the work is not yet finished!
Each view in an AD models the architecture of interest in a different manner,
using a well-defined set of conventions which may include: selected
notations, models kinds, and associated methods—collectively termed the
viewpoint of the view. Each viewpoint establishes the conventions for a type
of view (Finkelstein et al., 1992; ISO/IEC 10746-2, 1996).

Different kinds of models4 are suited for different concerns. For example,
a UML class diagram is useful for concerns such as What are the types of
critical information in this enterprise? However, when the concern is
Transaction throughput, a class diagram is of little value. For concerns such
as System behavior, a static UML package diagram is useless. In these
examples, the relation of concerns to representations should be obvious,
however in many cases the relation is less so; making concerns and their
linkage to the views and their models in an AD part of the Standard’s best
practices.

4 Following definitions of Minsky and Ross, M is a model of S if M can be used to answer
questions about S.

PART I: Framing the Situation 9

3.9 Separating viewpoints from views

One design tenet of the Standard, starting with IEEE 1471:2000, was to
make explicit the separation of the viewpoint from the view itself; the
viewpoint capturing the conventions for constructing, interpreting and
analyzing a type of view; the view an expression of a system’s architecture
relative to an identified set of concerns and conforming to its governing
viewpoint. First-class viewpoints were first introduced in (Ross, 1977). For
some history and discussion, see also (Hilliard, 1999).

Making concerns explicit means we can reason about these matters
before any modeling takes place: referring to the examples above, a model
meeting the conventions of a class diagram will never allow the interested
parties to analyze throughput. A picture of packages and their static
dependencies will never allow us to analyze expected or actual system
behavior. So, establishing the concerns relevant to a viewpoint creates
minimum expectations on what it can and cannot be useful for—even before
any modeling begins. The linkage:

Concerns → Viewpoints → Views
establishes a minimal chain of expectations for the stakeholders of an AD
that it will 1) raise the relevant concerns; 2) demonstrate how it will account
for those concerns via the viewpoints, and lastly 3) address those concerns
via the views. Another way to think about this is in terms of the lifetime of a
Concern:

Identify → Frame → Address
This is discussed below. Concerns also provide stakeholders a basis for
traceability, a “semantic table of contents” into the Architecture Description:
if one is interested in χ, then look for a view adhering to VPif one is
interested in concern C, then look for a view adhering to viewpoint VP
which frames C.

Concerns enable the Architect to determine “the right tools for the job” in
terms of which types of representation are suitable (or not) for a given
system. This is a powerful idea that has application not only to Architecture
Description but across Software and Systems Engineering (as discussed
below).

3.10 Open and extensible

All problems in computer science can be solved by another level of
indirection.

David John Wheeler

 Work in progress: comments appreciated! Send to: richh@mit.edu

10 Chapter 10: Lessons from the Unity of Architecting

Early in the development of IEEE 1471 (1995–2000), a key design
question was: What views should the Standard require all architecture
descriptions to include?

There were already a variety of architecture views in use and many
debates on the importance of each. The IEEE 1471 solution was not to
prescribe a particular set of views, but instead (via “another level of
indirection”) to introduce the idea of a viewpoint: conventions on a type of
view (as above), and to prescribe the rules for specifying new viewpoints.
Each AD must document the viewpoints it uses. They may be off-the-shelf,
highly reusable, or brand-new and unique to this particular project.

This approach is contrary to what is often found in the world of
architecture frameworks. Choosing an architecture framework is often All or
Nothing. One chooses a framework and uses what it provides, recognizing
that no framework anticipates all possible concerns for a domain of interest.

Among the many published architecture frameworks, it is trivial to
identify gaps (usually apparent in their static meta models). The ontology of
frameworks has evolved as our understanding of enterprises, information
systems and software has evolved. The earliest frameworks knew nothing of
object-orientation; later frameworks invariably included objects. Early
frameworks did not include notions like service— today, no self-respecting
framework would ignore service constructs. There is no reason to believe
this evolution will not continue. An architecture framework is, at best, a
“starter set” of concerns, stakeholders, viewpoints and model kinds for
Architects within the domain of interest (Emery and Hilliard, 2009).

Rather than pretending to cover all possible concerns once-and-for-all
and the requisite viewpoints to frame them, the philosophy should be to give
architects the starter set and a means to extend the framework in a principled
manner. In the Standard, the available “units of extension” are the Viewpoint
and the Model Kind: each providing specific forms of representation, with
its own mini-meta model (What) to address one or more identified concerns
(Why), via associated methods and practices (How). Generalizing from this,
it is useful to consider any practice in terms of Why–What–How elements
(see Moving Ahead).

3.11 Ontology-based

An explicit ontology is helpful in the effective and practical
implementation of the lessons learned above. The identification of
stakeholders and concerns as part of an architecture description (AD), and as
a part of the specification of viewpoints and model kinds, encourages the
explicit linkage of problem elements and solution elements in the minds of
architects and a system’s stakeholders. As noted in the previous section,
making entities first-class facilitates extensibility. The Standard goes further

PART I: Framing the Situation 11

in this regard, to define an Architecture Description meta model which
(1) reflects the ontology of AD constructs and their relationships; and
(2) provides a meta-syntactic basis for extension. A core part of the ontology
of the Standard is shown in Error! Reference source not found..

In addition to being informative to users, an explicit meta model is useful
for imposing syntactic and semantic rules (cf. the Meta-Object Facility in
relation to UML). In the Standard, one of the requirements on conforming
architecture frameworks is to build upon the Standard:

An architecture framework shall establish its consistency with the
provisions of the conceptual model [presented in part in Error!
Reference source not found.]

Figure 10.2 A portion of the Architecture Description meta model

Many architecture frameworks (such as DODAF, NAF, TOGAF) provide
a meta model of their intended subject matter. The challenge in this approach
is to cover the full range of entities in their domain of interest. An alternate
approach, in the spirit of Pick your Battles, would be small, focused and

 Work in progress: comments appreciated! Send to: richh@mit.edu

12 Chapter 10: Lessons from the Unity of Architecting

composable meta models organized around viewpoints or concerns—
precisely opposite to the usual strategy of large architecture frameworks’
meta models (discussed above) which attempt to codify the elements of their
domains once-and-for-all, and offer no provisions for extension.

Following Jean Bézivin (Bézivin, 2005), the first-class constructs in the
Standard can be arranged into meta model layers as shown in figure 10.3.

Figure 10.3 Architecture Description elements arranged by meta model layer

4. THE BIGGEST LESSON: THE UNITY OF
ARCHITECTING

The message from the case study above, is the unity of architecting: from
the oldest times to today, from building and civil architecture, through
today’s fields of software, system and enterprise architecture. In developing
and using the Standard, reflecting on architecture from Vitruvius through
Fred Brooks (Brooks, 2010) and John Zachman, it was observed that there is
significant commonality to Software, System and Enterprise architecting. To

PART I: Framing the Situation 13

paraphrase Zachman, architecting is architecting is architecting (Zachman,
2007). This section outlines some of those commonalities.

Key ingredients of Architecting are:

Architecting faces multiple stakeholders with diverse concerns.
This has been discussed above.

Architecting spans problem and solution.
This, too, has been mentioned above. Architecting involves

understanding, often negotiating or even reformulating, the problem while
working on possible solutions.

Architecting is multi- (and cross-) disciplinary.
Frequently, this is a consequence of the two items above. The multi-

disciplinary nature of architecting was recognized very early:

“The ideal architect should be a man of letters, a skillful draftsman, a
mathematician, familiar with historical studies, a diligent student of
philosophy, acquainted with music, not ignorant of medicine, learned in
the responses of jurisconsults, familiar with astronomy and astronomical
calculations.”

Vitruvius, De Architectura

Architecting is decision-making.
The essence of Architecting (and more generally Software Engineering

and Systems Engineering) is making decisions. The slogan Decisions Are
Your Main Deliverable is appropriate.5

Architecting is not a phase or a stage, but a life cycle practice.
Unlike some life cycles that locate Architecture in-between Requirements

and Design, Architecting is an on-going effort because concerns arise
throughout the life cycle—each decision addresses some concerns, while
possibly introducing new ones.

Architecting involves getting to the fundamentals.
The architect attends to the essence of the system being architected. This

must be achieved in the context of the system’s environment including all of
its stakeholders and concerns.

As argued elsewhere (Hilliard, Rice, and Schwarm, 1996), variations do
appear; however, these variations are the result of the varying stakeholders

5 Eltjo R. Poort, http://www.infoq.com/articles/driving-agile-architecting-with-cost-and-risk

 Work in progress: comments appreciated! Send to: richh@mit.edu

14 Chapter 10: Lessons from the Unity of Architecting

and concerns across systems—not due to some intrinsic differences between
Software Architecture, System Architecture and Enterprise Architecture.
These varying stakeholders and concerns introduce varying vocabularies,
and therefore varying techniques and methods needed to reach a solution.

In each case, the basic process is similar (Hilliard, 2009a): Analyze–
Synthesize–Evaluate (see figure 10.4). Variation is not at this level, but
determined by the substantive differences of stakeholders, concerns and the
implications of those differences. The implications of the variation are that
to be successful: architects need to be cognizant of the different disciplines
and methods in different domains—hardly breaking news, but the basis for
making a more systematic approach to our methods and practices.

Figure 10.2 The activities of architecting (following Hofmeister et al., 2007)

Alas, this unity is not always acknowledged in recent conceptions of

architecture. For example, the attitude, often seen in Enterprise Architecture
(EA) blogs and discussion groups, is that EA is different from, apart from,
and can learn nothing from, older fields, which have architecture in their

PART I: Framing the Situation 15

names. The insights from the Standard are just the opposite: that EA is
continuous with more mature fields, such as Systems Architecture and
Software Architecture; that all of these fields still have things to learn from
“real” architecture (the architecture of built forms); and that all of these
fields can still learn from one another.

Recognizing these commonalities and putting in place knowledge
mechanisms for capturing and sharing this knowledge are topics in the next
section. To summarize:

1. Architecting is architecting is architecting.
2. Common problems can benefit from common solutions and from

other fields that have “been there” already.
3. Knowledge mechanisms can aid architects in sharing methods and

practices (Hilliard, 2009b).

5. MOVING AHEAD

This section applies the lessons learned above to the harmonization of
Systems and Software Engineering. First, I focus on the role of concerns, as
one potential unifying notion. While, their role has been recognized
informally for some time, some argue for giving them status as first-class
entities (Sutton and Rouvellou, 2004; Hilliard, 2013). The previous section
argued for the centrality of concerns in understanding and motivating the
architecture of a system. Elsewhere I have argued that concerns are a
missing dimension more generally in thinking about Software and Systems
Engineering methods.6 I argue that concerns permeate not only the
architecture, but all aspects of software and system development, and
therefore need to be mirrored in our methods and tools and thinking about
Systems and Software Engineering.

The second focus is on the nature of knowledge sharing mechanisms and
their role in improving methods and practices.

5.1 Toward a theory of concerns

“Concerns are what we care about in software.”

Sutton and Rouvellou, 2001

6 R. Hilliard, In search of the Higgs, or What’s wrong with SEMAT?
http://www.slideshare.net/dJdU/in-search-of-the-higgs-or-whats-wrong-with-semat

 Work in progress: comments appreciated! Send to: richh@mit.edu

16 Chapter 10: Lessons from the Unity of Architecting

Dijkstra (1974) coined the phrase “separation of concerns” in an often-
cited passage:

Let me try to explain to you, what to my taste is characteristic for all
intelligent thinking. It is, that one is willing to study in depth an aspect of
one’s subject matter in isolation for the sake of its own consistency, all
the time knowing that one is occupying oneself only with one of the
aspects. We know that a program must be correct and we can study it
from that viewpoint only; we also know that it should be efficient and we
can study its efficiency on another day, so to speak. In another mood we
may ask ourselves whether, and if so: why, the program is desirable. But
nothing is gained—on the contrary!—by tackling these various aspects
simultaneously. It is what I sometimes have called “the separation of
concerns”, which, even if not perfectly possible, is yet the only available
technique for effective ordering of one’s thoughts, that I know of. This is
what I mean by “focusing one’s attention upon some aspect”: it does not
mean ignoring the other aspects, it is just doing justice to the fact that
from this aspect’s point of view, the other is irrelevant. It is being one-
and multiple-track minded simultaneously.

Dijkstra’s observation has led to continued, frequent usage of the phrase,
“separation of concerns” in Software Engineering to the present. Sometimes
that usage has been superficial; in other cases, there have been attempts to
take concerns seriously. As a brief history, notice the progression toward
treatment of concerns directly. Separation of Concerns (SoC) has influenced:

• programming strategies: methods of modularization, information

hiding and abstraction and mechanisms supporting these in
programming languages;

• exploration of the extra-functional properties of software (quality,
cost, etc.) (Maier and Rechtin, 2000);

• multiple views and viewpoints in architecture, requirements and
design (architecture discussed above) (IEEE Std 1016; Sawyer,
Sommerville, and Viller, 2014);

• aspect-oriented programming and recently early aspects (Kiczales
et al., 1997); and

• “advanced separation of concerns” or concern-oriented approaches
(such as (Sutton and Rouvellou, 2004) and references therein).

Concerns reflect the reality that our systems are complex because the

interested parties, i.e., the system stakeholders, have diverse interests. Unlike
requirements which tend to be volatile, concerns persist. Software and
system engineers know that concerns are important, because pundits like to
make up cute reminders for some of the important ones (see Table 10.1).

PART I: Framing the Situation 17

While it is helpful to have reminders and checklists, these mnemonics do not
begin to scratch the surface on the full range of concerns that the software
engineer or system engineer might confront.

Instead of mnemonics, I argue it is time to treat concerns as first-class
elements of our systems, methods, practices and processes.

Concerns, when not made explicit as areas of interest, are often confused
with “non-functional requirements”,7 with “qualities” or “ilities” or with
system characteristics or properties. As such, identifying the actual concerns
is often ignored in contrast to is already “known” users and customers really
need. Agile approaches often eschew any explicit discussion of such matters,
believing that the “right” properties will emerge for the system by focusing
on user stories. As a discipline, we are lacking an adequate vocabulary and
ontology of these things (ilities, qualities, requirements, goals, motivations,
desires, etc.)—a topic beyond the scope of this chapter.
Table 10.1 Some mnemonics for popular concerns
CRAMPS Cost, Risk, Availability, Manageability, Performance, Scalability  
PESTLE Political, Economic, Social, Technological, Legal, and Ecological  
POLDAT Process, Organization, Location, Data, Application, Technology  
OBASHI Ownership, Business Process, Application, Systems, Software,

Hardware, Infrastructure

5.2 Motivation

In the Architecture Description case study above, I showed the role of
concerns in selecting viewpoints. Here I suggest their potential role in
relation to more general Systems and Software Engineering concepts.
Consider:

• Concerns give processes and tasks their context; e.g.: We perform

this task because it yields an understanding of system deployment.
• Concerns give work products their relevance; e.g.: This work

product explains how user privacy will be protected in data stores.
• Concerns determine the requisite skills; e.g.: To achieve real-time

performance, the project will need a rate-monotonic scheduling
specialist.

As such, concerns have the potential to bind together things in terms of

their relevance to the process, work to be done, methods or ways of working,
people, and work products produced. Systems and Software Engineering are

7 ”Non-functional requirements” is a terrible term for several reasons. See Lago, Avgeriou,
and Hilliard (2010) for discussion.

 Work in progress: comments appreciated! Send to: richh@mit.edu

18 Chapter 10: Lessons from the Unity of Architecting

concern-based—whether or not we acknowledge this. If we do acknowledge
it, then it is only reasonable to assert that concerns must be identified,
managed and modeled as part of Systems and Software Engineering.

5.3 Concerns in context

Concerns are of interest because they cross-cut other, familiar entities
used to discuss software and systems engineering methods. I choose Essence
to discuss here, for concreteness. However, concerns are a missing
dimension in all of the method frameworks, including Essence,8 SPEM, and
ISO 24744. Figure 10.5 shows how concerns relate to these entities, using
terminology from Essence. The figure, expressed as a UML class diagram, is
a hybrid—it fuses elements from the Architecture Description meta model
(cf. figure 10.2) depicted in green and the alphas from the Essence Kernel
(Jacobson et al., 2012) depicted in purple, to show the central role of
Concerns and their relations to other entities. System and Stakeholder are
common to both. There are also two departures from the original diagrams:

• Work Product is added, to subsume things such as Views and

Models (per the Standard).
• Way of Working should be understood to subsume things such as

Viewpoints and Model Kinds (per the Standard).

Concerns classify the other core elements, and are distinct from any of

those elements. Concerns should be considered another dimension to
thinking about methods, addressing questions such as, Why do we use this
practice?

8 Essence includes Area Of Concern, which is neither first-class (allowing only a fixed set
of values: Customer, Solution, and Endeavor), nor extensible, nor an alpha, and is too
coarse-grained to be used here.

PART I: Framing the Situation 19

Figure 10.5 Concerns cross-cut familiar entities

5.4 A Life cycle of Concerns

Concerns, as with most entities, have a life cycle. In Essence terms, a
progression of “a simple set of states that represent their progress and
health.” As noted above, the life cycle of concerns in the Standard is very
simple:

Identify – Frame – Address

The pair Frame – Address is key to insuring that the architecture
description is relevant to stakeholders with that concern. Before making it
possible to address a concern, it must be established that that concern is
framed: the architect must insure that notations are available that enable
expression of concern-relevant notions. This is appropriate to the scope of
the Standard and its use. One might think of that as one use case for
Concerns within systems, focused on Architecting. In the context of
figure 10.5, we generalize Viewpoint to Way Of Working to say that these
frame Concerns, and generalize View to Work Product to say that these
address Concerns.

In the larger context of Systems, we can imagine other use cases, within a
broader life cycle, such as:

Identify – Specify – Frame – Manage – Interrelate – Address

First, is to Identify, or make explicit, individual concerns relevant to a
system. In the Standard, concerns are documented as “atoms”: typically
names, or sometimes in the form of questions, that an architecture
description must address, but no further structure is specified or assumed by
the Standard. Within the larger context of Systems and Software
Engineering, concerns could be linked to others, and may have internal
structure. This is an area for future research.

 Work in progress: comments appreciated! Send to: richh@mit.edu

20 Chapter 10: Lessons from the Unity of Architecting

As concerns are better understood, practices for Specifying, analyzing
and classifying concerns may be possible. Sutton and Rouvellou (2004) and
others suggest the possibility of a much richer structure or concern space
and techniques for this. There may be an analogy here with the practice of
Dimensional Analysis as found in mature engineering and scientific
fields (Gibbings, 2011).

The Framing of concerns has been discussed in the case study above:
insuring that all concerns are covered by at least one Way of Working. This
is the basis for on-going Management of concerns throughout a project (or
across related projects). Some relations will be preexisting or native. Others
will evolve, and new ones will be added as a consequence of subsequent
decisions, new knowledge, requirements and other particulars.

5.5 Principles of Concerns

Ideally, a (future) theory of concerns should allow us to entertain
statements such as:

• Requirements, goals, visions and other intentions induce/manifest

concerns.
• Often there are concerns nowhere manifest in the “formal”

requirements.
• Concerns span the “problem space” and the “solution space”.
• If K is a concern for system S, we would expect there to be: work

pertaining to K, work products reflecting K, people skilled
in/knowledgeable about K as part of the project.

• When two tasks, t1 and t2 pertain to concern, then the tasks are
likely to (need to) coordinate or share work products.

• If two work products w1 and w2 both frame concern L, then there
should be some traceability or consistency relation(s) between w1
and w2.

To the extent our methods refer to processes, work to be done, and work
products, our methods should be sensitive to concerns. Without concerns,
our methods and practices are empty.

All of the above may seem quite elementary. We (should) take these
observations for granted in Systems and Software Engineering;
unfortunately, concerns are rarely handled explicitly. As with methods and
practices more generally, one may get away with this in simple cases, but
explicit treatment is warranted for complex, large and distributed projects. In
these cases, one might envision a “web” of work products, methods and
practices, people and skills highlighting their relevance with respect to the
identified concerns. This web of concerns then aids stakeholders, as a
semantic index, in navigating to items of interest and as a means of planning,

PART I: Framing the Situation 21

resourcing, managing, checking status, tracking progress and identifying
gaps.

Putting mechanisms in place to make this possible is the subject of the
next section.

6. KNOWLEDGE MECHANISMS = WAYS OF
WORKING

If concerns are to be useful to Systems and Software Engineering, then
they should be visible in our methods. The ideas above are equally
applicable to various communities, including within and between Systems
and Software Engineering. The opportunities for sharing would be increased
through choosing common approaches to documenting relevant, (re)usable
knowledge—Ways of Working in the terminology of Essence.

As suggested by the above case study, we should design our methods,
tools and techniques as we would design our systems—to be open and
extensible, and therefore composable. This is sensible given the unbounded
range of potential concerns that software, system engineers and architects
may face for a given system of interest. Our methods should be as agile as
possible: establishing the minimum, essential elements to be captured, to be
accessible, and relevant to the widest possible range of users and uses.
Recognizing this reality of diverse concerns, our goal should be small,
specific methods that can be “loosely coupled” with others to compose
practices and processes (cf. the Unix tool philosophy or the “little
languages” paradigm). These are more likely to be adopted and used than
large, monolithic, “high-ceremony” processes. Approaches such as Essence,
emphasizing composable primitives of methods are a step in the right
direction (Jacobson et al., 2013, p. xxxiii).

In Architecting, various mechanisms are used, listed here in increasing
order of complexity/size (Other disciplines, including Requirements
Definition, Design, Quality Assurance have their own mechanisms.):9

9 For templates for architecture viewpoints and architecture frameworks, embodying these
ideas, see http://www.iso-architecture.org/42010/templates/.

 Work in progress: comments appreciated! Send to: richh@mit.edu

22 Chapter 10: Lessons from the Unity of Architecting

• patterns and styles
• model kinds
• architecture viewpoints
• architecture description languages (Hilliard et al., 2012)
• architecture frameworks (Emery and Hilliard, 2009)

Based on the Architecting lessons learned in the previous section, I

suggest that any mechanisms, or ways of working, should include at least
three ingredients (Why–What–How) as part of their definition:

1. Why use this?
• What is this way of working good for?
• What concerns does it frame?
• Who are the stakeholders for results produced?

2. What does it provide?
• What results and outcomes does this produce?

3. How to use it?
• What methods and techniques are available to guide or direct

work?
• How is it linked to other mechanisms?
• What automated tools support this practice?

The Why–What–How pattern of “interlocking interrogatives” originated
with Ross and Schoman, (1977).

7. FINAL THOUGHTS

I have suggested that concerns pervade Software and Systems
Engineering. Concerns make explicit what experienced practitioners often
know tacitly. The case study of concerns in Architecting shows one “use
case.” I have argued that the lessons learned from that case study have wider
applicability in those fields, and offer one way of sharing and harmonizing
insights across those fields, with implications for how we define and
document our practices and ways of working. The approach to concerns
sketched here is still in its early stages, but can be elaborated in a number of
directions.

Acknowledgements

Thanks to Anatoly Levenchuk, Bud Lawson, David Emery, Don O’Neill
and Paris Avgeriou for valuable comments on earlier versions of this
chapter.

PART I: Framing the Situation 23

References

Bézivin, J. (2005). “On the unification power of models”. In: Software & Systems Modeling
4.2, pp. 171–188.

Brooks, F. P. (2010). The Design of Design: Essays from a Computer Scientist. New York:
Addison-Wesley.

Dijkstra, E. W. (1974). On the role of scientific thought. Reprinted in Selected writings on
computing: a personal perspective (1982).

Emery, D. and R. Hilliard (2009). “Every Architecture Description Needs a Framework:
Expressing Architecture Frameworks Using ISO/IEC 42010”. In: Proceedings of the 2009
Joint Working IEEE/IFIP Conference on Software Architecture and European Conference
on Software Architecture (WICSA/ECSA 2009). Ed. by R. Kazman et al. IEEE Computer
Society Press, pp. 31–40.

Finkelstein, A. and I Sommerville (1996). “The Viewpoints FAQ”. In: Software Engineering
Journal 11.1, pp. 2–4.

Finkelstein, A. et al. (1992). “Viewpoints: a framework for integrating multiple perspectives
in system development”. In: International Journal of Software Engineering and
Knowledge Engineering 2.1, pp. 31–57.

Gibbings, J. (2011). Dimensional Analysis. Springer-Verlag.
Hilliard, R. (1999). “Views and viewpoints in software systems architecture”. In: First

Working IFIP Conference on Software Architecture. Position paper. San Antonio.
— (2009a).“Architecture description in-the-large”. In: Exploring Enterprise, System of

Systems, System, and Software Architecture workshop at WICSA/ECSA 2009.
— (2009b). “Knowledge mechanisms in ISO/IEC 42010 (keynote)”. In: 4th International

Workshop on SHaring and Reusing Architectural Knowledge, Vancouver, Canada.
— (2013). Surveying the Twin Peaks. 2nd International Workshop on the Twin Peaks of

Requirements and Architecture, during ICSE, 21 May 2013, San Francisco.
Hilliard, R., T. B. Rice, and S. C. Schwarm (1996). “The Architectural Metaphor as a

Foundation for Systems Engineering”. In: Proceedings of Sixth Annual International
Symposium of the International Council on Systems Engineering.

Hilliard, R. et al. (2012). “On the Composition and Reuse of Viewpoints across Architecture
Frameworks”. In: Proceedings of the Joint 10th Working IEEE/IFIP Conference on
Software Architecture & 6th European Conference on Software Architecture
(WICSA/ECSA). Helsinki, Finland: IEEE Computer Society.

Hofmeister, C. et al. (2007). “A general model of software architecture design derived from
five industrial approaches”. In: The Journal of Systems and Software 80.1, pp. 106–126.

IEEE Std 1016, IEEE Standard for Information Technology — Systems Design — Software
Design Descriptions (1998).

 IEEE Std 1471, IEEE Recommended Practice for Architectural Description of Software-
Intensive Systems (2000).

ISO/IEC 10746-2, Information technology – Open Distributed Processing – Reference model:
Foundations (1996).

ISO/IEC/IEEE 42010, Systems and software engineering — Architecture description (2011).
Jacobson, I. et al. (2012). “The Essence of Software Engineering: The SEMAT Kernel”. In:

Communications of the ACM 55.12. ACM Queue Magazine, Volume 10 Issue 19, October
24, 2012, pp. 42–49.

 — (2013). The Essence of Software Engineering. Addison-Wesley.
Jacobson, I. and Lawson, H. B. (2015). Software and Systems, appearing in this book.

 Work in progress: comments appreciated! Send to: richh@mit.edu

24 Chapter 10: Lessons from the Unity of Architecting

Kiczales, G. et al. (1997). “Aspect-Oriented Programming”. In: Proceedings European

Conference on Object-Oriented Programming, Springer-Verlag 1241, pp. 220–242.
Kruchten, P. B., H. Obbink, and J. Stafford (2006). “The Past, Present, and Future for

Software Architecture”. In: IEEE Software 23.2, pp. 22–30.
Kruchten, P. B. (1995). “The “4+1” View Model of architecture”. In: IEEE Software 12.6, pp.

42–50.
Lago, P., P. Avgeriou, and R. Hilliard (2010). “Guest editors’ introduction, Software

Architecture: Framing Stakeholders’ Concerns”. In: IEEE Software 27.6
(November/December), pp. 20–24.

Lawson, H. B. (2010). A Journey Through the Systems Landscape. Volume 1. Systems Series,
College Publications, Kings College, London.

Lawson, H. B. (2015). “Attaining a system perspective”, appearing in this book.
Maier, M. W., D. Emery, and R. Hilliard (2004). “ANSI/IEEE 1471 and systems

engineering”. In: Systems Engineering 7.3, pp. 257–270.
Maier, M. W. and E. Rechtin (2000). The art of systems architecting. 2nd. CRC Press.
Perry, D. E. and A. L. Wolf (1992). “Foundations for the study of Software Architecture”. In:

ACM SIGSOFT Software Engineering Notes 17.4, pp. 40–52.
Ross, D. T. (1977). “Structured Analysis (SA): a language for communicating ideas”. In:

IEEE Transactions on Software Engineering SE-3.1, pp. 16–34.
Ross, D. T. and K. E. Schoman Jr. (1977). “Structured Analysis for requirements definition”.

In: IEEE Transactions on Software Engineering SE-3.1, pp. 6–15.
Sawyer, P., I. Sommerville, and S. Viller (2014). PREview: Tackling the Real Concerns of

Requirements Engineering. Technical report CSEG/5/1996. Lancaster University
Computing Department.

Shaw, M. and P. Clements (2006). “The Golden Age of Software Architecture”. In: IEEE
Software (March/April), pp. 31–39.

Sutton, S. M. and I. Rouvellou (2001). “Concern Space Modeling in COSMOS”. In:
Proceedings OOPSLA 2001.

— (2004). “Concern Modeling for Aspect-Oriented Software Development”. In: Aspect-
Oriented Software Development. Ed. by R. E. Filman et al. Addison-Wesley, pp. 479–505.

Zachman, J. A. (2007). Architecture is Architecture is Architecture.
http://zachmaninternational. com

