
Surveying the
Twin Peaks

Rich Hilliard

http://softsysarchitect.net
richh@mit.edu

Second International Workshop on the Twin Peaks of Requirements and Architecture at ICSE 2013

http://softsysarchitect.net
http://softsysarchitect.net
mailto:richh@mit.edu
mailto:richh@mit.edu

Surveying is essential “in the planning and
execution of nearly every form of
construction”*

* Wikipedia

I prefer surveying for a week to spending a week
in fashionable society even of the best class.
 — Ellen Henrietta Swallow Richards

Preliminaries

• Invited talks are intended as provocation

• These are thoughts-in-progress*

• The usual talk is “functionally decomposed”

∗ e.g., background ➞ problem ➞ solution

* See also my: In search of the Higgs, or What’s wrong with SEMAT?

My Prejudices

• Skeptical of “process”

• “NFRs” are dysfunctional

• Architecture is architecture

• Requirements, Architecture, ... are interest-
relative

Process skeptic

• Method follows concept

• Tools follow from method

• Process doesn’t follow

NFRs are dysfunctional

• “NFR” is a non-category*

• Usually treated as after-thought

* Framing Stakeholders’ Concerns, Guest editors’ introduction, IEEE Software. Nov-Dec 2010

Architecture is Architecture*

• Enterprise = System = Software

* Architecture Description in-the-large (WICSA 2009)

Interest-relativity

• Multiple stakeholders

• Diverse interests

• I’m instantly skeptical of approaches that do
not take diverse stakeholders and varying
interests into consideration

(My prejudices will come back to haunt us for the rest of the talk.)

Twin Peaks, San Francisco. elevation 922′ (281 m)

Requirements Architecture

Why do they intertwine?

Twin Peaks, San Francisco. elevation 922′ (281 m)

Now Later

Problem Solution

Before Now

Why do they intertwine?

etc etc

Why do they intertwine?

• “Concerns are what we care about in
software.”*

• Dijkstra’s phrase, “separation of concerns”

* S.M. Sutton Jr. and I. Rouvellou, Concern Space Modeling in COSMOS, OOPSLA 2001

“separation of concerns”*
Let me try to explain to you, what to my taste is characteristic for all intelligent
thinking. It is, that one is willing to study in depth an aspect of one’s subject matter in
isolation for the sake of its own consistency, all the time knowing that one is
occupying oneself only with one of the aspects. We know that a program must be
correct and we can study it from that viewpoint only; we also know that it should be
efficient and we can study its efficiency on another day, so to speak. In another mood
we may ask ourselves whether, and if so: why, the program is desirable. But nothing is
gained—on the contrary!—by tackling these various aspects simultaneously. It is what
I sometimes have called “the separation of concerns”, which, even if not
perfectly possible, is yet the only available technique for effective ordering of one’s
thoughts, that I know of. This is what I mean by “focussing one’s attention upon some
aspect”: it does not mean ignoring the other aspects, it is just doing justice to the fact
that from this aspect’s point of view, the other is irrelevant. It is being one- and
multiple-track minded simultaneously.

* E.W. Dijkstra, On the role of scientific thought, 1974

A brief history of concerns

1974

1980s

Early Days Era of (almost)
1st-class concerns

1992

1995

Rise of
“process”*

Dijkstra
“separation of concerns”

algorithm + data = program

Software Qualities
and Specialties

ViewPoints
(Nusibeh, Finkelstein et al.)

architecture views:
structure and behavior,
4+1, etc.

IEEE 1471:2000

1996

1999

Aspect-oriented
programming

Multi-Dimensional
Separation of Concerns

Ross et al., Software engineering:
process, principles, and goals

* the Lost Decade?

Concerns in Architecture
Description (AD)

IEEE 1471 asked the question,
Where do views come from?

and suggested this answer,
Views address the concerns of the stakeholders

* IEEE 1471:2000, Recommended Practice for Architectural Description of Software-Intensive Systems

concern, defined*

• concern: interest in a system relevant to one or
more of its stakeholders
A concern pertains to any influence on a system in
its environment; including developmental,
technological, business, operational, organizational,
political, economic, legal, regulatory, ecological and
social influences

* ISO/IEC/IEEE 42010:2011, System and software engineering — Architecture description

Concerns in AD

* ISO/IEC/IEEE 42010:2011, System and software engineering — Architecture description

Role of Concerns

• name subjects, (i.e., “areas of interest”)

• stakeholders and concerns reify “the environment”

• establish ‘minimum’ requirements on models
(“representation schemes”)

• select viewpoints, and then checked in views

• use in decision recording

Examples

functionality, feasibility, usage, system purposes,
system features, system properties, known
limitations, structure, behavior, performance,
resource utilization, reliability, security, information
assurance, complexity, evolvability, openness,
concurrency, autonomy, cost, schedule, quality of
service, flexibility, agility, modifiability, modularity,
control, inter-process communication, deadlock,
state change, subsystem integration, data
accessibility, privacy, compliance to regulation,
assurance, business goals and strategies,
customer experience, maintainability, affordability
and disposability

What are Concerns
(any) good for?

• Original IEEE 1471 case:
Is view V relevant to stakeholder S?

• Traceability:
Should these elements be related?

• Trade-offs:
Does decision A affect decision B?

Concerns help to make the implicit (into the) explicit

Summiting the Twin Peaks

• Can we do better?

• Concerns should be modeled and managed
as first-class entities

• Our current process models do not
support this

Misunderstanding Concerns

• “quality concerns”

• “risks”

• “functions”

• “pervasive cross-cutting concerns”

Empty process models

Empty process models

• What links a Requirement on this System with a Work Item?
with a Team?

• Does the Team have the right skills to successfully deliver this
Work Item?

• Is this Work Item affected by a change to this Requirement?

• What risks might befall this System? Are they being mitigated,
managed and solved?

Concerns bind

• Concerns underwrite the reasons for work (processes and tasks):

∗ e.g., We perform this work item because it yields an understanding of
system deployment

• Concerns give work products their meanings:

∗ e.g., This work product explains how reliability is managed during system
development

• Concerns are the things we are interested in; they bind together
processes, artifacts, people, in terms of their relevance

Perhaps “semantic traceability” is a better phrase?

Concerning Concerns

• Atomic?

• Closed set?

• “Relatable”?

Precursors

• Goal-oriented requirements

• Patterns and tactics

• Break down problem | solution “peaks”
into manageable-sized piece

• Suggest ways of refining, relating atoms

Do Concerns help?

• What software architectures (or architectural styles) are
stable in the presence of changing requirements, and how
do we select them?

• What classes of requirements are more stable than
others, and how do we identify them?

• What kinds of changes are systems likely to experience
in their lifetime, and how do we manage requirements
and architectures (and their development processes) in
order to minimize the impact of these changes?

* From the original paper.

