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Abstract

An important result, obtained by Holmström (1979), is that the optimal

incentive scheme in a principal-agent problem should depend on a signal if and

only if that signal independently a¤ects the likelihood ratio. This has striking

implications for the use of signals such as the performance of other agents, or

other �rms. The result was obtained in a setting where the �rst-order approach

is valid. It has been known since Mirrlees (1975), that the �rst-order approach

is only valid under strong assumptions, such as the Monotonic Likelihood Ratio

Property combined with the Convexity of the Distribution Function Condition.

These do not hold for most common families of distributions. In this paper, I

prove Holmström�s theorem in a general principal-agent setting due to Gross-

man and Hart (1983), using an approach developed by Holden (2005).

Keywords: Lattice, likelihood ratio, principal-agent problem, su¢ cient sta-

tistic

JEL Classi�cation Codes: L13, L22.

�I am grateful to Philippe Aghion, Robert Akerlof, Oliver Hart and Bengt Holmström for valu-
able discussions; and to Shiyang Cao for excellent research assistance.



1 Introduction

Holmström (1979) showed that the optimal incentive scheme that a principal o¤ers

an agent should depend on a signal if and only if the signal independently a¤ects the

likelihood ratio. This is one of the most fundamental results of agency theory. It

is essentially the agency theory equivalent of the famous Rao-Blackwell theorem of

statistical inference. A deep implication of the theorem is that the performance of

one agent can be used to provide incentives for other agents when the performance

of agents are correlated. This is the key insight behind the literatures on yardstick

competition and tournaments (Lazear and Rosen, 1981; Green and Stokey, 1983;

Nalebu¤ and Stiglitz, 1983, among others). It also implies that, in an optimal

contract, agents are not rewarded for luck. This has important implications for

testing whether CEO contracts are actually optimal, or are the product of capture

of the principal (see, for example, Mullainathan and Shoar, 2000).

These conclusions are indicative of the fact that the princpal-agent problem,

whilst not actually a statistical inference problem, behaves like one (Hart and Holm-

ström (1987)). Although the principal does not observe the agent�s action - only

a noisy signal or set of signals of it - she knows the action in equilibrium. The

incentive scheme o¤ered by the principal, however, takes into account this inference

problem in the consideration of out-of-equilibrium actions by the agent.

Holmström�s theorem was proved using the �rst-order approach to the principal-

agent problem (i.e. replacing the agent�s incentive compatibility constraint with

the �rst-order condition of her problem). It was �rst noted by Mirrlees (1975),

that the �rst-order approach is only valid under strong assumptions. He showed

that if the Monotonic Likelihood Ratio Property (�MLRP�) and the Convexity of

the Distribution Function Condition (�CDFC�) hold then the �rst-order approach

is valid because the agent�s incentive compatibility constraint and her �rst-order

condition are equivalent. Many authors have noted how restrictive this pair of

assumptions are. As Jewitt (1988) points out, if shocks are additive to output then

any pdf which satis�es both MLRP and the CDFC must have everywhere increasing

density! Other assumptions such as the Spanning Condition (�SC�) (Grossman

and Hart, 1983), the Linearity of the Distribution Function Condition (�LDFC�)

Hart and Holmström (1987), and Jewitt�s (1988) restrictions on the agent�s utility

function are all rather strong.
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In light of the importance of Holmström�s result, and the special setting in which

it was obtained, it is seems important to understand whether it is a robust �nding

which is true in general. This paper tackles this question, and answers it in the

a¢ rmative.

To do so, I use an approach developed by Holden (2005), which is based on

an important insight of Grossman and Hart (1983). They proposed a two-step

procedure, in which the principal �rst determines the lowest cost way to implement

any action, and then chooses the action which maximizes the di¤erence between the

expected bene�ts and the costs of implementation. This approach does not entail

the strong assumptions that the �rst-order approach does.

The remainder of the paper is organized as follows. Section 2 provides the

basis for the model by outlining the �rst step of the Grossman-Hart approach to

the principal-agent problem. Section 3 contains the result, and Section 4 contains

some concluding remarks.

2 The Grossman-Hart Approach

2.1 Statement of the Problem

This section is based heavily on Holden (2005). There are two players, a risk-

neutral principal and a risk-averse agent. The agent takes an action, a; which is

unobservable to the principal. Suppose that there are a �nite number of possible

pro�t levels for the �rm. Denote these q1; :::; qn with q1 < q2 < ::: < qn: The set

of actions available to the agent is A; which we will take for the moment to be R
in order to simplify the notation: In section 4 I discuss the fact that this can be

relaxed so that A is a compact subset of Rn: De�ne the ordinary probability simplex
S = fy 2 Rnjy � 0;

Pn
i=1 yi = 1g and assume that there exists a twice continuously

di¤erentiable function � : R � A ! S (relaxation of the di¤erentiability restriction

is also discussed in Section 4): Let � 2 R be a signal about the agent�s action

which the principal observes in addition to output level q 2 R: The probabilities of
outcomes q1; :::; qn are therefore �1(a; �); :::; �n(a; �): The principal is able to make

a payment to the agent I which can be conditioned on the pair (q; �) :
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Let the agent�s von Neumann-Morgenstern utility function be given by the fol-

lowing:

U(a; I) = G(a) +K(a)V (I)

Assumption A1. V is a continuous, strictly increasing, real-valued, concave func-

tion on a subset of the real line I = (I;1). Let limI!I V (I) = �1 and assume

that G and K are continuous, real-valued functions and that K(a) is strictly positive.

Let the agent�s reservation utility be U (i.e. the expected utility attainable if

she rejects the contract o¤ered by the principal), and let

U = V (I) = fvjv = V (I) for some I 2 Ig :

Grossman and Hart (1983) point out that the following assumption is important in

ensuring that an optimal second best action and incentive scheme exists.

Assumption A2.
�
U �G (a)

�
=K(a) 2 U ;8a 2 A:

A third assumption ensures that �i(a) is bounded away from zero and hence

rules out the scheme proposed by Mirrlees (1975) through which the principal can

approximate the �rst-best by imposing ever larger penalties for actions which occur

with ever smaller probabilities if the desired action is not taken.

Assumption A3. �i(a) > 0; 8a 2 A and i = 1; :::; n:

I now outline the two steps involved in solving the problem, and show how to

determine whether the optimal action depends on the signal �:

2.2 Solution: Step One

The problem which the principal faces is to choose an action and a payment schedule

to maximize expected output net of payments, subject to that action being optimal

for the agent and subject to the agent receiving her reservation utility in expectation.
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Formally this is as follows:

max
a;(I1;:::;In)

(
nX
i=1

(�i(a; �) (qi � Ii))
)

(1)

subject to

a� 2 argmax
a

(
nX
i=1

�i(a; �)U(a; Ii)

)
nX
i=1

�i(a
�; �)U(a�; Ii) � U

Following Grossman and Hart (1983), I proceed in two stages. First I assume

that the principal has an action a� 2 A which she wishes to implement, and consider
what is the lowest cost way to implement this. I then consider, given this, what is

the optimal a� which she wishes to implement. To that end write the problem as:

min
I1;:::;In

(
nX
i=1

�i(a
�; �)Ii

)
(2)

subject to

a� 2 argmax
a

(
nX
i=1

�i(a; �)U(a; Ii)

)
nX
i=1

�i(a
�; �)U(a�; Ii) � U

Ii 2 I;8i

Now de�ne �1 = V (I1); :::; �n = V (In) and h � V �1: These will be used as the
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control variables. The problem can now be stated as:

min
�1;:::;�n

(
nX
i=1

�i(a
�; �)h(�i)

)
(3)

subject to

G(a�) +K(a�)

 
nX
i=1

�i(a
�; �)�i

!
� G(a) +K(a)

 
nX
i=1

�i(a; �)�i

!
;8a 2 A

G(a�) +K(a�)

 
nX
i=1

�i(a
�; �)�i

!
� U

vi 2 U ;8i

The constraints in (3) are linear in the �js and since V is concave h is convex.

Consequently the problem in (3) is simply to minimize a convex function subject to

a set of linear constraints. Grossman and Hart (1983) show that existence follows

from Weierstrass�s theorem.

De�nition 1. A vector (�1; :::; �n) which satis�es the constraints in (3) is said to

Implement action a�:

The following de�nition states the cost of implementing a given action.

De�nition 2. Let:

C(a�; �) = inf

(
nX
i=1

�i(a
�; �)h(�i)j� = (�1; :::; �n) implements a�

)

which implements a� if the constraint set in (3) is non-empty. If the constraint set

is empty then let C(a�) =1:

2.3 Solution: Step Two

The second step is to choose the action which maximizes the di¤erence between the

expected bene�ts, and cost of implementation. The principal solves:

max
a2A

�
nP
i=1
�i(a; �)qi � C(a; �)

�
: (4)
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2.4 Comparative Statics

Denote the (possibly set valued) solution to the problem in (4) as a��: We will be

interested in conditions under which this set is increasing in the Strong Set Order,

which is de�ned below.

De�nition 3. A function f : R2 ! R has �Increasing Di¤erences�if for all x00 > x;
f(x00; �)� f(x0; �) is nondecreasing in �:

De�nition 4. Let X;Y � Rn: Then X is higher than Y in the Strong Set Order

(X �S Y ) i¤ for any x 2 X and y 2 Y; maxfx;yg 2 X and minfx;yg 2 Y:

Holden (2005) shows that, provided there are interior maximizers for all values

of �; a�� is increasing in the strong set order (�SSO�) in � if and only if:

nP
i=1
qi
@2�i(a; �)

@a@�
� @

2C(a; �)

@a@�
> 0 (5)

and decreasing in the SSO if and only if:

nP
i=1
qi
@2�i(a; �)

@a@�
� @

2C(a; �)

@a@�
< 0: (6)

To see this denote the solution to problem (4), above, as a��: Then from the

Monotonicity Theorem of Milgrom and Shannon (1994), and the results of Edlin and

Shannon (1998), it follows that a necessary and su¢ cient condition for a�� to be

strictly increasing in the SSO as a function of � is, provided that C is di¤erentiable

and there exist interior maximizers in A for all �; that:

nP
i=1
�i(a; �)qi � C(a; �)

has strictly increasing di¤erences in (a; �): This is precisely:

nP
i=1
qi
@2�i(a; �)

@a@�
� @

2C(a; �)

@a@�
> 0:

(6) follows by identical arguments for strictly decreasing di¤erences.
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3 The Result

The main result of this paper is that the optimal action depends on the signal �

if and only if � provides additional information about the agent�s action than that

which is contained in q: That is, if q is not a su¢ cient statistic for (q; �) with respect

to a:

De�nition 5 (DeGroot, 1970, 2004). Let the posterior distribution of A be � (�jx)
and let x1 = (q1; �1) and x2 = (q2; �2): We say that q is a Su¢ cient Statistic for

the family of pdfs ff (q; �ja) ; a 2 Ag if � (q; �jx1) = � (q; �jx2) for any prior pdf �
and two pairs x1 2 R2; x2 2 R2 such that q1 = q2:

That is, the posterior distribution of the agent�s action is only a¤ected by �

through q: Since the posterior distribution is assumed to be computed according

to Bayes Rule, this de�nition places no restriction on events which occur on a set

of measure zero. I now show that this is equivalent to a restriction on the cross

partial of �i(a; �):

Lemma 1. q is a Su¢ cient Statistic for (q; �) with respect to a if and only if:

@2�i(a; �)

@a@�
= 0;8i :

Proof. q is a su¢ cient statistic for (q; �) with respect to a if and only

f(q; �ja)
g(qja) is independent of a for any (q; �) 2 R2:

(see Casella and Berger, 2001). Now note that g(qja) =
R
R g(qja; u)z(u)du =R

R �i(a; u)z(u)du: Since f(q; �ja) = h(qj�; a)z(�) we have:

f(q; �ja)
g(qja) =

�i(a; �)z(�)

g(qja)

=
�i(a; �)z(�)R

R �i(a; u)z(u)du
:

Therefore if q is a su¢ cient statistic for (q; �) with respect to a then:

z(�)

R
R �i(a; u)z(u)du

@�i(a;�)
@a �

R
R �i(a; u)

@�i(a;u)
@a z(u)du�R

R �i(a; u)z(u)du
�2 = 0:
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This requires:Z
R
�i(a; u)z(u)du

@�i(a; �)

@a
� �i(a; u)

Z
R

@�i(a; u)

@a
z(u)du = 0:

Di¤erentiating the above w.r.t. � yields:Z
R
�i(a; u)z(u)du

@2�i(a; �)

@a@�
� @�i(a; u)

@�

Z
R

@�i(a; u)

@a
z(u)du = 0:

Note, however, that since
R
R �i(a; u)z(u)du = 1 we have

R
R
@�i(a;u)
@a z(u)du = 0:

Subsituting these two expression into the above yields:

@2�i(a; �)

@a@�
= 0:

This completes the proof.

Lemma 2. If q is a Su¢ cient Statistic for (q; �) with respect to a it follows that:

@2C(a; �)

@a@�
= 0:

Proof. Taking the cross partial of C(a; �), from De�nition 2, w.r.t. a; � and appying

the Envelope Theorem yields:

nX
i=1

@2�i(a; �)

@a@�
I�i

By Lemma 1 we then have @2C(a; �)= (@a@�) = 0:

De�nition 6. If q is a su¢ cient statistic for (q; �) with respect to a then we say
that the signal is Uninformative, and Informative otherwise.

Holmström�s result can then be stated as follows.

Theorem 1 (Holmström, 1979). Suppose that the �rst-order approach is valid,
A � R and U = u(I)� c(a): Then the optimal action depends on a signal, �; if and
only if the signal is informative.

Theorem 2. Assume A1-A3 and that �i(a; �) is twice continuously di¤erentiable
in (a; �) : Then, except on a set of measure zero, the optimal action, a��; depends

on � if and only if q is not a su¢ cient statistic for a with respect to (q; �):
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Proof. The proof is by contraposition. Hence we will show that a�� does not depend

on � , q is a su¢ cient statistic for a with respect to (q; �):

) Direction: From (5) and (6) it follows that a�� does not depend on � implies the

following:
nP
i=1
qi
@2�i(a; �)

@a@�
� @

2C(a; �)

@a@�
= 0:

This can only be satis�ed on a set of positive measure if:

@2�i(a; �)

@a@�
= 0 ^ @

2C(a; �)

@a@�
:

By Lemmas 1 and 2 this implies that q is a su¢ cient statistic for a with respect to

(q; �):

(= Direction: by Lemma 1 we have:

@2�i(a; �)

@a@�
= 0;8i

and by Lemma 2 we have:
@2C(a; �)

@a@�
= 0:

Together these imply that a�� does not depend on � since:

nP
i=1
qi
@2�i(a; �)

@a@�
� @

2C(a; �)

@a@�
= 0:

4 Concluding Remarks

I have assumed throughout that A � R: This can be relaxed so that A is a compact
set which is dense in Rn: Holden (2005) shows that for a�� to be increasing in �
requires that:

nP
i=1
�i(a; �)qi � C(a; �)

have strictly increasing di¤erences in (a; �) ; provided that there exist interior max-

imizers. When A � R this reduces to the convenient form used above.

The �rst-order approach has proved to be a convenient technique for analyzing

principal-agent problems, but also a controversial one. It carries with it strong
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assumptions. Using the approach of Grossman and Hart (1983) and Holden (2005),

I have shown that one of the most important results of agency theory, Holmström�s

Su¢ cient Statistic Theorem, does not depend on the assumptions of the �rst-order

approach. The result holds in a substantially more generally setting.
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