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ABSTRACT

We will write the abstract later. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit,
vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero,
nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque
habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras
viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit
amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent
eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at,
mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue
eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.
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1 Introduction

Computing has become ubiquitous to our everyday lives. In our pockets, handbags, and backpacks, most of us carry
greater computational capabilities than supercomputers from just a few decades ago. Over the past decade or so,
we have become very familiar with and reliant on the completely interactive user experience of our smartphones,
tablets, and laptops when researching whatever question may have entered our mind moments ago. Computing is
fundamentally interactive; it’s how almost all of the world interacts with their computers. A similar transformation
is occurring in highly parallel research and scientific computing, commonly termed high performance computing
(HPC)/supercomputing (usually used interchangeably), in which tens, hundreds or thousands of high-end servers are
used in parallel to solve massive simulation, data analysis and machine learning training tasks.

Not many years after the dawn of modern computing during World War II, the first demonstration of a interactive
computer session was conducted on the second transistor experiment system, TX-2, at MIT Lincoln Laboratory
based on the PhD thesis work of Ivan Sutherland (subsequent co-founder of Sun Microsystems). In the Sketchpad
demonstration, he showed several capabilities that we now take for granted, such as drawing geometric figures on
the screen that affected the computations of the computer2. However, since supercomputers started emerging about
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50 years ago, they have always been seen as very high value systems, similar to expensive experimental equipment
like telescopes, that require proposals for allocations, planning, and meticulous scheduling to execute jobs against
management-granted compute time allocations. Furthermore, the types of simulations that were, and still are, executed
on these supercomputers have required extensive analysis and planning to determine the parameters, initial conditions,
and meshes with which to execute each parallel job. Because the execution time of these parallel jobs often spans hours,
days and even months, there has been little churn in the scheduler allocation of resources to executing jobs, thereby
allowing extensive scheduler analysis and prioritization of which jobs to run next from the jobs waiting in the queue.
This type of execution is commonly referred to as batch scheduling.

In the past two decades however, it has become apparent that a significant subset of HPC jobs are more effective for the
user when they are run without waiting in a queue. These jobs are typically known as interactive HPC and urgent HPC,
and their common denominator is being sensitive regarding their start or/and completion times.

Interactive HPC involves users being in the loop during job execution where a human is monitoring a job, steering the
experiment, or visualizing results to make immediate decisions about the results to influence the current or subsequent
interactive jobs. Interactivity is often the first step in scaling to larger models or datasets, as well as being part of an
agile development and testing cycle. This can include, for example, intuition-forming exploratory parameter scans,
what-if scenarios, and investigations of extreme cases. These are all at the core of the scientific discovery process,
and furthermore, the preparation and debugging of state-of-the-art simulations has become increasingly difficult as
data sizes have grown when exclusively using the traditional batch queue approach. The conventional approach is
further complicated by the fact that even the most powerful on-site workstations are no longer capable of supporting
interactivity during simulation preparation, and repeated data transfers between the scientist’s laboratory and remote
supercomputing sites are no longer tenable. Numerous computationally demanding scenarios could all benefit from
supercomputing resources, but they are often hard to realize in the traditional, batch-oriented workflow.

It is not only computational workloads, but also data analytics and machine learning workflows that frequently require
interactive exploration of large data sets. The HPC community is keen to attract data intensive workloads, and moreover
the data science community is also becoming attracted to the benefits of compute power provided by HPC. However,
enabling true real-time interactive and urgent exploration of large data sets requires a significant shift in the traditional
usage model of HPC resources and the metrics that are used to evaluate their effective usage and the quality-of-service
provided to the researcher using them. As such, it is our strong belief that the challenges around interactive and urgent
HPC must be solved if the full potential of HPC applied to data-science is to be realised.

Likewise, urgent HPC involves immediate data or actions that will fail if the job is not run with immediacy/urgency.
Urgent HPC is similar to deadline scheduling, where an HPC job has to deliver results by a given time. However,
urgent HPC jobs require the job execution to start immediately. A rapidly growing area of HPC usage is in urgent
supercomputing for tackling emergency scenarios, for instance the extensive use of supercomputing during the global
pandemic and recent bouts of extreme climate events. These have demonstrated the need to make urgent, accurate
decisions for complex problems, and combining interactive computational modelling with the near real time detection
of unfolding disasters results in a powerful tool that can aid emergency responders making life-critical decisions for
disaster response. In a similar vein, supercomputers can be used in the operating room guiding the surgery process,
provided urgency requirements are met.[1] Ultimately the objective here is to exploit HPC to deliver significant societal
benefits by saving lives and reducing economic loss.

A special case of urgent jobs is latency sensitive, as opposed to high throughput, machine learning inference. A typical
example are chatbots, where to deliver a good user experience it is instrumental that prompt evaluation and answer
generation are concluded close to real-time. While this form of inference has not typically been in the scope of HPC
systems, the increasing demands of inference jobs in areas such as storage, memory, and computational power are
starting to change this, with Large Language Models (LLMs) being a good example. Furthermore, integrating the
common HPC task of model training with inference on the same platform provides many synergies in terms of model
and data management.

These interactive and urgent HPC capabilities are advantageous to a wide variety of applications. Many case studies
have been shared during the Interactive and Urgent HPC workshops, and, naturally, we cannot highlight all of them
in this article. But we will share a representative set of them. These case studies have highlighted various scheduling
policies, tools and technologies, and data management strategies. Such case studies have included:

• Integrated computation for steering electron microscopy in synchrotron radiation facility;

• Rapid analytics for containing COVID-19 infections;

• Urgent processing of data from forest fires, volcano eruptions, and other natural disaster responses;
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• Heart electrocardiogram (ECG) processing for just-in-time analysis of patient data to detect concerning heart
rhythm episodes;

• Anomaly detection computer security data in near real-time; and
• Large scale and during-computing visualization,

just to name a few. We note that all of these cases contain elements of planned and unplanned work (i.e., targets of
opportunity arising during a scheduled experiment). Such an opportunity, for example, might be the detection of an
event in astronomy which should immediately be analyzed and cause more instruments to record more information -
when designing the experiment, it is unknown if such an event ever occurs but if it does, the usage of HPC becomes
urgent. We therefore encourage the reader not to think of workflows as purely urgent, or interactive. Instead what sets
these examples apart from tradition HPC workflows is failure to provide urgent HPC resources to deal with unplanned
computational tasks introduces significant friction even for the planned tasks.

Due to all the advantages that interactive supercomputing promises to deliver, enabling interactivity and urgency on
HPC systems is desirable. However, whilst numerous attempts around the interactive and urgent use of HPC resources
have been undertaken, and this field has enjoyed some progression, yet the HPC community has been slow to adopt
interactivity in a widespread and consistent fashion. This is one of the reasons why we strongly believe that such a
series of workshops is important, because, not only do we need to grow the interactive HPC community in order to
demonstrate the benefit to the domain scientists, reduce tool complexities, and challenge the traditional usage models
of resource access, but furthermore we have already started to see impact in these areas based upon our activities to
date. And much progress has been made in bringing interactive and urgent HPC capabilities online at a number of
supercomputing centers across the world.

In the next section, we take inventory of the current state of the practice in enabling and implementing interactive and
urgent HPC capabilities across the world. This inventory includes the current state of developing policies, examining
system metrics, gathering data, enabling schedulers, developing tools and environments, providing user support, and
highlighting user case studies. The inventory then elucidates gaps and opportunities for further research that will enable
future interactive and urgent HPC capabilities, which are discussed in Section 3. Finally, a conclusion will draw the
paper to a close.

2 The State of the Practice

In this section, we capture the current state of the practice in regards to interactive and urgent HPC capabilities.
Over the past several years, numerous birds-of-a-feather meetings and workshops have been hosted at IEEE/ACM
Supercomputing and ISC-High Performance conferences, from which we will synopsize the current state of the practice.
The current state is divided into the following topics: organizational and system policy; scheduling techniques; system
infrastructure and tools; data management; user support; and user case studies.

2.1 Organizational and System Policy

When a supercomputing center considers introducing or expanding the number of compute nodes that are available for
executing interactive and urgent sessions, they are usually faced with a number of organizational and management policy
concerns. These policy concerns are rooted in a traditional policy that purchasing and maintaining an HPC system
is very expensive and that jobs on the HPC system must be scheduled such that the system being fully utilized (over
95%) to justify its purchase and recurring operations costs. To keep an HPC system fully utilized, jobs are scheduled in
“batch mode”, where users submit their jobs into a queue of pending jobs, which wait until resources are available to
execute each one. Wait times can last from minutes to hours to days and weeks depending on many factors. However,
batch scheduling simply does not accommodate interactive and urgent jobs because idle nodes must be available to
quickly launch such jobs, which leads to lower utilization percentages. Some centers have introduced new metrics
based on return on investment (ROI), replacing the utilization metric that is more focused on user productivity [2]. The
DARPA HPCS program in the early 2000s, from which the aforementioned paper came, and a BoF session at SC-13 on
cost-benefit analysis of HPC tried addressing this policy concern, but not much progress has been made since then.

2.2 Scheduling Urgent and Interactive Jobs

Organizational policy about operating an HPC system is not the only consideration. How jobs are actually scheduled
on HPC systems also plays a large role. All HPC systems have at least one login node on which users can execute
some interactive work. If a system is large enough, there is usually a debug queue which users utilize for interactive
debugging, but there are usually few resources in that queue and sessions are usually short – 30 minutes to two hours
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maximum, depending on the center. None of these really accommodate full interactive and urgent jobs of any scale and
duration. Some centers use reservations to open windows on resources to accommodate interactive and urgent sessions
that are not accommodated with the debug queues. Other centers go further by identifying certain jobs that can be
preempted that share a queue with interactive and urgent jobs [3].

Along the same lines, much of the published work on scheduling interactive and urgent jobs on HPC clusters has been
with the currently-prominent schedulers, Slurm and Kubernetes. Early efforts were also made with HTCondor, IBM
Platform LSF, GridEngine, PBS, and Torque schedulers. For the most part, Slurm has become the defacto standard
HPC scheduler, while Kubernetes has become the de facto cloud/container scheduler for clusters.

Some research has been done to evaluate various feature sets for launching (and concluding) interactive jobs with
regard to the types of jobs that these schedulers support, i.e., high throughput computing and interactive jobs versus
large scale, optimally mapped jobs [4]. Specifically, there are consistently tensions between how quickly large jobs are
scheduled versus smaller/interactive jobs. Further tension exists between multi-node synchronously parallel jobs and
block synchronous (high throughput) jobs. A good balance between all of these is difficult or perhaps impossible to
find.

This tension has driven the development of strategies and implementations that take interactive and real-time software
and made them look like batch jobs, but operate like services. For instance, while BatchSpawner enables Jupyter
notebook servers to run in a batch job, KubeSpawner allows them to run as a pod under Kubernetes on demand, a more
natural approach with increasing adoption. Pilot jobs [5] that pull data analysis tasks from an external database create
the illusion of queue-less real-time analysis as a service; but horizontal scaling on demand would be a better use of
resources.

Another approach has been implemented in Kubernetes, where a new scheduler sends jobs to different optimized
schedulers for different types of jobs depending on a variety of characteristics including: large jobs, smaller jobs, and
Spark workers, all by using different queues and priorities to effectively schedule them, and similar features are being
developed for the Flux scheduler, which aims to succeed Slurm.

Urgent jobs with latency requirements in the one digit second range, like LLM inference in chatbots, cannot usually
be well accommodated by single job scheduling. Typically the scheduling task here is the demand based scaling of a
permanently available service. This type of scheduling is well covered by Kubernetes autoscaling. To integrate such
service scheduling with classical HPC job scheduling on the same system, different approaches have been developed.
For example, Kubernetes has been extended by the batch scheduler Volcano and there is ongoing work on provisioning
Slurm clusters under Kubernetes using the MPI Operator or other similar services.

2.3 Technology for an Interactive and Urgent Service

Effective scheduling and execution policies are fundamental for facilitating interactive and urgent computing, yet they
are insufficient in isolation. Equally crucial are the environments and tools specifically designed to support interactive
and urgent workflows. This requirement is addressed through interactive and programmatic environments tailored
for workflow construction. Users engaged in interactive and urgent computing tasks typically need environments
that enhance their productivity, including code development, debugging, and data analysis. These environments
can be categorized into integrated application environments, which facilitates application management, portals that
provide web-based access to HPC resources tailored for domain-specific tasks, and APIs that enable the development,
customization and automation of complex computational workflows.

Initial efforts to establish an interactive and urgent user environment involved the creation of custom solutions by HPC
providers. A notable instance of such an environment is the configuration of a MATLAB framework on a computing
cluster, utilizing MatlabMPI and pMatlab libraries for parallel processing. These MATLAB processes were initiated via
the cluster’s job scheduler [6]. Concurrently, analogous systems such as Star-P, gridMathematica, and Techila were
developed, each aiming to provide users with the tools necessary for interactive computation and data processing in an
HPC context.

The progression of specialized HPC tools has given rise to more versatile development environments, such as cus-
tomizable JupyterLab instances and feature-rich versions of Visual Studio Code. These environments, while powerful,
require specific expertise and resources to configure for particular applications. In response, several HPC centers
have independently developed portals to simplify access to such tools. Early examples include the portals created
by the Department of Defense High Performance Computing Modernization Program (DoD HPCMP), MIT Lincoln
Laboratory, and the San Diego Supercomputer Center (SDSC), which typically utilized proxy-based mechanisms to
provide desktop users with browser-based access to integrated tools like JupyterLab.
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Building on these initiatives, researchers at the Ohio Supercomputing Center and the University of Virginia introduced
Open OnDemand [7], an open-source framework. This framework furnishes HPC centers with the underlying structure
and portal capabilities required to offer a diverse array of interactive and urgent HPC services via a web interface. Open
OnDemand serves as a pivotal development in democratizing access to HPC resources, streamlining the user experience.

Alternative approaches have facilitated the integration of research desktops —desktop environments provisioned directly
on HPC systems, providing seamless access to HPC services. The research desktop paradigm allows users of varying
expertise to leverage computational power and storage capacity with the familiar ease of a traditional desktop interface.
These research desktop servers function similarly to the login nodes of an HPC system in that they are situated in
close proximity to HPC clusters, have cluster file systems mounted, and act as submission hosts for batch processing.
Unlike login nodes, which typically offer only SSH access, research desktop nodes provide remote desktop access
using solutions such as ThinLinc, NoMachine, or FastX. Additionally, they are configured to allow the execution of
sustained graphical applications, such as MATLAB, RStudio, or Visual Studio Code, thus accommodating a range of
computational tasks within a user-friendly environment.

In parallel, some organizations have pioneered the development of web-based programmatic interfaces to HPC resources,
empowering the scientific community to construct bespoke portals and workflow engines. These HPC centers offer
RESTful API access to their services, principally enabling data transfer and job submission functionalities. Utilizing
these APIs, along with their language-specific bindings, researchers can seamlessly integrate interactive and urgent HPC
workflows, customizing them to optimize productivity. A prime exemplar is the Materials Cloud [8] platform, which
facilitates interactive studies of material properties through a dedicated web portal. It harnesses the AiiDA workflow
engine [9] written in Python and the Python bindings of FirecREST [10] a web-facing APIs. Such APIs simplify
support requirements for HPC centers as they can provide a single interface to cater to diverse scientific requirements.
Additionally, various other APIs like HEAppE [11], the Superfacility API [12], and HPCSerA [13] have been developed.
Some APIs also provide serverless computing endpoints, which allow for service-based calls, further extending the
functionality and flexibility of HPC resources for user-driven computational tasks.

Another ongoing theme is the convergence of HPC and Cloud computing. From the HPC point of view, this facilitates
seamlessly using the breadth of tools and services already available for the Cloud in HPC. HPK (High Performance
Kubernetes) allows users to deploy Kubernetes within an HPC environment, by using a custom kubelet that translates
the container lifecycle to Slurm and Singularity commands. Additionally, concepts are introduced in the HPC world to
provide Cloud flexibility on top of HPC systems. One example is the model of versatile software-defined cluster [14].
By leveraging network segregation and containerization, this model offers a more flexible and adaptable service delivery
to HPC users, aligning with Cloud computing paradigms while maintaining the core strengths of vertically integrated
software stack of HPC systems.

2.4 Data Management

In many cases – such as the examples listed in section 1 – the need for urgent and interactive resources arises from
the analysis of data (often from external sources). Therefore effective data management can become a lynchpin to any
urgent and interactive workflow. HPC facilities are aware of this fact, and have started to develop infrastructure to better
manage high volumes and rates of data. Here we list those areas which we have identified as most impactful to urgent
and interactive HPC workflows.

Today, most HPC facilities deliver data storage and management through deployment of large shared file systems
along with a mechanism that maps their user landscape to Unix users and file groups. Additionally, object storage
interfaces such as S3 are provided as cold storage or for data sharing. The engineering trade-offs that are made to
enable large-scale shared storage can lead to unpredictable performance, which, in turn, can cause workflow stalls
due to 100x slower performance then expected. While many teams’ workflow jobs will be impacted by slow I/O,
users with interactive or urgent workflows are impaired particularly hard as important deadlines would be jeopardized
[15]. As these users need reliable access to compute resources, the same naturally applies for all I/O associated with
the interactive/urgent workflow. This concern on the quality of service for data I/O can readily be expanded to all
networks that are touched in the path of the data flow. For many urgent use cases, where data is generated externally
but analyzed locally, the data need to be shipped to the HPC facility in time for the compute job to run. Waiting for
data to arrive is akin to waiting in the scheduler queue for nodes. The unreliable nature of shared file systems and the
asynchronicity associated with file transfer to/from the HPC storage infrastructure has forced some teams that prioritize
fast feedback look into memory-to-memory streaming solutions where shared filesystems are avoided until the very end
of the pipeline. However, these solutions are novel from an HPC point of view, might require exceptions to firewall
rules and thus face resistance from a security and policy perspective at HPC facilities. Furthermore, some HPC systems
are designed with no direct path between compute nodes and external networks – such designs will not only introduce
additional latency, but also additional potential points of failure.
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Another issue is coordination data transfer with computation. While some workflow management tools have begun
to develop features and best practises, the current landscape is dominated by each application implementing its own
solution with little guidance from HPC centers. These solutions normally take the form of regularly checking the state
of the file system, or polling an API as to the state of a given transfer. This almost always happens independently of the
HPC center’s batch scheduler. This lack of coordination with the HPC center’s batch scheduler results in additional
delays in starting data analysis, and leaves tracking data provenance entirely to the workflow tool.

Finally, urgent/interactive workflows face with HPC data management is more of a social or trust nature across scientific
domains. For instance, data at experimental facilities are often generated by a machine rather than a specific user and
may be attributed to a group of people that don’t have a corresponding file group at the HPC facility or that don’t even
have user accounts at the HPC facility. Moreover, that team could even be of transient nature and dissolve after the
data has been analyzed and published. Intense competition in the sciences also forces them to embargo the data until
it’s ready for publication. HPC facilities today are not well equipped to serve this user group as projects and group
mappings may be made through a separate process where the PI/group for the HPC accounts differs from the PI/group
that "owns" the data. The strategies to map their social groups to HPC groups/users vary. One group might opt to have
everything done under a single "machine/collab" account to which there exists a separate access mapping for a few
select admin accounts. Another strategy is to go all-in and have every external user apply for an HPC account. Both
approaches are not ideal, as the former raises questions about acceptable use and traceability of user actions while the
latter greatly inflates the number of users on an HPC system and puts the management burden onto HPC staff.

2.5 System User Support

Interactive and urgent HPC capabilities attract both traditional and unconventional users including biology/chemistry
users, social sciences, etc. Unconventional users often are not used to scaling up their simulations, experiments, etc.,
nor are they familiar with the usual software tools and environments of HPC. Similarly, traditional HPC users may
not be as familiar with the interactive and urgent HPC environments, techniques, and tools. The question is how to
get these users up to speed on pertinent tools quickly to give them success and motivation to explore further. For the
unconventional users, in particular, becoming proficient and confident in using HPC systems can seem daunting.

As with any HPC center, expert and patient computational scientists and engineers who work as research facilitators are
essential to pointing users to further online content and examples. The research facilitators should be helping users
solve their issues, and not solving them for the users. (Teach users how to fish, rather than giving them another fish
each time they ask.) For common questions and issues, boilerpate emails and online content (knowledge bases) can
reduce the load on research facilitators, while getting users acclimated to searching and accessing online content [16].
Further, consortium content such as HPC Carpentry 3 provide shared resources for teaching basic HPC skills. The
HPC Certification Forum4 is an effort to identify and organize competencies to clearly define the semantics of the
competences for practitioners, trainers and learners - however, urgent computing is not yet covered. Some HPC
centers are using online courses to teach HPC basics including helping users configure their environment (including
laptop/desktop) to take advantage of the HPC capabilities. And some centers are requiring completion of online courses
to get full default resource allocations. Such online courses can also be used to gain HPC certifications, which can be
important for users in their career progression.

3 Research Challenges and Opportunities

3.1 Organizational and System Policy

Attitudes within the HPC community rooted in a resource scarcity view result in a focus on maximizing system
utilization as the metric of success for HPC systems. But the obvious way to enable interactive and urgent workflows on
an HPC system is at odds with this metric: Provision supplementary hardware capacity dedicated to time-sensitive jobs
and accept that resources may idle to ensure that such jobs start promptly. Here it may be useful to reframe the question
and investigate what are the truest indicators of scientific productivity for an HPC system. While acknowledging that
HPC resources are finite, we believe interactive and urgent workflows in HPC offer a different dimension of scientific
value that the state-of-the-art approach in maximizing system utilization fails to capture.

To a scientist whose real-time data analysis requires HPC, a system that cannot deliver an answer within time constraints
imposed by sample availability, instrument time allocation, or funding simply has no scientific value. From this
perspective, HPC centers are focused on optimizing the wrong thing. Therefore, we advocate for the reporting of HPC

3https://www.hpc-carpentry.org/
4https://www.hpc-certification.org/
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center metrics that characterize key requirements of time-sensitive workflows like prompt queue wait time, network
latency, and I/O subsystem performance variance alongside traditional utilization metrics. These measurements can be
used to set goals through technology and policy choices that balance time-sensitive computing needs and traditional
batch workloads.

Also, as individual HPC systems are subject to maintenance and potential faults there always must be an alternative
center to pickup urgent computational jobs. This stresses the requirement for portability and organizational measures to
ensure a smooth fall back execution in case the initially targeted center is unavailable.

3.2 Effective Scheduling

It is generally acceptable that batch scheduling as it is implemented today is insufficient for interactive and urgent HPC.
In batch scheduling, we promise that you will get the resources that you requested, but we cannot promise when they
will become available. In interactive scheduling, we need to provide a minimum set of resources during work time
with low latency and be able to flexibly scale with the changing resource requirements of interactive work. In urgent
scheduling we need to reliably provide the required resources with known latency and be able to provide redundancy
in case of failures. The common denominator of effective scheduling for interactive and urgent jobs is therefore low
latency allocation of resources.

It makes sense to pursue technical solutions that enable both batch and interactive and urgent job scheduling to co-exist
on the same system. Slurm’s support for preemption allows the system to create space on demand for interactive and
urgent workflows, although this in practice may incur long delays in stopping jobs and cleaning up queues. Moreover
it requires well-defined policies on which jobs will be preempted that preserve fairness and ensure completion of
long-running tasks. This requires us to develop resource schedulers allowing to explore and discover why jobs have
certain priority and then are scheduled and run according to that priority, and similarly why other jobs have been
preempted. Also, suspending tasks may help in scheduling latency, in expense of keeping resources reserved. We
encourage HPC center staff, researchers, and scheduler developers to collaborate on these and other strategies that
enable time-sensitive workflows and help them demonstrate value in the short term.

Even though schedulers such as Slurm are constantly being developed to accommodate various degrees of scheduling
flexibility, scheduling decisions need to account for more dimensions than job size and queue priority; they should even
consider that these metrics may be dynamically changing in time. Job malleability allows reservations to grow (or
shrink) to facilitate prompt job start while minimizing lost utilization. However, this depends on support from both the
runtime and the application and introduces overheads when data needs to be mapped to the new set of resources. The
batch scheduler could also offer the ability to allocate any resources available using a best effort approach, or support
some kind of resource negotiation protocol, which factors in the expected duration of the job. Response time metrics
could also be fed back to the system so that it can ensure a specified level of interactivity. Such feedback loops have
been used extensively in the Cloud to help the system balance resource allocations to required performance.

A method to handle conflicting scheduling policies is to simultaneously apply different algorithms on the same resources.
As good resource utilization is less important than low latency for interactive and urgent HPC, service schedulers, like
the Kubernetes scheduler, arguably are better suited for the task than traditional batch schedulers, like Slurm. The
former are optimized for distributing load across existing service endpoints and then scaling them up as needed, which
fits the low latency and flexibility requirement. On the other hand, batch schedulers optimize mid to long term task
distribution, which leads to scheduling overhead that increases latency. On a multi-purpose HPC system one wants
the two paradigms to co-exist. Some HPC systems reserve supplementary resources for time-sensitive workflows,
effectively dynamically partitioning the system. Flux embraces the idea of multiple scheduling contexts, dynamically
adjusting the cluster in multi-level nested partitions running different schedulers - including Kubernetes. In the Cloud,
Kubernetes supports many schedulers to operate simultaneously on the same resources and it is up to the jobs to decide
which one to use. It is yet to be verified if multi-scheduler solutions can handle interactive and urgent jobs alongside
batch processes, or some unified solution can deliver the required balance between all job types. In any case, finding
ways for batch schedulers and containerized service orchestration to run alongside one another, or enable one on top of
the other, will become increasingly important in coming years.

Following these assumptions we can identify gaps requiring additional research:

Dynamic out-scaling: While service schedulers are already providing dynamic out-scaling mechanisms, they still
need to be integrated with the interactive or urgent workloads. For data analytics and machine learning there
already exist suitable integrations (via frameworks as Dask or Pytorch Elastic) but efficient integration of
dynamic MPI scaling for parallel jobs with service schedulers in a production system is a topic of ongoing
research.
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Integrating batch and low latency scheduling: To allow for both batch and low latency scheduling, approaches are
to extend service schedulers with batch scheduling (e.g., Volcano for Kubernetes) or to make batch scheduling
faster and better scalable (Flux scheduler), or to run a service scheduler side-by-side with a batch scheduler by
either allowing one of them to control the other or by running them hierarchically or independently with some
means of communication. Significant efforts are required to provide sustainable and productive solutions.

Freeing resources: Job preemption is the tool of choice to make (additional) resources immediately available for
interactive and urgent jobs. For this we need to improve the share of HPC jobs which can be reliably suspended.
Furthermore, schedulers need to select suitable candidates for preemption based on policy, priority, practicality,
and efficiency loss.

Redundancy: For urgent jobs deadline assertions may be in place, which require measures to recover from resource
failures. Beyond implementing reliable checkpointing and fast restarting this may necessitate redundant
scheduling, i.e., running a copy of the workload.

3.3 Technologies and Tools

Open OnDemand, JupyterHub, proxy services, remote desktop servers for GUIs, and web dashboards today give users
access to HPC, bypassing the Linux command line that many researchers find unfamiliar, intimidating, or just not the
right fit for scientific workflows. Extrapolating that this trend of bringing familiar user interface paradigms to HPC will
continue, we expect that future researchers will expect to interact with HPC through tablets or phones, and through new
modalities like natural language. This opens up new opportunities to make HPC more usable and accessible, but will
require HPC developers to center user experience and human-computer interaction — a new area of research for HPC.

Distributed, interactive workflows that incorporate HPC resources into a real-time analysis loop with remote instrumen-
tation expand the scope of the programming endeavor, highlighting new and exciting problems to solve. HPC software
developers are familiar with performance analysis and optimization tools for applications, but what does the equivalent
for a distributed analysis workflow look like? At a minimum, each segment of a workflow including data acquisition,
transfer, storage, compute, analysis, and archiving needs to advertise its status accurately, in sufficient detail, and in a
timely fashion. HPC components need to advertise subsystem status using standard machine-readable formats with
greater granularity than just “system up” or “system down.” Standardizing and exposing these metadata streams is
both a programming challenge and a sociological one. But solving that problem will lead to new kinds of distributed,
interactive workflow applications that bring HPC to bear on big-data science problems.

Finally, interfaces using protocols new to HPC environments like HTTP and websockets pose new challenges for
networking and security. Organizations that previously only had to provision Linux accounts for users and monitor
ssh-based access to login nodes will have to contend with federated identity, analyzing web traffic, and configuring
external network routes to compute nodes. Today’s researchers grew up with real-time collaborative productivity tools
like Google Docs, but the closest analogy in a typical HPC context is account sharing — entirely incompatible with
HPC security models. How can the needs and expectations of users be reconciled with HPC center infrastructure,
networking, and security requirements? Institutions that provide HPC and their vendors will need to work together to
identify standards-based technologies from the broader market and open-source community that have addressed these
challenges in other contexts. Articulating the need for new capabilities and adapting solutions to HPC are other areas
where contributions can be made.

3.4 Data Management

The data management state of the practise outlined in section 2.4 shows that – while HPC infrastructure is capable of
handling large volumes of raw data – more research, development, and improvements to center policy are needed in
order to allow urgent and interactive HPC users to effectively and reliably deploy their workflows at HPC data centers.
We have identified the following areas of research:

Reliable High-Speed Data delivery: Data needs to arrive and be available to the computational resources (e.g. visible
on the compute nodes) quickly and reliably. To this end we propose the implementation of quality of service
(QoS) for networking and storage. This has two aspects: prioritization of traffic and I/O for time-critical
applications; and minimal performance guarantees in order to allow users to plan their tasks appropriately.

Effective Data Transport through Streaming: While many workflows are served well by viewing data storage as
POSIX file systems, this approach introduces additional latency. We propose that HPC data centers include
data streaming services (direct to compute node memory) as part of their standard data offering. By providing
a standardized service, this can be integrated with QoS, and automatic backup and fault tolerance services.
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Center-Wide Data Management: We must avoid that users of urgent tasks also need to manage all aspects of data
transfer and storage. We therefore propose that data centers develop a uniform API which can: i) provide
information on data transfers; ii) enable users to register event hooks (e.g. calling a function after a file has
been transferred); iii) track data provenance (e.g. which files where read during a job); and iv) request/modify
network and storage QoS. Additional tools, such as real-time performance and data flow monitoring, I/O
tuning, and helping users organize paths can be built upon such an API.

Collaborative Access Models: many urgent and interactive are collaborative in nature. Data centers need to develop
an access scheme that covers the uses cases described in section 2.4. These range from collaborative spaces
(where a team can work on shared data sets), to fine-grained control over who has access to which data set.
This scheme needs to be controllable by trusted individuals (who are not necessarily HPC sysadmins – e.g.
experiment operators), and fast (within minutes – e.g. in order to quickly bring in an external expert). We note
that modern data centers have tiered storage, and related data is often spread over these. This access model
must therefore cover all storage tiers in the data center.

In addition to the technical research areas listed above, we note that there is a social challenge of combining practices in
computing science with those in experimental science. Often this leads to friction, especially in the areas of policy and
security. Since the best designed tool will have limited usefulness if its operation violates data center policy (e.g. data
streaming to compute nodes is not useful if external connections to compute nodes are prohibited by security policy), a
great deal of work needs to be done in order to align urgent and interactive data management requirements and data
center policy.

3.5 User Education and Training

Urgent and interactive HPC is one pathway by which users from non-computing disciplines are first introduced to
HPC. Therefore many interactive and urgent HPC users start out being rather inexperienced. Hence, there are many
opportunities to encourage their enthusiasm for HPC and computing in general. If we provide a new paradigm of
computing, we probably need new training and education material. These training materials can then be deployed on
interactive and urgent HPC platforms, so that you get to practice what you are learning. User education and training is
rich with opportunities to try, study, and observe how various teaching techniques, learning paths, and delivery methods
can help users get proficient and successful as they use the HPC systems including interactive and urgent computing
capabilities.

For instance, typically HPC users are trained to use a given HPC system with either online documentation and/or
classroom style tutorials in the classroom or over an online meeting. But some HPC centers have been developing and
deploying asynchronous online courses (MOOCs) for such training. Which of these is most effective for students versus
professionals who are learning to use the system? Further, if users start using the system with little or no experience,
perhaps they should have access to limited resources. But they should be allocated enough resources to experience
reasonably quick success on their project. Is this an effective path for getting them to reasonably quick proficiency to
make their first HPC project successful? And does using the interactive and urgent features of the HPC system improve
their likelihood of training success or hinder it?

Looking even further ahead, can automated user support (like bots or HPC-Clippy!) help inexperienced users get up to
speed quickly? How effective can automated user support suggest the next steps for getting an interactive or urgent job
running, and how complex of a situation can such automated user support handle? And do the users even like having
such automated support to help them use the system? These are just some of the research questions for education and
training for interactive and urgent HPC.

3.6 Building Community

Finally and above all, interactive and urgent HPC can only realize its full potential with the support of a collaborative
community consisting of users, software developers, HPC center and vendor staff, and decision-makers with a stake
in these capabilities. Over the past several years we have taken our first steps building this community, leveraging
birds-of-a-feather sessions and workshops at the major supercomputing conferences to come together, share, and
document new tools, use cases, case studies, best practices, and lessons learned. To build this community in order to
address all of the above challenges, we need to continue these efforts but also identify new opportunities for funded
collaboration, building new research partnerships, and interacting with each other more regularly and directly. The
authors will continue to organize interactive and urgent HPC workshops at the major supercomputing conferences and
publishing associated proceedings to provide a voice for the community.
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4 Conclusion

We believe the case for increased consideration and development of interactive and urgent capabilities in HPC is
compelling. Our position is rooted in first-hand experience, observation, and scholarship at the interface between HPC
and high-impact, time-sensitive workflows in science and engineering. In this paper we have outlined the challenges
and opportunities in advancing interactive and urgent capabilities, including policy, technology, scheduling, education,
training, and community-building, and a number of priorities are emerging. It is in tackling, studying, learning, and
sharing about advances on these challenges and opportunities that our community will go forth to have greater impact
on scientific and technical research projects that require interactive and urgent HPC.

Acknowledgments

This was was supported in part by......

References

[1] Xiao-Yun Zhou, Yao Guo, Mali Shen, and Guang-Zhong Yang. Application of artificial intelligence in surgery.
Frontiers of Medicine, 14(4):417–430, 2020.

[2] Albert Reuther and Suzy Tichenor. High performance computing and competitiveness: Making the business case.
Cyberinfrastructure Technology Watch Quarterly, 2, 2006.

[3] Chansup Byun, Jeremy Kepner, William Arcand, David Bestor, Bill Bergeron, Vijay Gadepally, Michael Houle,
Matthew Hubbell, Michael Jones, Andrew Kirby, Anna Klein, Peter Michaleas, Lauren Milechin, Julie Mullen,
Andrew Prout, Antonio Rosa, Siddharth Samsi, Charles Yee, and Albert Reuther. Best of both worlds: High
performance interactive and batch launching. pages 1–7. IEEE, 9 2020.

[4] Albert Reuther, Chansup Byun, William Arcand, David Bestor, Bill Bergeron, Matthew Hubbell, Michael Jones,
Peter Michaleas, Andrew Prout, Antonio Rosa, and Jeremy Kepner. Scalable system scheduling for hpc and big
data. Journal of Parallel and Distributed Computing, 111, 2018.

[5] Matteo Turilli, Mark Santcroos, and Shantenu Jha. A comprehensive perspective on pilot-job systems. ACM
Computing Surveys (CSUR), 51(2):1–32, 2018.

[6] Albert Reuther, Jeremy Kepner, Andy MCcabe, Julie Mullen, Nadya T. Bliss, and Hahn Kim. Technical challenges
of supporting interactive hpc. pages 403–409, 2007.

[7] Dave Hudak, Doug Johnson, Alan Chalker, Jeremy Nicklas, Eric Franz, Trey Dockendorf, and Brian L. McMichael.
Open ondemand: A web-based client portal for hpc centers. Journal of Open Source Software, 3(25):622, 2018.

[8] Leopold Talirz, Snehal Kumbhar, Elsa Passaro, Aliaksandr V. Yakutovich, Valeria Granata, Fernando Gargiulo,
Marco Borelli, Martin Uhrin, Sebastiaan P. Huber, Spyros Zoupanos, Carl S. Adorf, Casper Welzel Andersen,
Ole Schütt, Carlo A. Pignedoli, Daniele Passerone, Joost VandeVondele, Thomas C. Schulthess, Berend Smit,
Giovanni Pizzi, and Nicola Marzari. Materials cloud, a platform for open computational science. Scientific Data,
7(1), sep 2020.

[9] Sebastiaan P. Huber, Spyros Zoupanos, Martin Uhrin, Leopold Talirz, Leonid Kahle, Rico Häuselmann, Dominik
Gresch, Tiziano Müller, Aliaksandr V. Yakutovich, Casper W. Andersen, Francisco F. Ramirez, Carl S. Adorf,
Fernando Gargiulo, Snehal Kumbhar, Elsa Passaro, Conrad Johnston, Andrius Merkys, Andrea Cepellotti, Nicolas
Mounet, Nicola Marzari, Boris Kozinsky, and Giovanni Pizzi. AiiDA 1.0, a scalable computational infrastructure
for automated reproducible workflows and data provenance. Scientific Data, 7(1), sep 2020.

[10] Felipe A. Cruz, Alejandro J. Dabin, Juan P. Dorsch, Eirini Koutsaniti, and Nelson F. Lezcano. Firecrest: A restful
api to hpc systems. In 2020 IEEE/ACM International Workshop on Interoperability of Supercomputing and Cloud
Technologies (SuperCompCloud), pages 21 – 26, Piscataway, NJ, 2020. IEEE.
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