
DISTRIBUTED MULTIMEDIA PROXY CACHE REPLACEMENT

ALGORITHMS

A Thesis

Submitted to the Faculty

of

Purdue University

by

Albert I. Reuther

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

August 2000

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- ii -

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- iii -

ACKNOWLEDGMENTS

First I would like to extend a very special thank you to my advisor, Prof. David

G. Meyer. His consistent guidance and encouragement has helped me bring this study

to completion, and his high expectations of his work has helped me maintain my high

expectations for this study.

Special thanks go to Prof. Mitchell Theys, Christopher Niessen, and Ku-Jei King

for their critical analysis and wise counsel on several of my concepts and simulation

techniques.

I would like to thank the other members of my thesis committee, Prof. Edward

Coyle, Prof. Arif Ghafoor, and Prof. Ray Eberts for their guidance that helped keep

my research progressing in the right direction.

I would also like to acknowledge and thank each of the sources for the logfiles used

in this study. I would like to specifically thank John Dilley and Martin Arlitt from

the Hewlett Packard Labs in Palo Alto, California for providing the HP World Cup

1998 Server Farm logfiles and Don Power, the Chief Technologist at OnCommand

Corporation of San Jose, California for graciously providing the OnCommand system

trace. The San Jose, Boulder1, and Urbana-Champaign logfiles were provided by

the National Laboratory for Applied Network Research which is supported by the

National Science Foundation on grants NCR-9616602 and NCR-9521745.

Finally, I would like to express my deepest thanks to Albert H. and Gesche

Reuther, Christine and Charlie Chappell, and Kate Miller for their unwavering love,

support, and encouragement.

“But one thing I do hold: Forgetting what is behind and straining toward what

is ahead, I press on toward the goal to win the prize for which God has called me

heavenward in Christ Jesus.” Soli Deo Gloria!

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- iv -

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- v -

TABLE OF CONTENTS

Page

LIST OF TABLES . ix

LIST OF FIGURES . xv

ABSTRACT . xxv

1 Introduction . 1

1.1 The Problem . 1

1.2 Significance of Problem . 4

1.3 Research Contributions . 6

2 Statement of Problem . 7

2.1 Caches in Distributed Multimedia Systems 7

2.2 The Path to Hierarchical Distributed Multimedia Systems 9

2.3 Cache Replacement Algorithms . 13

2.4 The 0-1 Knapsack Problem and Cache Replacement Algorithms . . . 15

2.5 Calculating the Cache Replacement Score 18

2.6 More Complex Cache Replacement Scores 21

2.7 Contributed Cache Replacement Score Algorithms 25

2.8 Idealistic Replacement Algorithms for Comparison 27

2.9 The Questions . 28

2.9.1 The Main Question . 28

2.9.2 The Second Question . 28

2.9.3 The Third Question . 29

3 Related Work . 31

3.1 Computer Hardware Memory Caches 31

3.2 Operating System Virtual Memory Direct Paging Algorithms 32

3.3 File Migration Algorithms . 33

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- vi -

3.4 Disk System Caching Algorithms . 35

3.5 Relational Database Buffer Management Algorithms 35

3.6 World-Wide Web Proxy Caches . 36

3.6.1 The Early Papers . 37

3.6.2 Beyond the Basics . 39

3.6.3 Other Related Web Caching Papers 44

4 The Simulation Environment . 47

4.1 Simulation Model . 47

4.2 Simulator Functionality . 49

4.3 Presentation of Results . 51

4.3.1 The Measures . 51

4.3.2 Simulation Parameters . 52

5 Simulation Data Sources . 55

5.1 The Simulator Data Files and Related Analysis Studies 55

5.2 Explanation of the Gathered Trace Statistics 57

5.3 The Domains for Proxy Cache Server Workload Traces 62

5.4 Web Server Data Files . 68

5.4.1 Virginia Tech Proxy Servers 68

5.4.2 Purdue Stack (ECN) Proxy Server 84

5.4.3 Purdue DSML Web Server . 89

5.4.4 Boeing Proxy Cache Server Traces 95

5.4.5 NLANR Proxy Servers . 101

5.4.6 HP World Cup 1998 Web Server Farm 119

5.5 DVJ2 Educational Multimedia Video Server 125

5.6 OnCommand On-Demand Movie Server 129

5.7 Stochastically Generated Video Server Model Traces 133

5.7.1 Defining the Sequential Distribution Data Sets 133

5.7.2 Truncated Discrete Exponential Distribution P Matrix 135

5.7.3 Binomial distribution P matrix 138

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- vii -

5.7.4 Triangular Window Distribution P Matrix 141

6 Simulation Results . 149

6.1 Which Cache Replacement Algorithms Are Best for Each Workload
Trace? . 149

6.1.1 Origin Server Traces . 153

6.1.2 Network Proxy Cache Server Traces 181

6.1.3 Client Proxy Cache Server Traces 207

6.1.4 Video Server Traces . 243

6.1.5 Stochastically Generated Video Server Traces 263

6.1.6 A Summary of the Results . 289

6.1.7 What About Computational Efficiency? 291

6.2 Does an Admission Policy Improve Cache Performance? 293

6.3 Should Video Objects Be Cached in Their Entirety? 311

7 Summary and Conclusion . 319

7.1 Summary . 319

7.2 Contributions . 322

7.3 Future Research . 323

7.4 Research Implications . 325

LIST OF REFERENCES . 329

VITA . 337

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- viii -

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- ix -

LIST OF TABLES

Table Page

5.1 Comparison of Workload Composition Percentages 63

5.2 Comparison of Percentage of Files Under 4 kilobytes 64

5.3 Comparison of Percentages of Requests for Image, Html, and Applica-
tion File Types . 65

5.4 Comparison of Percentages of Content Data Transferred for Image,
Html, and Application File Types . 65

5.5 Comparison of Stack Depth Analysis 66

5.6 Comparison of Concentration of Request References 67

5.7 Comparison of Concentration of Content Data Transferred 67

5.8 Comparison of Concentration of Storage Space Used 68

5.9 Summary of Access Log Characteristics for BL Trace 69

5.10 Summary of Other Characteristics for BL Trace 70

5.11 Breakdown By File Size for BL Trace 70

5.12 Object Reaccess Information by File Size for BL Trace 70

5.13 Breakdown By File Type for BL Trace 71

5.14 Multirequest Breakdown By File Type for BL Trace 71

5.15 Object Reaccess Information by File Type for BL Trace 72

5.16 Unique File Size Information by File Type for BL Trace 72

5.17 Stack Depth Analysis for BL Trace 72

5.18 Summary of Access Log Characteristics for BR Trace 74

5.19 Summary of Other Characteristics for BR Trace 75

5.20 Breakdown By File Size for BR Trace 75

5.21 Object Reaccess Information by File Size for BR Trace 75

5.22 Breakdown By File Type for BR Trace 76

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- x -

5.23 Multirequest Breakdown By File Type for BR Trace 76

5.24 Object Reaccess Information by File Type for BR Trace 77

5.25 Unique File Size Information by File Type for BR Trace 77

5.26 Stack Depth Analysis for BR Trace 77

5.27 Summary of Access Log Characteristics for G Trace 79

5.28 Summary of Other Characteristics for G Trace 80

5.29 Breakdown By File Size for G Trace 80

5.30 Object Reaccess Information by File Size for G Trace 80

5.31 Breakdown By File Type for G Trace 81

5.32 Multirequest Breakdown By File Type for G Trace 81

5.33 Object Reaccess Information by File Type for G Trace 82

5.34 Unique File Size Information by File Type for G Trace 82

5.35 Stack Depth Analysis for G Trace . 82

5.36 Summary of Access Log Characteristics for stackproxy Trace 84

5.37 Summary of Other Characteristics for stackproxy Trace 85

5.38 Breakdown By File Size for stackproxy Trace 85

5.39 Object Reaccess Information by File Size for stackproxy Trace 85

5.40 Breakdown By File Type for stackproxy Trace 86

5.41 Multirequest Breakdown By File Type for stackproxy Trace 86

5.42 Object Reaccess Information by File Type for stackproxy Trace . . . 87

5.43 Unique File Size Information by File Type for stackproxy Trace . . . 87

5.44 Stack Depth Analysis for stackproxy Trace 88

5.45 Summary of Access Log Characteristics for dsl log Trace 90

5.46 Summary of Other Characteristics for dsl log Trace 91

5.47 Breakdown By File Size for dsl log Trace 91

5.48 Object Reaccess Information by File Size for dsl log Trace 91

5.49 Breakdown By File Type for dsl log Trace 92

5.50 Multirequest Breakdown By File Type for dsl log Trace 92

5.51 Object Reaccess Information by File Type for dsl log Trace 92

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- xi -

5.52 Unique File Size Information by File Type for dsl log Trace 93

5.53 Stack Depth Analysis for dsl log Trace 93

5.54 Summary of Access Log Characteristics for boeing.990301 Trace . . . 96

5.55 Summary of Other Characteristics for boeing.990301 Trace 96

5.56 Breakdown By File Size for boeing.990301 Trace 97

5.57 Object Reaccess Information by File Size for boeing.990301 Trace . . 97

5.58 Breakdown By File Type for boeing.990301 Trace 98

5.59 Multirequest Breakdown By File Type for boeing.990301 Trace 98

5.60 Object Reaccess Information by File Type for boeing.990301 Trace . 99

5.61 Unique File Size Information by File Type for boeing.990301 Trace . 99

5.62 Stack Depth Analysis for boeing.990301 Trace 100

5.63 Summary of Access Log Characteristics for bo1 day1.dat Trace 103

5.64 Summary of Other Characteristics for bo1 day1.dat Trace 103

5.65 Breakdown By File Size for bo1 day1.dat Trace 104

5.66 Object Reaccess Information by File Size for bo1 day1.dat Trace . . . 104

5.67 Breakdown By File Type for bo1 day1.dat Trace 104

5.68 Multirequest Breakdown By File Type for bo1 day1.dat Trace 105

5.69 Object Reaccess Information by File Type for bo1 day1.dat Trace . . 105

5.70 Unique File Size Information by File Type for bo1 day1.dat Trace . . 106

5.71 Stack Depth Analysis for bo1 day1.dat Trace 106

5.72 Summary of Access Log Characteristics for sj novwk5.dat Trace . . . 109

5.73 Summary of Other Characteristics for sj novwk5.dat Trace 109

5.74 Breakdown By File Size for sj novwk5.dat Trace 109

5.75 Object Reaccess Information by File Size for sj novwk5.dat Trace . . 110

5.76 Breakdown By File Type for sj novwk5.dat Trace 110

5.77 Multirequest Breakdown By File Type for sj novwk5.dat Trace 111

5.78 Object Reaccess Information by File Type for sj novwk5.dat Trace . . 111

5.79 Unique File Size Information by File Type for sj novwk5.dat Trace . . 112

5.80 Stack Depth Analysis for sj novwk5.dat Trace 112

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- xii -

5.81 Summary of Access Log Characteristics for uc day1.dat Trace 115

5.82 Summary of Other Characteristics for uc day1.dat Trace 115

5.83 Breakdown By File Size for uc day1.dat Trace 115

5.84 Object Reaccess Information by File Size for uc day1.dat Trace . . . 116

5.85 Breakdown By File Type for uc day1.dat Trace 116

5.86 Multirequest Breakdown By File Type for uc day1.dat Trace 116

5.87 Object Reaccess Information by File Type for uc day1.dat Trace . . . 117

5.88 Unique File Size Information by File Type for uc day1.dat Trace . . . 117

5.89 Stack Depth Analysis for uc day1.dat Trace 117

5.90 Summary of Access Log Characteristics for wc week14 Trace 120

5.91 Summary of Other Characteristics for wc week14 Trace 120

5.92 Breakdown By File Size for wc week14 Trace 121

5.93 Object Reaccess Information by File Size for wc week14 Trace 121

5.94 Breakdown By File Type for wc week14 Trace 121

5.95 Multirequest Breakdown By File Type for wc week14 Trace 122

5.96 Object Reaccess Information by File Type for wc week14 Trace . . . 122

5.97 Unique File Size Information by File Type for wc week14 Trace . . . 123

5.98 Stack Depth Analysis for wc week14 Trace 123

5.99 Summary of Access Log Characteristics for dvj2 99f Trace 126

5.100Summary of Other Characteristics for dvj2 99f Trace 127

5.101Object Reaccess Information by File Type for dvj2 99f Trace 127

5.102Unique File Size Information by File Type for dvj2 99f Trace 127

5.103Stack Depth Analysis for dvj2 99f Trace 127

5.104Summary of Access Log Characteristics for daysum1 Trace 130

5.105Summary of Other Characteristics for daysum1 Trace 130

5.106Breakdown By File Type for daysum1 Trace 130

5.107Multirequest Breakdown By File Type for daysum1 Trace 131

5.108Object Reaccess Information by File Type for daysum1 Trace 131

5.109Stack Depth Analysis for daysum1 Trace 131

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- xiii -

6.1 Comparison of Object Statistics in Cache Replacement Algorithms . . 150

6.2 Summary of Top Cache Replacement Algorithms for Origin Proxy
Server Traces . 177

6.3 Summary of Top Cache Replacement Algorithms for Network Proxy
Server Traces . 205

6.4 Summary of Top Cache Replacement Algorithms for Client Proxy
Server Traces . 241

6.5 Summary of Top Cache Replacement Algorithms for Video Proxy Server
Traces . 261

6.6 Summary of Top Cache Replacement Algorithms for Stochastically
Generated Video Server Traces . 288

6.7 Comparison of Improvement of Top Cache Replacement Algorithm
over LRU for Miss Rate (MR) . 294

6.8 Comparison of Improvement of Top Cache Replacement Algorithm
over LRU for Byte Miss Rate (BMR) 295

6.9 Differences in Average Miss Rates of Cache Replacement Policy using
Admission Policy . 309

6.10 Differences in Average Byte Miss Rates of Cache Replacement Policy
using Admission Policy . 310

6.11 Statistic of OnCommand and DVJ2 Workload Video Session Durations 313

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- xiv -

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- xv -

LIST OF FIGURES

Figure Page

2.1 Comparison of a Computer Memory Hierarchy to a Hierarchical Dis-
tributed Server Cache System . 8

2.2 Domains of Distributed Multimedia System Proxy Caches 8

2.3 Knapsack-carrying Thief with Proxy Cache Server 15

2.4 A Cache Object Data Structure and Associated Data Members 17

2.5 Logical Flow of SLRU Cache Lines 22

4.1 Basic Simulator Functionality Flowchart. 50

5.1 Concentration of References for BL Trace 73

5.2 Concentration of References for BR Trace 78

5.3 Concentration of References for G Trace 83

5.4 Concentration of References for stackproxy Trace 88

5.5 Concentration of References for dsl log Trace 94

5.6 Concentration of References for boeing.990301 Trace 100

5.7 Concentration of References for bo1 day1.dat Trace 107

5.8 Concentration of References for sj novwk5.dat Trace 113

5.9 Concentration of References for uc day1.dat Trace 118

5.10 Concentration of References for wc week14 Trace 124

5.11 Concentration of References for dvj2 99f Trace 128

5.12 Concentration of References for daysum1 Trace 132

5.13 Selected conditional probability density functions for truncated dis-
crete exponential distribution P matrix. 136

5.14 Selected conditional cumulative distribution functions for truncated
discrete exponential distribution P matrix. 137

5.15 Overall object choice distribution, d, for truncated discrete exponential
distribution P matrix. 138

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- xvi -

5.16 Selected conditional probability density functions for binomial distri-
bution P matrix. 139

5.17 Selected conditional cumulative distribution functions for binomial dis-
tribution P matrix. 140

5.18 Overall object choice distribution, d, for binomial distribution P matrix.142

5.19 Triangular window distribution for j = 35 with M = 50. 142

5.20 Selected conditional probability density functions for triangular win-
dow distribution P matrix with amax = 0.45 and bmax = 0.1. 144

5.21 Selected conditional cumulative distribution functions for triangular
window distribution P matrix with amax = 0.45 and bmax = 0.1. . . 145

5.22 Overall object choice distribution,d, for triangular window distribution
P matrix with amax = 0.45 and bmax = 0.1. 147

6.1 Miss Rates of Simple Cache Replacement Algorithms on HP World
Cup 1998 Web Server Farm wc week14 Trace. 154

6.2 Miss Rates of More Complex Cache Replacement Algorithms on HP
World Cup 1998 Web Server Farm wc week14 Trace. 155

6.3 Miss Rates of Complex Cache Replacement Algorithms on HP World
Cup 1998 Web Server Farm wc week14 Trace. 156

6.4 Average Miss Rates on HP World Cup 1998 Web Server Farm wc week14
Trace. 157

6.5 Byte Miss Rates of Simple Cache Replacement Algorithms on HP
World Cup 1998 Web Server Farm wc week14 Trace. 158

6.6 Byte Miss Rates of More Complex Cache Replacement Algorithms on
HP World Cup 1998 Web Server Farm wc week14 Trace. 159

6.7 Byte Miss Rates of Complex Cache Replacement Algorithms on HP
World Cup 1998 Web Server Farm wc week14 Trace. 160

6.8 Average Byte Miss Rates on HP World Cup 1998 Web Server Farm
wc week14 Trace. 161

6.9 Miss Rates of Simple Cache Replacement Algorithms on Purdue dsl log
DSML Web Server Trace. 162

6.10 Miss Rates of More Complex Cache Replacement Algorithms on Pur-
due dsl log DSML Web Server Trace. 163

6.11 Miss Rates of Complex Cache Replacement Algorithms on Purdue
dsl log DSML Web Server Trace. 164

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- xvii -

6.12 Average Miss Rates on Purdue dsl log DSML Web Server Trace. . . . 165

6.13 Byte Miss Rates of Simple Cache Replacement Algorithms on Purdue
dsl log DSML Web Server Trace. 166

6.14 Byte Miss Rates of More Complex Cache Replacement Algorithms on
Purdue dsl log DSML Web Server Trace. 167

6.15 Byte Miss Rates of Complex Cache Replacement Algorithms on Purdue
dsl log DSML Web Server Trace. 168

6.16 Average Byte Miss Rates on Purdue dsl log DSML Web Server Trace. 169

6.17 Miss Rates of Simple Cache Replacement Algorithms on Virginia Tech
BR Trace. 170

6.18 Miss Rates of More Complex Cache Replacement Algorithms on Vir-
ginia Tech BR Trace. 171

6.19 Miss Rates of Complex Cache Replacement Algorithms on Virginia
Tech BR Trace. 172

6.20 Average Miss Rates on Virginia Tech BR Trace. 173

6.21 Byte Miss Rates of Simple Cache Replacement Algorithms on Virginia
Tech BR Trace. 174

6.22 Byte Miss Rates of More Complex Cache Replacement Algorithms on
Virginia Tech BR Trace. 175

6.23 Byte Miss Rates of Complex Cache Replacement Algorithms on Vir-
ginia Tech BR Trace. 176

6.24 Average Byte Miss Rates on Virginia Tech BR Trace. 177

6.25 Composite of Average Miss Rates for Origin Server Traces. 179

6.26 Composite of Average Byte Miss Rates for Origin Server Traces. . . . 180

6.27 Miss Rates of Simple Cache Replacement Algorithms on Boulder1
Proxy Server bo1 day1 Trace. 182

6.28 Miss Rates of More Complex Cache Replacement Algorithms on Boul-
der1 Proxy Server bo1 day1 Trace. 183

6.29 Miss Rates of Complex Cache Replacement Algorithms on Boulder1
Proxy Server bo1 day1 Trace. 184

6.30 Average Miss Rates on Boulder1 Proxy Server bo1 day1 Trace. 185

6.31 Byte Miss Rates of Simple Cache Replacement Algorithms on Boulder1
Proxy Server bo1 day1 Trace. 186

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- xviii -

6.32 Byte Miss Rates of More Complex Cache Replacement Algorithms on
Boulder1 Proxy Server bo1 day1 Trace. 187

6.33 Byte Miss Rates of Complex Cache Replacement Algorithms on Boul-
der1 Proxy Server bo1 day1 Trace. 188

6.34 Average Byte Miss Rates on Boulder1 Proxy Server bo1 day1 Trace. . 189

6.35 Miss Rates of Simple Cache Replacement Algorithms on San Jose
Proxy Server sj novwk5 Trace. 190

6.36 Miss Rates of More Complex Cache Replacement Algorithms on San
Jose Proxy Server sj novwk5 Trace. 191

6.37 Miss Rates of Complex Cache Replacement Algorithms on San Jose
Proxy Server sj novwk5 Trace. 192

6.38 Average Miss Rates on San Jose Proxy Server sj novwk5 Trace. . . . 193

6.39 Byte Miss Rates of Simple Cache Replacement Algorithms on San Jose
Proxy Server sj novwk5 Trace. 194

6.40 Byte Miss Rates of More Complex Cache Replacement Algorithms on
San Jose Proxy Server sj novwk5 Trace. 195

6.41 Byte Miss Rates of Complex Cache Replacement Algorithms on San
Jose Proxy Server sj novwk5 Trace. 196

6.42 Average Byte Miss Rates on San Jose Proxy Server sj novwk5 Trace. 197

6.43 Miss Rates of Simple Cache Replacement Algorithms on Urbana Cham-
paign Proxy Server uc day1 Trace. 198

6.44 Miss Rates of More Complex Cache Replacement Algorithms on Ur-
bana Champaign Proxy Server uc day1 Trace. 199

6.45 Miss Rates of Complex Cache Replacement Algorithms on Urbana
Champaign Proxy Server uc day1 Trace. 200

6.46 Average Miss Rates on Urbana Champaign Proxy Server uc day1 Trace.201

6.47 Byte Miss Rates of Simple Cache Replacement Algorithms on Urbana
Champaign Proxy Server uc day1 Trace. 202

6.48 Byte Miss Rates of More Complex Cache Replacement Algorithms on
Urbana Champaign Proxy Server uc day1 Trace. 203

6.49 Byte Miss Rates of Complex Cache Replacement Algorithms on Ur-
bana Champaign Proxy Server uc day1 Trace. 204

6.50 Average Byte Miss Rates on Urbana Champaign Proxy Server uc day1
Trace. 205

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- xix -

6.51 Composite of Average Miss Rates for Network Proxy Server Traces. . 208

6.52 Composite of Average Byte Miss Rates for Network Proxy Server Traces.209

6.53 Miss Rates of Simple Cache Replacement Algorithms on Boeing Proxy
Cache Server boeing.990301 Trace. 210

6.54 Miss Rates of More Complex Cache Replacement Algorithms on Boeing
Proxy Cache Server boeing.990301 Trace. 211

6.55 Miss Rates of Complex Cache Replacement Algorithms on Boeing
Proxy Cache Server boeing.990301 Trace. 212

6.56 Average Miss Rates on Boeing Proxy Cache Server boeing.990301 Trace.213

6.57 Byte Miss Rates of Simple Cache Replacement Algorithms on Boeing
Proxy Cache Server boeing.990301 Trace. 214

6.58 Byte Miss Rates of More Complex Cache Replacement Algorithms on
Boeing Proxy Cache Server boeing.990301 Trace. 215

6.59 Byte Miss Rates of Complex Cache Replacement Algorithms on Boeing
Proxy Cache Server boeing.990301 Trace. 216

6.60 Average Byte Miss Rates on Boeing Proxy Cache Server boeing.990301
Trace. 217

6.61 Miss Rates of Simple Cache Replacement Algorithms on Purdue Stack
Proxy Server stackproxy Trace. 218

6.62 Miss Rates of More Complex Cache Replacement Algorithms on Pur-
due Stack Proxy Server stackproxy Trace. 219

6.63 Miss Rates of Complex Cache Replacement Algorithms on Purdue
Stack Proxy Server stackproxy Trace. 220

6.64 Average Miss Rates on Purdue Stack Proxy Server stackproxy Trace. 221

6.65 Byte Miss Rates of Simple Cache Replacement Algorithms on Purdue
Stack Proxy Server stackproxy Trace. 222

6.66 Byte Miss Rates of More Complex Cache Replacement Algorithms on
Purdue Stack Proxy Server stackproxy Trace. 223

6.67 Byte Miss Rates of Complex Cache Replacement Algorithms on Purdue
Stack Proxy Server stackproxy Trace. 224

6.68 Average Byte Miss Rates on Purdue Stack Proxy Server stackproxy
Trace. 225

6.69 Miss Rates of Simple Cache Replacement Algorithms on Virginia Tech
BL Trace. 226

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- xx -

6.70 Miss Rates of More Complex Cache Replacement Algorithms on Vir-
ginia Tech BL Trace. 227

6.71 Miss Rates of Complex Cache Replacement Algorithms on Virginia
Tech BL Trace. 228

6.72 Average Miss Rates on Virginia Tech BL Trace. 229

6.73 Byte Miss Rates of Simple Cache Replacement Algorithms on Virginia
Tech BL Trace. 230

6.74 Byte Miss Rates of More Complex Cache Replacement Algorithms on
Virginia Tech BL Trace. 231

6.75 Byte Miss Rates of Complex Cache Replacement Algorithms on Vir-
ginia Tech BL Trace. 232

6.76 Average Byte Miss Rates on Virginia Tech BL Trace. 233

6.77 Miss Rates of Simple Cache Replacement Algorithms on Virginia Tech
G Trace. 234

6.78 Miss Rates of More Complex Cache Replacement Algorithms on Vir-
ginia Tech G Trace. 235

6.79 Miss Rates of Complex Cache Replacement Algorithms on Virginia
Tech G Trace. 236

6.80 Average Miss Rates on Virginia Tech G Trace. 237

6.81 Byte Miss Rates of Simple Cache Replacement Algorithms on Virginia
Tech G Trace. 238

6.82 Byte Miss Rates of More Complex Cache Replacement Algorithms on
Virginia Tech G Trace. 239

6.83 Byte Miss Rates of Complex Cache Replacement Algorithms on Vir-
ginia Tech G Trace. 240

6.84 Average Byte Miss Rates on Virginia Tech G Trace. 241

6.85 Composite of Average Miss Rates for Client Proxy Server Traces. . . 244

6.86 Composite of Average Byte Miss Rates for Client Proxy Server Traces. 245

6.87 Miss Rates of Simple Cache Replacement Algorithms on OnCommand
On-Demand Movie Server daysum1 Trace. 246

6.88 Miss Rates of More Complex Cache Replacement Algorithms on On-
Command On-Demand Movie Server daysum1 Trace. 247

6.89 Miss Rates of Complex Cache Replacement Algorithms on OnCom-
mand On-Demand Movie Server daysum1 Trace. 248

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- xxi -

6.90 Average Miss Rates on OnCommand On-Demand Movie Server day-
sum1 Trace. 249

6.91 Byte Miss Rates of Simple Cache Replacement Algorithms on OnCom-
mand On-Demand Movie Server daysum1 Trace. 250

6.92 Byte Miss Rates of More Complex Cache Replacement Algorithms on
OnCommand On-Demand Movie Server daysum1 Trace. 251

6.93 Byte Miss Rates of Complex Cache Replacement Algorithms on On-
Command On-Demand Movie Server daysum1 Trace. 252

6.94 Average Byte Miss Rates on OnCommand On-Demand Movie Server
daysum1 Trace. 253

6.95 Miss Rates of Simple Cache Replacement Algorithms on DVJ2 Educa-
tional Multimedia Video Server dvj2 99f Trace. 254

6.96 Miss Rates of More Complex Cache Replacement Algorithms on DVJ2
Educational Multimedia Video Server dvj2 99f Trace. 255

6.97 Miss Rates of Complex Cache Replacement Algorithms on DVJ2 Ed-
ucational Multimedia Video Server dvj2 99f Trace. 256

6.98 Average Miss Rates on DVJ2 Educational Multimedia Video Server
dvj2 99f Trace. 257

6.99 Byte Miss Rates of Simple Cache Replacement Algorithms on DVJ2
Educational Multimedia Video Server dvj2 99f Trace. 258

6.100Byte Miss Rates of More Complex Cache Replacement Algorithms on
DVJ2 Educational Multimedia Video Server dvj2 99f Trace. 259

6.101Byte Miss Rates of Complex Cache Replacement Algorithms on DVJ2
Educational Multimedia Video Server dvj2 99f Trace. 260

6.102Average Byte Miss Rates on DVJ2 Educational Multimedia Video
Server dvj2 99f Trace. 261

6.103Miss Rates of Simple Cache Replacement Algorithms on Truncated
Discrete Exponential Distribution Model Traces. 264

6.104Miss Rates of More Complex Cache Replacement Algorithms on Trun-
cated Discrete Exponential Distribution Model Traces. 265

6.105Miss Rates of Complex Cache Replacement Algorithms on Truncated
Discrete Exponential Distribution Model Traces. 266

6.106Average Miss Rates on Truncated Discrete Exponential Distribution
Model Traces. 267

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- xxii -

6.107Byte Miss Rates of Simple Cache Replacement Algorithms on Trun-
cated Discrete Exponential Distribution Model Traces. 268

6.108Byte Miss Rates of More Complex Cache Replacement Algorithms on
Truncated Discrete Exponential Distribution Model Traces. 269

6.109Byte Miss Rates of Complex Cache Replacement Algorithms on Trun-
cated Discrete Exponential Distribution Model Traces. 270

6.110Average Byte Miss Rates on Truncated Discrete Exponential Distribu-
tion Model Traces. 271

6.111Miss Rates of Simple Cache Replacement Algorithms on Binomial Dis-
tribution Model Traces. 272

6.112Miss Rates of More Complex Cache Replacement Algorithms on Bino-
mial Distribution Model Traces. 273

6.113Miss Rates of Complex Cache Replacement Algorithms on Binomial
Distribution Model Traces. 274

6.114Average Miss Rates on Binomial Distribution Model Traces. 275

6.115Byte Miss Rates of Simple Cache Replacement Algorithms on Binomial
Distribution Model Traces. 276

6.116Byte Miss Rates of More Complex Cache Replacement Algorithms on
Binomial Distribution Model Traces. 277

6.117Byte Miss Rates of Complex Cache Replacement Algorithms on Bino-
mial Distribution Model Traces. 278

6.118Average Byte Miss Rates on Binomial Distribution Model Traces. . . 279

6.119Miss Rates of Simple Cache Replacement Algorithms on Triangular
Window Distribution Model Traces. 280

6.120Miss Rates of More Complex Cache Replacement Algorithms on Tri-
angular Window Distribution Model Traces. 281

6.121Miss Rates of Complex Cache Replacement Algorithms on Triangular
Window Distribution Model Traces. 282

6.122Average Miss Rates on Triangular Window Distribution Model Traces. 283

6.123Byte Miss Rates of Simple Cache Replacement Algorithms on Trian-
gular Window Distribution Model Traces. 284

6.124Byte Miss Rates of More Complex Cache Replacement Algorithms on
Triangular Window Distribution Model Traces. 285

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- xxiii -

6.125Byte Miss Rates of Complex Cache Replacement Algorithms on Tri-
angular Window Distribution Model Traces. 286

6.126Average Byte Miss Rates on Triangular Window Distribution Model
Traces. 287

6.127Admission Policy Comparison of HP World Cup 1998 Web Server Farm
wc week14 Trace. 297

6.128Admission Policy Comparison of dsl log DSML Web Server Trace. . . 298

6.129Admission Policy Comparison of Virginia Tech BR Trace. 299

6.130Admission Policy Comparison of Boulder1 Proxy Server bo1 day1 Trace.300

6.131Admission Policy Comparison of San Jose Proxy Server sj novwk5 Trace.301

6.132Admission Policy Comparison of Urbana Champaign Proxy Server
uc day1 Trace. 302

6.133Admission Policy Comparison of Boeing Proxy Cache Server boeing.990301
Trace. 303

6.134Admission Policy Comparison of Purdue Stack Proxy Server stack-
proxy Trace. 304

6.135Admission Policy Comparison of Virginia Tech BL Trace. 305

6.136Admission Policy Comparison of Virginia Tech G Trace. 306

6.137Admission Policy Comparison of OnCommand On-Demand Movie Server
daysum1 Trace. 307

6.138Admission Policy Comparison of DVJ2 Educational Multimedia Video
Server dvj2 99f Trace. 308

6.139OnCommand Workload Video Session Duration Percentages. 313

6.140OnCommand Network Traffic Comparison of Top Cache Replacement
Algorithms and No Cache Bandwidth Usage. 314

6.141DVJ2 Workload Video Session Duration Histogram. 316

6.142DVJ2 OnCommand Network Traffic Comparison of Top Cache Re-
placement Algorithms and No Cache Bandwidth Usage. 317

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- xxiv -

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- xxv -

ABSTRACT

Reuther, Albert I., Ph.D., Purdue University, August, 2000. Distributed Multimedia
Proxy Cache Replacement Algorithms. Major Professor: David G. Meyer.

Implementation of caches in multimedia proxy servers can significantly improve

the delivery of media by reducing media retrieval latency, reducing network band-

width usage, increasing the number of clients that can be served simultaneously, and

increasing the fault tolerance of the server system. An important component of proxy

server caches is the cache object replacement algorithm, which determines which ob-

jects are removed from the cache when storage space is needed for placing new objects

into the cache. These algorithms must effectively predict which currently cached ob-

jects are not expected to be accessed in the near future so they can be removed.

However, these algorithms must also be fast; i.e. they cannot be too computationally

complex, because these algorithms must execute often on caches that usually contain

a large number of objects. Current implementations of proxy cache servers (Squid,

Inktomi Traffic Server, Novell Internet Caching System, etc.) use the least-recently

used cache replacement algorithm, but a number of other object statistics could be

used as part of the cache replacement algorithm calculations.

This research presents the fully-associative, variable block size cache replacement

algorithm problem as a unique model which illuminates a new method for looking at

cache replacement algorithm issues. The study then explores the use of a variety of

cache object statistics and how well these other statistics help predict the expected

future demand for cached objects. Simulations are used as the method of comparison,

and actual and stochastic data from WWW traces, commercial hotel video system

traces, and educational multimedia system video traces are used as simulation input.

Also, the effectiveness of admission policies and caching large videos is explored.

Not only will the findings from this study impact the World-Wide Web caching

infrastructure and distributed multimedia system implementations, but the findings

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- xxvi -

can also influence the efficiency of distributed databases and other distributed infor-

mation systems.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 1 -

1. Introduction

1.1 The Problem

Computers and multimedia are being used to augment educational experiences

in exciting ways. For many universities and corporations, one of the most inspiring

applications is for just-in-time distance learning. By taking advantage of computer

workstations on the learner’s desk and a fast computer network, educational multi-

media can be delivered directly to the computer desktop.

Local area networks (LANs), implemented with the latest Ethernet 100 Base-T

technology, can deliver a modest number of multimedia streams simultaneously. How-

ever, current wide area network (WAN) technology cannot accommodate large a-

mounts of educational multimedia per time unit because it requires a great deal of

bandwidth to be delivered in a timely manner while maintaining a reasonable qual-

ity of service. This is especially evident in the case of multimedia videos. Quality

of service (QoS) addresses the resolution and frame rate of the multimedia videos.

To provide a picture of where the current technology is, the servers in the Purdue

School of Electrical and Computer Engineering Digital Systems/Multimedia Learning

Lab are delivering 720 by 480 pixel MPEG2 videos at 30 frames per second, which

translates into a network bandwidth consumption of 2.5 to 3.0 megabytes/second per

video.

The problem can be examined further using an example. In several years, Purdue

University will probably have a central archive of multimedia modules that are served

throughout campus to students at their workstations all across the campus.

For the sake of the example, say that this central archive is located in the main

library and is implemented with a large number of file/media servers called a server

farm. This server farm has access to all of the archived media objects which are stored

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 2 -

on hard disks, optical storage devices, and/or tape storage devices. Each building

on campus that has computer labs, including residence halls, will then have proxy

servers. A proxy server is a server that stores a subset of the media on the main

server farm. This media subset is stored on a portion of its hard disk array called

the proxy server cache. The proxy servers are connected to the central server farm

using WAN technology. All of the workstations within buildings are connected to

the proxy servers using LAN technology [Tob95]. Generally, LAN technology is much

faster at delivering media than WAN technology, but LAN technology is limited by

the distance that it can deliver data. Also, the LAN is only shared by all of the

workstations within a building, while the campus WAN is shared by all of the proxy

servers on campus, and indirectly by all of the workstations on campus. So if ways

can be found to decrease the bandwidth that is used on the WAN by shifting it to

LAN traffic, WAN bandwidth will be saved for more user capacity and for other

applications.

Say that a student is sitting at a workstation in the engineering library. When

that student requests a media object, the engineering library proxy server acts like

the central server farm, if it can, by delivering the requested media object from its

proxy server cache if a copy of the requested object is available in the cache. If a

copy of the requested object is not available in the proxy server cache, then the proxy

server requests the media object from the central server farm at the main library.

The central server farm then serves the student’s request, and the engineering library

server must decide whether to place a copy of the media object into its proxy server

cache.

This determination of what media objects should be placed in the proxy server

cache is the focus of this study. The engineering library server must compare the

expected demand for the requested media object to the expected demand of the

media objects that the server currently is holding in its proxy server cache. If the

expected demand of the requested media object is less than the expected demand of

all the other objects in the proxy server cache, then the engineering library server

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 3 -

will just deliver the media object to the student’s workstation and will forego copying

the media object to its proxy server cache. However, if the engineering library server

decides to store a copy of the requested media object in its proxy server cache and

there is not enough space in the cache to accommodate the requested media object,

the engineering library server must decide which media object to evict from its cache.

Again this is done by comparing the expected demand for each of the media objects

in the cache. The media object with the least expected demand is evicted. The next

time that evicted media object is requested in from a engineering library workstation,

it must be delivered from the central proxy server and the engineering library server

must again decide whether to make a copy of that media object in its proxy server

cache.

But this does not yet address how to determine the expected demand for each of

the media objects. The expected demand is calculated by algorithms that are gener-

ally referred to as cache replacement algorithms. Currently the majority of research

effort is being expended on cache block replacement algorithms to increase micro-

processor efficiency, to increase database efficiency, and to increase World Wide Web

document retrieval efficiency. The research in these areas provide a basis from which

to start, but the data that is cached in these applications is far smaller in size than

that of the media objects. The sizes of data blocks for microprocessors, databases,

and WWW documents are anywhere from a several bytes to several megabytes, while

the media objects are often many megabytes and even several gigabytes in size. So

the bandwidth cost of making an error in predicting the expected demand of data is

much less for the microprocessor, database, and WWW data than for media objects.

The cache replacement algorithms that are currently being researched are gener-

ally simple, easy-to-calculate algorithms. The algorithms use such statistics as the

time since the last access, number of accesses of the cached data, and document size

[Bes97]. In order to keep the calculations simple and fast, usually only one of the

above statistics is used.

Because the potential cost of making an error in predicting the expected demand

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 4 -

of a media object is much greater than for other applications, it is reasonable to

spend more calculation time by using more sophisticated cache replacement policies

to give us a greater ability to make better predictions. This study proposes combining

several of the above-mentioned statistics to better predict the expected demand. The

exploration in this study, though, is not limited to only multimedia systems. A

significant portion of this research addresses the issues of Internet proxy caches, since

there is still room for improving the cache replacement algorithms used in them.

Regardless of what document statistics are used, it can be expected that the cache

replacement algorithms that perform the best are the ones that make replacement

choices that best match the underlying client access patterns of given media delivery

system.

1.2 Significance of Problem

As alluded to, the bottleneck in delivering multimedia and Web content over

networks is the network bandwidth, the amount of data that the network can transmit

in a given amount of time, and throughput of the the media server(s) . By caching

media objects in proxy server caches closer to the students’ access points, a decrease

in overall network bandwidth usage will be realized when a requested media object

is in the proxy server cache. The data traffic of the heavily shared campus WAN and

Internet is decreased whenever a media object can be delivered from the proxy server

cache. Of course the traffic on the LAN is not decreased; the media object must still

be delivered to the student’s workstation. Also, server farm usage is decreased and

the load of serving the media is shared between the central server farm and the proxy

servers.

Decreasing the data traffic on the campus WAN and Internet and decreasing the

central server farm load and origin servers has several implications. The unutilized

bandwidth can be used to accommodate more users, and it could mean longer time

between major network hardware upgrades. It means that the central server farm

and origin servers will also be able to accommodate more clients while providing the

clients with faster retrieval time, since the object is being served by the proxy server

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 5 -

and not the central server farm and origin servers. Also, the entire delivery system

will be more fault tolerant because media objects do not have to be delivered from

the origin server, if it is out of service, since any cache proxy server with the object

could essentially deliver the object.

Furthermore, this technology does not need to be limited to the virtual classroom.

Similar usage patterns can be derived for commercial video-on-demand systems, which

are on the horizon for many areas of the United States, Europe, and Asia. These

systems allow customers to access movies and other video programs from the comfort

of their living rooms and have the selected program delivered on request. By having

proxy server caches in neighborhoods, customers can have quick and efficient access

to the movies they want when they want to see them [AK96]. Predecessors to these

systems are already being implemented by delivering video over the WWW. These

systems are being implemented by companies like Apple, Akamai, and Novell with

QuickTime TV, RealNetworks with Broadcast.com, and Microsoft [Gro99]. Two of

these video systems have even released video proxy cache server software for delivering

web videos. Novell with their Internet Caching System server software implements

video caching for Apple’s QuickTime TV system [Mat99], while RealNetworks has

teamed up with Inktomi to deliver RealProxy caching server software [Ink99]. As

these companies realize, these systems can benefit from localized proxy cache systems

as well. And by implementing the most effective cache replacement policies in these

localized proxy servers, the WAN bandwidth is kept lower and customer access times

are greatly decreased because most video accesses will not have to be delivered from

a more centralized server farm.

And as it has been alluded, the findings of this study should be applied to WWW

document retrieval systems. Currently, WWW proxy servers such as NLANR’s Squid,

Network Appliance’s NetCache, Inktomi’s Traffic Server, the Microsoft Proxy Server,

and others use the least-recently used replacement policy. An initiative has been

proposed by HP Labs to include a few other replacement policies into the Squid

source code, but an all out comparison has still not been conducted to determine

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 6 -

clear performance champions for different client access patterns. The more complex

replacement algorithms very well may improve the performance of these systems,

especially as these types of systems involve larger sets of data.

1.3 Research Contributions

This research makes several contributions. First, it presents the fully-associative,

variable block size cache replacement algorithm problem as a unique model which illu-

minates a new method of looking at its issues. This research explores the performance

of the cache replacement algorithms using a wide variety of traces and situations that

are encountered in distributed multimedia systems including web server traces and

multimedia system traces. Also, the research is the first public study to actually use

video server event traces from an educational multimedia testbed system (the Video

Jockey systems) and from a commercial hotel video server system (the OnCommand

OCX [OnC99b] system). This study analyzes the statistics of the workload traces,

and justifies the need to determine which proxy caching domain in which the proxy

caching server will be used by showing the differences in several significant statistics

for the different proxy caching domains.

Most previous studies have only compared a few cache replacement algorithms

at a time. This research compares most of the cache replacement algorithms from

previous studies using a variety of input workload access traces from various regions

of the delivery network. Another contribution of this study is the introduction of four

new cache replacement policies which are based on observations from other studies

and on various workload access traces. The goal of this research determines which

of these replacement policies perform best for different types of systems in different

proxy caching domains, thereby determining which cache object statistics are most

important for determining the future access patterns for various typical system traces.

Finally, it explores the effectiveness of using a cache admission policy in determining

whether a document should be cached when it is first accessed and explores whether

video server traces should be cached in proxy servers or should merely be buffered.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 7 -

2. Statement of Problem

2.1 Caches in Distributed Multimedia Systems

Since their introduction in the 1960s [Wil65], data caches have made data hier-

archies an effective way of improving system performance. The caches are placed

between the data storage devices and data consumers. In computer memory systems,

this data hierarchy paradigm is implemented with the central processing unit as the

data consumer while the main memory is considered the main data storage devices.

One or more levels of cache are situated between storage devices and the consumers.

The caches strategically store a subset of the information from a higher level with the

intent of faster delivery of the data to the consumer while saving interconnect traffic

bandwidth between the main data storage devices and the consumer.

Cache memory principles have been used by many more applications than just

computer memory systems. They have been implemented in database transaction

buffers, operating systems virtual memory direct paging algorithms, computer sys-

tems’ I/O and disk buffers, and distributed multimedia systems. Distributed multi-

media systems include distributed data dissemination hierarchies on the World-Wide

Web as well as smaller, networked video-on-demand multimedia systems. The anal-

ogy between computer memory systems and server cache systems is illustrated in

Figure 2.1. In this thesis, the focus is on these distributed multimedia systems.

Within these distributed multimedia systems, caches can be utilized in four do-

mains: main server proxy caches, network proxy caches, firewall/proxy server caches,

and client caches. These four domains are illustrated and enumerated in Figure 2.2.

1. Main server caches are a part of the main server farm that houses the central

data storage, and they duplicate a portion of the main server’s data to decrease

the main server’s latency and increase the effective bandwidth that the main

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 8 -

Main (DRAM) Memory

Cache (SRAM) Memory

uP

Processor(s)

Disc Archives and/or Server Farms

Proxy
Server

Distributed
Media Users

Network

Fig. 2.1. Comparison of a Computer Memory Hierarchy to a Hierarchical
Distributed Server Cache System

Main
Server

Main Server
Proxy Caches

Clients

 Client Proxy
Server Cache

Internet

Internet

Network
Proxy
Caches

1 1

2 2 2
3

4 4

Fig. 2.2. Domains of Distributed Multimedia System Proxy Caches

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 9 -

server can deliver. However, this configuration does not decrease the network

bandwidth usage from the main server to the client. The main server caches

generally proxy a small working set of documents as compared to the World

Wide Web as a whole.

2. Network proxy server caches are placed somewhere on the network between

the main server and the client proxy servers, and they are often placed at the

interface between the network backbone and the tributary networks. They

cache the media requests for all of the clients of its tributary networks thereby

saving the latency and network bandwidth from retrieving data from the main

servers when cache hits occur. The working set of documents these network

proxy servers can cache is the entire World Wide Web, an enormous set!

3. Client proxy server caches are usually placed within the internet service provi-

der’s systems, for residential and small business service, or among the firewall

servers in corporations and institutions. They cache the media requests for all

of the clients of its client networks thereby saving the latency and network band-

width from retrieving data from the main servers when cache hits occur. The

working set of documents these network proxy servers can cache is potentially

the entire World Wide Web. But this set is usually more limited since clients

with similar jobs, interests, and other such demographics tend to access similar

web documents.

4. Finally, client caches are implemented on the users’ computers, and they also can

save latency and network bandwidth on cache hits. However, when caching large

audio and video multimedia files, the client caches are not especially effective

because users are not likely to consume the same video or audio file more than

once in a short time frame.

2.2 The Path to Hierarchical Distributed Multimedia Systems

Before we proceed with exploring caches in distributed multimedia systems, it is

interesting to follow the path that has led to these distributed multimedia systems as

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 10 -

a whole. In the early 1990’s as computer systems were becoming powerful enough to

begin implementing multimedia distribution systems, it became apparent to a number

of research teams that multimedia files could not be handled by servers as regular files

were handled [GC92, LS93, Has93, DT94]. With normal file servers, the latency of the

desired file can be sacrificed, to some extent, as long as the file is exchanged error-free

between the file server and the user – accuracy is more important than latency. With

multimedia files, these priorities are reversed. Since audio and video frames must be

delivered in the proper sequence, each frame must be delivered by a deadline, which

must be met to ensure the smooth delivery of the media. If the deadline is missed for

a frame or set of frames, it is best for the delivery of the frame(s) to be canceled and

dropped, because they are no longer of any use. The frames that follow the dropped

frames should then be delivered. The system can then recover from the errors caused

by the dropped frames, but the delivery of the multimedia stream as a whole is not

delayed. In the aforementioned references, these principles were applied to single

servers and server farms with no sense of hierarchy in the system.

Several more studies examined server storage techniques that would better ensure

the timely delivery of multimedia files by these hierarchy-less server systems. [RV93,

LS93, TP93, TPBG93, DSK94, KCS94, CGM97, SC98] looked at various disk drive

array issues that improve the delivery of multimedia files by multimedia servers.

Another set of studies examined the use DRAM memory buffers that temporarily store

portions of multimedia streams that are enroute from the server’s disk drive arrays to

the multimedia clients via the server’s network interface [NY94, DDM+95, KRT95,

OBRS95]. These buffering systems allowed very limited sharing between multimedia

clients. This sharing of a buffered multimedia file occurred when multiple clients start

retrieving the same file within a short period of time. However, such DRAM buffering

presents a significant problem when clients are allowed to pause, fast forward, and

review (rewind) video files. The buffer must reset its contents to the new point in the

video which may incur a relatively significant latency.

The tutorial article by Gemmell, Vin, Kandlur, Rangan, and Rowe [GVK+95]

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 11 -

provides an excellent background on these main server issues. More recently Jack

Y.B. Lee discussed the issues involved in implementing parallel video servers as the

main video server farm [Lee98].

Meanwhile, the World-Wide Web was developed as a distributed media network.

Muntz and Honeyman proposed modifying the Andrews distributed network file sys-

tem (calling it iAFS) to implement multi-level caches on the World-Wide Web [MH92].

They ran simulations of a hypothetical iAFS used in a network proxy cache and found

that it would improve the performance of the main Web servers by “substantially”

decreasing the peak request rates at the main file server. Danzig, Hall, and Schwartz

researched the use of network proxy servers for FTP traffic on NSFnet [DHS93]. They

found that the network proxy servers could indeed decrease the FTP network band-

width. They, however, did express several concerns about cache consistency across the

Web and were not sure that the complexity of maintaining consistency justified the

gains found in network proxy caching. Glassman implemented a proxy caching relay

server for HTTP and Gopher traffic at the Palo Alto Digital Equipment Corporation

site [Gla94]. Glassman found that 30% to 50% of all requests could be serviced from

the proxy cache. He did have some issues with determining how long Web documents

remained valid (unchanged). The best overview paper on World-Wide Web proxy

caches is from Luotonen and Altis [LA94]; it overviews many issues about proxy Web

server caches including the effectiveness of proxy server caches (implemented as fire-

walls) over client caches, the implementation of proxy server caches as both server and

client, the estimation of time-to-live of Web objects, and using push caching related

Web objects. Though they did not share any experimentation results, they strongly

suggested that Web proxy server caches would show noticeable speedups in retrieval

time.

Two open source hierarchical Internet object caches have emerged in the past

few years. Both Harvest [CDN+96] and Squid [Wes96] allow multiple-level hierar-

chies across the World-Wide Web. Both have been shown to improve Web object

retrieval times. The success of these two open source caches has prompted a number

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 12 -

of companies to develop and release their own Internet object caches. These compa-

nies include Akamai, Inktomi, Microsoft, Netscape, NetWare, Network Appliances,

CacheFlow, InfoMedia, and others.

A good article that discusses the issues of implementing a World-Wide Web server

farm is [KMR95]. The article details how the NCSA’s server at the University of

Illinois at Champaign-Urbana is implemented using a main server farm of Hewlett-

Packard workstations running the Andrews distributed network file system [Sat90].

There are two other distributed network file systems that can be used for main server

farms: Coda [SKK+90] and the Continuous Media File System, CMFS [AOG92].

During the mid-1990’s, two concept articles were published by Prof. P. Venkat

Rangan and his research team at the University of California at San Diego that took

the hierarchical distribution network to distribute audio and video content multime-

dia.

In the first of these two articles, Ramanathan and Rangan proposed Personal

Service Agents (PSA’s) that implement intelligent caching strategies to strategically

store multimedia content in the hierarchical network [RR94]. These PSA’s take into

account the cost of storage at a network proxy cache server versus the cost of retrans-

mitting the content on the network. In the article, two significant assumptions are

made. The first assumption is that of full program caching. That is, no longer are

only portions of a multimedia program being buffered, but rather the entire program

is cached in a network proxy server cache. This implies that a greater number of

clients could share the same program from the network proxy server cache, but it

also means that much more storage capacity is required. The second assumption is

that the client multimedia program requests are known ahead of time; they are not

on-demand requests. This allows optimal or near optimal placement and scheduling

of programs in the network. With the current technology, the assumption of full

program caching is realistic for most multimedia hierarchical networks. But the as-

sumption of knowing client request a priori is unrealistic, because it demands too

much planning on the part of the clients. The concepts of [RR94] were patented in

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 13 -

[Ran96].

In the second of these concept articles, Papadimitriou, Ramanathan, and Rangan

further illuminate the theoretical implementation of the PSA’s and how the PSA’s

schedule multimedia programs as the programs are cached across the hierarchical net-

work [PRR94]. The article also assumes full program caching and a priori knowledge

of client requests. The content of this article is also expanded in a patent [PR97].

Around the same time, Tobagi proposed and began implementing a hierarchi-

cal network multimedia system for multimedia education on a university campus.

[NJT93] discusses the issues involved in implementing computer networks on campus

for the use of delivering educational multimedia. Then in [Tob95], Tobagi gave an

overview of the entire campus system for realizing a multimedia education system for

an entire university campus, including the main servers and proxy servers, the client

stations, and the multimedia database.

On the commercial side, the success of Web document caches has driven several

companies to develop Web-based video and media proxy caches. RealNetworks has

worked with Inktomi to release a Inktomi Traffic Server based cache software that

caches entire RealVideo and RealAudio files [Ink99]. Also, RealNetworks has an

agreement with Akamai Technologies for streaming video and audio content [Aka99b].

Microsoft joined forces with InfoLibria to collaborate on the InfoLibria MediaMall

software cache. MediaMall caches Microsoft VideoPlayer videos [Inf99]. And finally,

Apple has partnered with Akamai and Netware to cache QuickTime video and audio

documents and streams within the Internet network [Aka99a].

Now that we have a better understanding of what has been explored in the area of

distributed multimedia systems, we can further explore the role of cache replacement

algorithms for the systems.

2.3 Cache Replacement Algorithms

In any caching system, the cache replacement algorithm is critical in implementing

an effective cache. As was previously explained, the cache temporarily stores a subset

of the working set of objects of the entire system. Since it only caches a subset of

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 14 -

the whole, the implication is that the cache will become full when its capacity is

completely used. But the cache cannot just stop accepting new objects; it must

determine what objects to remove from the cache to make room for the new ones.

This is where the cache replacement algorithm is used.

The cache replacement algorithm should predict the expected demand of cachable

objects by approximating the future client access patterns to be most effective. This

prediction must be done based on cache object statistics from past accesses. Usually

the new object is not included in this prediction process, since it is assumed to be more

valuable than the objects that are currently in the cache. However, if the prediction

includes the newly accessed object, the cache is said to implement an admission policy.

Three fairly simple cache replacement algorithms, random, first-in first-out (FI-

FO), and least recently used (LRU), have been studied and compared extensively.

More recently, other object statistics have been considered for making the replace-

ment decision such as the frequency of use (least frequently used - LFU) [RD90, PR94],

the size of the cached object [WAS+96], the network and server bandwidth needed to

deliver the object [TVDS98], and the type of object that is being cached [TVDS98,

AW97]. Many of these object statistics have been combined in replacement decisions,

though there are many others that have not been explored. Usually though, these

more complex replacement algorithms have only been compared to LRU, FIFO, and

random. Also, many of the studies have used few and limited workload traces to eval-

uate the performance of these replacement algorithms. Hence this research explores

taking advantage of multiple cache object statistics by comparing a large number of

cache replacement algorithms using a variety of workload traces from various diverse

sources. Furthermore, by analyzing the existing replacement algorithms and by sta-

tistically analyzing the workload traces used in this study, several more replacement

algorithms are proposed and compared to the existing ones. It is expected that by

using strategic information of the statistics of the cache objects, more effective de-

cisions can be made in replacing cache objects. The progression of developments in

cache replacement algorithms are discussed in Chapter 3.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 15 -

Fig. 2.3. Knapsack-carrying Thief with Proxy Cache Server

2.4 The 0-1 Knapsack Problem and Cache Replacement Algorithms

The distributed multimedia system caches are fully associative caches since an

incoming object can displace any of the objects currently being stored in the cache

when there is not enough storage space for the incoming object. (In caches that are not

fully associative, an incoming object can only displace a subset of the currently cached

objects.) Since these caches are fully associative and the cached objects generally have

variable sizes, we can think of the caches as instances of 0-1 knapsack problems as

proposed by [TVDS98]. As it is presented in [CLR90], the 0-1 knapsack problem

places a thief with a knapsack in a store that has a set of objects. The objects each

have a associated worth and weight. The thief wants to get away with the most

valuable set of objects but can only carry a certain weight. In its purest form, with

the object worth and weights being non-negative, real numbers, the 0-1 knapsack

problem is NP-complete [GJ79]. Since [CLR90] states that the worth and weight of

the objects and the knapsack carrying capacity of the thief are both expressed as

integers, we shall assume that the worth of the objects can actually be expressed as

non-negative real numbers.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 16 -

Mapping the 0-1 knapsack problem to the caching problem, the thief’s knapsack

carrying capacity is equivalent to the storage capacity of the disk cache of the server.

The worth of the store’s objects is calculated by the cache replacement algorithm. To

help further this analogy, we shall call the media object worth its cache replacement

score (CRS). The concept of the cache replacement score was first introduced by

Timos K. Sellis in [Sel88] as an intelligent caching technique for relational database

systems. It was first introduced to distributed multimedia caching in world-wide

web servers in [TVDS98], and there it was called the “goodness value”. The cache

replacement score was explored without knowledge of the [Sel88] article in [Reu96],

where the concept was used to compare several cache replacement algorithms on

stochastic traces of educational video-on-demand systems.

In the server caching problem, the thief’s knapsack dilemma must be solved each

time the cache does not have enough capacity to store the media object that was most

recently accessed. At this point, the CRS of each of the cached objects is calculated.

The cache makes room for the new object by removing the lowest scoring cached

object. If there still is not enough storage space in the cache, it removes the next

lowest scoring cached object, and so on until the most recently accessed object can

be accommodated in the cache. So essentially, each cache object’s CRS is calculated,

the objects are sorted, and then removed in ascending order until the new object can

be accommodated. This sorting of objects is similar to that used in[WAS+96]. This

would be equivalent to the worth of the objects of the thief and the store changing

every night. Each night the thief returns to the store and picks an object off of

the store’s shelves that is assumed to be a higher value than some of the objects

in his knapsack. (If the wolf actually calculates the worth of the new object, then

he is employing an admission policy to his knapsack.) So he discards the objects

with the lowest worth until he can accommodate this new object. [CLR90] discusses

this greedy approach to solving the 0-1 knapsack problem. This greedy approach,

however, is not optimal.

A dynamic programming algorithm as described in [CLR90] solves the 0-1 knap-

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 17 -

Data
Pointer

Cache Object

Size

ID Number

Type

First Access

Last Access

Access Count

Bandwidth Required

Time-to-Retrieve

Time-to-Live

Cache Replacement Score

Fig. 2.4. A Cache Object Data Structure and Associated Data Members

sack problem optimally, but in terms of the caching problem, it requires knowledge

of future accesses of media. Basically, the dynamic programming algorithm selects

the objects that are currently in the cache as the set of objects from the entire set

of system media objects that will be needed to satisfy the requests that are coming

up in the future. But, unless the cache is knowledgeable of future accesses by imple-

menting user reservation of objects, these object statistics are not available. These

are media-on-demand systems in which users shouldn’t have to preorder their media

wants. Therefore, we shall explore the greedy approach which can be implemented

by using only past and present statistics of the objects.

For most existing cache block replacement algorithms, the concept of a cache

replacement score can be used. The CRS data member is associated with each object

in a cache (see Figure 2.4), and its value is used as the criteria to determine which

objects will remain in the cache and which objects will be removed. It is should

be kept as a floating point number, and the cache object with the lowest score gets

replaced. The cache score algorithm is a method that is associated with an entire

cache or a portion of a cache.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 18 -

2.5 Calculating the Cache Replacement Score

Using the cache replacement score paradigm for determining cache object eviction

offers some advantages. We can develop simple CRS algorithms for simple replace-

ment algorithms and combine those simple components to create more complex cache

replacement score equations. This allows greater flexibility for determining the CRS.

By including more statistics of the cache object in the determination of cache removal,

these more complex cache replacement algorithms are expected to better predict the

expected demand for objects in the cache. And by better predicting the expected

demand of objects in the cache, the cache miss rate and cache hit latency will de-

crease, while also decreasing the network bandwidth usage. Also, different cache score

equations can be used for different file types, different types of objects, or differently

sized objects, which could further reduce the cache miss rate.

The three most common cache replacement algorithms are random (RND), least

recently used (LRU), and first-in, first-out (FIFO) [Smi82]. The RND, LRU, and

FIFO replacement algorithms can be defined in terms of this CRS concept. With

the RND algorithm, the score for each object in the cache is determined by uniform

random number generator. For the sake of generality, we can let the uniform random

number be in the range [0, 1], and the CRS, s, for cache object i, becomes

sRND
i = rand(·). (2.1)

Each cache object, i, has a data member li that records when the object was last

accessed, and another data member ei that records when the object was most recently

entered in the cache. Both of these can be recorded as clock time in seconds or as

relative cache access counts when the object was accessed or entered in the cache;

it generally does not matter which is used since both are non-decreasing. With t

being the current time (or current cache access count), the LRU CRS for object i is

calculated as

sLRU
i = 1/(t− li), (2.2)

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 19 -

and the FIFO CRS is calculated as

sFIFO
i = 1/(t− ei). (2.3)

The differences in time are in the denominator because the lowest scoring objects are

replaced first so larger time intervals need to have lower scores.

Many other object statistics can be used in the CRS calculation including the

object type (text, graphics, audio, video, etc.), the object’s size (or the logarithm of

the object’s size) [WAS+96], the time-to-retrieve (TTR) request [BH96], the time-to-

live (TTL) estimates [BH96], and the frequency of use (LFU) [RD90, PR94].

Since the lowest scoring cached object is the one that will be removed from the

cache when more storage space is needed, we need to write the CRS equations to

reflect this order of priorities. For different object types, we can assign different

priorities to the different types, i.e., for text, s = 1, for graphics, s = 2, etc. The

statistic of object size, z, is usually stored as it’s size in bytes, kilobytes, or megabytes.

With z, we have the freedom to determine whether we want to make smaller or larger

files to be removed first. This is achieved by

ssize
i = zi, (2.4)

with which small files are removed first, or

ssize
i = 1/zi, (2.5)

with which large files are removed first. These equations can also be written using

the logarithm (usually base 2) of the size:

ssize
i = log2(zi), (2.6)

with which small files are removed first, or

ssize
i = 1/ log2(zi), (2.7)

with which large files are removed first. These logarithms are not used on their own

but are used in combination with other statistics in more complex cache replacement

algorithms.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 20 -

The cache servers should minimize the time required to load the objects, thereby

implying that network traffic is minimized. Hence, the longer it takes to load an object

into cache, the harder it should be to remove it from the cache. The time-to-retrieve,

ttr , should be in the numerator of the score calculation:

sTTR
i = ttr i. (2.8)

As with time-to-retrieve, time-to-live should be in the numerator:

sTTL
i = ttl i. (2.9)

The time-to-live measure is an active research area in itself, and it tries to estimate

how much longer a given object will be valid (i.e., will not be change at the origin

server). So the longer it is expected to be valid, the higher its score. However,

determining the time-to-retrieve and time-to-live are difficult to measure and gain

accuracy. For instance, for time-to-retrieve values, should the value be used when the

object was actually retrieved or the current value if the object were retrieved again?

Using the value from when the object was originally accessed could be very inaccurate;

if the network was very busy at retrieval time and then becomes far less busy, the

original retrieval time is also very inaccurate and cannot be compared to objects that

were retrieved when the network was less congested. Current retrieval times could

be gained by conducting origin server ping requests, but that would be a great waste

of network and server resources and would completely disregard the download times

from other caches in the network. Also, ttl and ttr are not recorded in any proxy

trace files. Therefore, the two statistics are not used in the simulation portion of

this dissertation study. However, the simulator has been written to incorporate these

statistics if they become available in trace files.

For the least frequently used (LFU) algorithm, a count of accesses, ai, for object

i is kept. Since we want to keep more popular objects in the cache, the score is

calculated as:

sLFU
i = ai (2.10)

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 21 -

If the equation were left at this, it would take a long time for a popular object to

be removed from the cache, even after its popularity had long passed. Hence, this

algorithm is usually augmented with an interval parameter, Amax. Every time Amax

aggregate cache references have occurred, each object’s ai is halved [RD90, EH84].

2.6 More Complex Cache Replacement Scores

Several of the above cache replacement score algorithms produce good results, but

several studies have found that combining these simple equations can decrease miss

rates. [EH84] combines the FIFO and LFU equations to create the least reference

density (LRD). By combining Equations 2.3 and 2.10, which calculates a density mea-

sure of how many accesses occur per time period since the object was most recently

loaded into the cache. For object i, it is calculated by

sLRD
i =

ai

t− ei

. (2.11)

Several studies have taken LRU as the basis for their more complex cache replace-

ment algorithms. LRU-MIN [ASA+95], when it needs to remove cached objects to

make room for object j, takes all of the objects larger than object j in the cache and

removes objects using LRU. If there are no more objects larger than object j, it then

tries to remove objects that are larger than 1/2× sizej, then larger than 1/4× sizej,

and so on. To translate this into a CRS equation, we can take advantage of base two

logarithms. The LRU equation in Equation 2.2 will always be in the range 0 < si ≤ 1,

and we can calculate the LRU-MIN CRS as

sLRU−MIN
i =

blog2

sizej
sizei

c
t−li

j 6= i. (2.12)

The SPACExAGE algorithm was shown to be effective in mass storage systems

[Smi81, LRB82]. A modified version of the algorithm was found to outperform the

LRU algorithm in [Red97]. In the CRS equation, SPACExAGE combines Equa-

tions 2.2 and 2.5 in one equation:

sSpacexAge
i =

1

zi · (t− li)
. (2.13)

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 22 -

Protected Segment

Most recently used

Least recently used

Probationary Segment

Most recently used

Least recently used

Misses
Discarded
Objects

Hits

Discarded
Objects

Hits

Fig. 2.5. Logical Flow of SLRU Cache Lines

The AVI-MRU algorithm [Red97] was shown to perform better than LRU by making

audio and video files a lower priority than all other file types. It should be noted

that this performance advantage was in file miss rate, not in byte miss rate. This

algorithm can be formulated as:

sAVI−MRU
i =

1

f (type i) · (t− li)
, (2.14)

where f (typea/v) > f (typeother).

As these cache replacement scoring algorithms increase in complexity, more mem-

ory must be used to store more object statistics. The first of these algorithms was

presented in caching issues of hard disk drives [KLW94]. The Segmented LRU (SLRU)

algorithm was developed because it was observed that in disk accesses, if a disk block

was accessed twice, it would tend to be accessed many more times before being re-

moved from the cache. So it divides the cache into two segments: a probationary

segment and a protected segment, both of which are managed with the LRU algo-

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 23 -

rithm, as it is depicted in Figure 2.5. When an object is first accessed, it is placed

in the the probationary segment. If the object is subsequently accessed again while

it is still in the cache, it is placed in the protected segment. One parameter must

be set in this algorithm, and that is in what percentages the cache is split into the

two segments. Karedla, Love, and Wherry found that the best performance came

in the range of 60-80% of the cache being the protected segment. For the sake of

generality, 70% was used in all of the simulations. So each time a new cache object

is moved from the probationary segment to the protected segment, a maintenance

check must be made on whether the protected segment is larger than 70%. If the

protected segment has grown too large, the least recently accessed items are moved

to the probationary segment, until the protected segment is once again less than 70%

of the total cache size. To implement this algorithm in the cache replacement score

paradigm, we must introduce a new variable, p, where pi = 0 when object i occupies

the probationary segment, while pi = 1 when it is in the protected segment. So the

CRS equation can be written as:

sSLRU
i = pi + 1/(t− li). (2.15)

In [BCF+99], the Perfect-LFU is introduced. Perfect-LRU keeps track of the

number of times that an object is accessed over the lifetime of the object, not only

during the time that the object is in the cache. So even when a previously cached

object has been evicted from the cache, its Perfect-LRU access count is maintained

in the cache’s metadata records. The perfect access count can be defined as Ai for

object i, and the Perfect-LRU CRS equation becomes:

sPerfectLFU
i = Ai. (2.16)

This algorithm could be prohibitive in memory space allocation if the working set of

objects is exceptionally large.

The next four algorithms use an inflation variable to store an addable scoring

value for each cache object. This inflation variable is denoted as L, and there is

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 24 -

only one instance of this value for the entire cache. For each of the algorithms, L is

initialized to zero, and it is updated every time that a cache object is evicted. When

this update occurs, L is set to the CRS of the evicted object.

The first of these algorithms that employ the inflation variable is called least-

frequently used with dynamic aging (LFU-DA), introduced in [DAP99] and [ACD+99].

In LFU-DA, the inflation variable L is called the cache age factor, which is added to

the cache access count when a cache object is entered into the cache or when it is

reaccessed.

sLFU−DA
i = ai + L (2.17)

This cache age factor was implemented to avoid setting a parameter as in the LFU-

Aging algorithm [AFJ99b].

The other three algorithms that use L are in the GreedyDual-Size (GD-Size) al-

gorithm family that was introduced in [CI97]. The GD-Size(1) and GD-Size(packets)

algorithms were developed in [CI97] and were also studied in [DAP99] and [ACD+99],

while the GD-Size(Hits) (sometimes called GDSF-Hits) is introduced in [DAP99] and

[ACD+99]. The basic structure of each of these CRS equations is the same:

sGD−Size
i (xi) =

xi

zi

+ L, (2.18)

and the difference is generally the object statistics that are input with xi. For GD-

Size(1), xi = 1 and the equation becomes:

s
GD−Size(1)
i (1) =

1

zi

+ L, (2.19)

which is formulated to minimize misses. GD-Size(packets) is intended to minimize

the number of network packets that are sent, so it sets xi = 2+zi/536 to packet sizes:

s
GD−Size(packets)
i (2 + zi/536) =

2 + zi/536

zi

+ L. (2.20)

The number of TCP/IP packets that an object occupies is two header packets plus

zi/536 body packets. A TCP/IP packet can carry a maximum payload of 536 bytes.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 25 -

Finally, GD-Size(Hits) takes into account the popularity of the cached object by

setting xi = ai. The GD-Size(Hits) CRS equation then becomes:

s
GD−Size(Hits)
i (ai) =

ai

zi

+ L. (2.21)

On the highly complex end of cache replacement algorithms, Lorenzetti, Rizzo,

and Vicisano developed a stochastic-based replacement algorithm that was inspired

by trends that they observed in Web workload trace analyses from the University

of Pisa [LRV97]. The algorithm is called Lowest Relative Value (LRV), and is more

succinctly described in [CI97]. The LRV algorithm uses a combination of time since

last access, number of accesses, and object size. It keeps track of the conditional

probability of an (a + 1)th access given that an object has been accessed a times.

For a given object i, Pi is this conditional probability and is calculated with the ratio

Aa+1/Aa, where Aa is the number of objects requested at least a times in the trace.

For ai = 1, P1(zi) is determined by the percentage of single access objects of the same

relative size. That is, the size bins are blog2(size)c with a bin range of 210 to 220 (one

kilobyte to one megabyte). Any objects that are smaller than one kilobyte are placed

in the smallest bin, while objects larger than one megabyte are placed in the largest

bin. With this background, two equations need to be defined, the first of which gets

plugged into the subsequent CRS equation. D(·) is defined as:

D(t− li) = 0.035 log ((t− li) + 1) + 0.45
(
1 − e

−(t−li)

2e6

)
. (2.22)

The coefficients for both additive terms of D(t− li) are parameters that can be tuned

to the workload that a given proxy cache is experiencing. However, for this study,

these baseline coefficients were used. Now the CRS equation can be written as:

sLRV
i =

 P1(zi)
1−D(t−li)

zi
if i = 1

Pai
(zi)

1−D(t−li)
zi

otherwise
(2.23)

2.7 Contributed Cache Replacement Score Algorithms

As part of this dissertation research, a number of replacement algorithms and

system traces have been explored as will be discussed in the next several chapters.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 26 -

From these analyses, several more cache replacement score algorithms have been de-

veloped. The first of these algorithms pairs up the LRU (Equation 2.2) and LFU

(Equation 2.10) algorithms. The idea behind this combination is to calculate a

frequency-biased least-recently used policy, thereby including an element of popu-

larity in the calculation. So an object’s score has a basis in the number of times it is

accessed while it is in the cache, but the score also decays by the LRU portion of the

equation while it is not accessed. For object i, it is calculated by

sLFLRU
i =

ai

t− li
. (2.24)

Essentially, it produces a popularity-weighted LRU algorithm.

The second of these algorithms was inspired by the Least Relative Value (LRV)

research [LRV97]. In the previous section, the LRV algorithm used a combination of

time since last access, number of accesses, and object size but was shown to be quite

complex. These three object statistics were observed to be significant in their web

workload trace analyses from the University of Pisa. But by combining these in a

multiplicative/reciprocal equation, each of these statistics would be represented in:

sSizeLFLRU
i =

ai

log2(zi) · (t− li)
. (2.25)

This CRS equation combines the aforementioned LFLRU equation (2.24) with the

small-favoring logarithmic size-based equation (2.7). In the same spirit of LFLRU,

this algorithm calculates a popularity- and size-weighted LRU algorithm.

Using SizeLFLRU and LRD as inspiration, the third algorithm combines the LRD

equation (2.24) with the small-favoring logarithmic size-based equation (2.7). This

CRS equation is then written as:

sSizeLRD
i =

ai

log2(zi) · (t− ei)
. (2.26)

This algorithm formulation becomes a size-weighted access density for each object.

The last of these algorithms is a variation the LRU in Equation 2.2 which favors

certain data types. In the Web workload traces that were used in this study and

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 27 -

are described in Chapter 5, it was observed that image and html files composed the

bulk of all objects requested. Generally over 90% of the accesses were images (GIFs,

JPEGs, etc.) and html, and most of the cache hits were also of those file types. So

the Priority LRU (PLRU) uses an additive variable, τ , which is set to τi = 0.001 if

object i is of html type and τi = 0.002 if object i is of image type. Otherwise, τi = 0.

By setting τi to these values give the html and image types asymptotic advantages

over objects of other types, that is, the other objects will be thrown out before the

html and image types. Then the CRS equation becomes:

sPLRU
i = τi +

1

t− li
. (2.27)

2.8 Idealistic Replacement Algorithms for Comparison

Before finishing this section, we need to define two more cache replacement algo-

rithms. Both of these algorithms are idealistic algorithms that are used in determining

how close to optimal cache replacement algorithms performed for a given data set.

The first algorithm takes into account the caches size (the weight that the thief can

carry), and it shows how low the miss rate and byte hit rate of a cache could be if

foreknowledge of accesses could be used. The use of t as the current time is continued,

and fi is introduced as the time of the next future access of object i. Then Belady’s

optimal algorithm CRS becomes

sOPT
i =

1

fi − t
. (2.28)

Thus, it removes the object from the cache that will be accessed as far into the future

(if ever again) as possible. It must be noted that Belady intended this algorithm to be

used only for caches in which objects are all of the same size. However, this algorithm

provides an adequate, though not absolute, lower bound. Two papers discuss true

variable size lower bound algorithms with the VMIN algorithm in [PF76] and the

GOPT algorithm in [DS78]. But these algorithms would be very difficult, if not

impossible, to implement in this cache replacement scoring framework.

The other idealistic algorithm assumes that the thief has infinite strength (or

perhaps just herculean strength), and it assumes that the cache size is infinitely large

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 28 -

and can accommodate all requests as hits once an object has been loaded into the

cache. Therefore, it only records the misses due to compulsory misses which are the

misses that all cache replacement algorithms must incur. There is actually no CRS

equation for this idealistic algorithm, because no objects are ever removed from the

cache.

2.9 The Questions

Having discussed this new paradigm for considering the cache replacement prob-

lem, we can discuss the questions that this research is addressing.

2.9.1 The Main Question

The first set of questions that this research asks are: By including more statistics

of the cache object in the determination of cache removal, do the more complex

cache replacement algorithms better predict the expected demand for objects in the

cache? And which object statistics are involved in the algorithms that perform better,

i.e., have a lower cache miss rate and/or cache byte hit rate? Is the additional

computational complexity of using more cache object statistics worth the decrease in

cache miss rates and byte miss rates?

2.9.2 The Second Question

The second question builds on the main question and asks: does an admission

policy improve cache replacement policy performance? And if so, which algorithms

benefit from using an admission policy? This asks whether it is more beneficial to

include the currently requested object in the eviction process if there is no room to

accommodate the currently requested object. Most cache replacement algorithms in

use today do not use an admission policy and assume that the currently requested

object is more valuable than some other objects already in the cache.

It must be noted up front that admission policies are effective only when a replace-

ment policy is not dependent on time only. For instance, LRU will not be affected by

an admission policy, because the object that was just requested is the most recently

used object and will not be removed from the cache. But SLRU performs differently

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 29 -

with an admission policy since it bases its decision on both time and access count.

So a popular, older cache object may stay in the cache while a large, more recently

accessed object may be denied admission before it was loaded into cache.

2.9.3 The Third Question

The third question pertains only to the video caching systems. As mentioned

before, this study assumes that entire media objects are being cached. Other studies

have used the proxy servers to buffer the media object stream on its way to the

client. This buffering only stores a fraction of the object in the cache and is effective

for serving only a few clients from the locally buffered partial object (such as in the

Fellini project [OBRS95] and others).

So the third question asks: is it most efficient to cache whole media object files

in the proxy server or would it be more effective to just buffer portions of the file as

they are used?

To answer this question of efficiency, we must analyze how the media objects are

individually accessed. If a media object is usually accessed in small portions, and the

likelihood of the entire (or a large amount of the) media object be accessed in one

session is low, then it would be rather inefficient to cache the whole media object in

proxy servers. This is because it will take many small, piecewise accesses over the

WAN to equal the bandwidth usage of moving a copy of the entire media object into

a proxy server.

On the other hand, if a media object is usually accessed in such a way that most

if not all of the object is viewed in each session, it is most efficient to cache the entire

media object in the proxy server.

Further light can be brought to this issue by looking at an example. Say there is

a 20 megabyte file that we want to serve on our multimedia network. In the small

piecewise access pattern scenario, say that an average of one twentieth of the file (one

megabyte) is accessed in a session. Hence it would take 20 of these average accesses

to equal the bandwidth that is used to download the media object into a proxy server.

However, in the whole-object access pattern scenario, each session will consume 20

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 30 -

megabytes of WAN bandwidth. So by making a copy of the media object in the proxy

server, it will save large amounts of WAN bandwidth for further accesses.

In an analysis study of usage patterns of educational multimedia objects, [RM97]

found that most education multimedia is accessed in a smaller piecewise manner. But

these objects are usually accessed a large number of times within small time periods

(temporal locality) at different places within the media object. This implies that

the whole-object caching scheme can be useful, but its usefulness is not guaranteed.

Other scenarios with a higher likelihood of whole-object accesses would guarantee a

higher degree of usefulness. For instance, a pay-per-view movie-on-demand system

would have a higher likelihood of accessing the entire video object within one session,

because the viewers have paid to watch the entire movie and want their money’s

worth by watching it all in one session.

Before presenting the methods of experimentation in answering these questions,

we need to explore what related works have contributed to answering these questions.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 31 -

3. Related Work

In this related work chapter, the development of caches will be explored. Specif-

ically, the focus will be on how cache replacement algorithms have developed in

complexity as caches have been used in various applications. The discussion starts

with caches being used in computer hardware memory hierarchies. It then moves

to virtual memory page allocation/replacement algorithms, file migration alloca-

tion/replacement algorithms, disk system replacement algorithms, and database page

access and replacement algorithms. Finally the discussion turns to distributed mul-

timedia caches including World-Wide Web proxy caches and video-on-demand proxy

caches.

3.1 Computer Hardware Memory Caches

The first uses for data (and instruction) caches were in computer hardware [Wil65].

These caches were implemented to speed up the realized memory accesses of the

central processing unit; there was little need to be concerned with the bandwidth

usage of the interconnecting buses in these systems, since they were not being shared

with other memories, processors, or peripherals. Hardware caches are designed to

minimize access latency and must be implemented entirely in hardware, so the caches

have uniform cache block sizes and simple cache management logic. This simple

management logic includes the cache replacement algorithm.

A part of the cache management logic is the implementation of associativity; i.e.

the number of cache slots to which the block of a given memory location can be

mapped. Hardware cache memories use restrictive associativities to keep complexity

manageable thereby making it possible to implement the caches entirely in hardware.

Early caches were direct mapped, meaning that the block of given memory location

can only map into one location. For direct mapped caches, the cache replacement

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 32 -

algorithm is trivial; the block of the newly accessed memory location replaces the

block that was residing in the cache.

More recent implementations have overcome the complexity problems of develop-

ing two-way and four-way set associativity to reduce cache misses caused by cache

thrashing. A few fully associated hardware caches have been implemented including

Jouppi’s victim cache [Jou90], which caches the 64 most recently evicted blocks from

the main cache [CHK+96]. With the cache set associativity schemes that are not

direct mapped, the memory management system has a choice of which block should

be removed from the cache. Since the cache replacement algorithm must be im-

plemented entirely in hardware, the complexity of the cache replacement algorithm

must be rather low. The three commonly used cache replacement algorithms are

random (usually pseudo-random), first-in first-out (FIFO), and least-recently used

(LRU) [Smi82]. Cache replacement algorithms that exhibit higher complexity than

these three generally cannot be implemented efficiently in hardware, and are then

partially implemented in software. Most added complexity has been used to main-

tain data coherence in multiprocessor, superscalar, and speculative execution envi-

ronments [Ste90].

3.2 Operating System Virtual Memory Direct Paging Algorithms

A few years after cache memories were implemented in computers, operating sys-

tems began implementing virtual memory direct paging algorithms. Virtual memory

allows an operating system to act like it has more RAM memory than the amount

of physical RAM memory that it has. Furthermore, virtual memory direct paging

allows an operating system to only have a portion of a process’s instructions and data

occupy the computer’s physical memory. But with only a part of each process in the

physical memory, different memory pages need to be swapped into RAM memory

when the pages’ contents are needed, while other pages need to be swapped out when

they are no longer needed. Page replacement policies are used to determine which

page will be removed to accommodate another incoming page.

When the contents of a virtual memory page is not found in physical memory, it is

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 33 -

called a page fault, and the faulted page must be copied from the virtual memory disk

partition to a page location within the physical memory. Though page faults occur

infrequently, they are very costly to the performance of the processor. Also, there are

many direct pages in the physical computer memory. For example, if each page is

four kilobytes, and the physical memory of the computer is 64 megabytes, then there

is capacity for 16k pages to fit into physical memory. For these two reasons, the page

replacement algorithm should not be too complex.

But the page replacement algorithm should also be as accurate as possible. Silber-

schatz and Galvin [SG98] explain that the FIFO algorithm is not especially accurate,

and they go on to explain that Belady’s OPT algorithm would be the best algorithm

to use for direct page replacement. [SG98] then argues that LRU approximates OPT

best for direct page replacement, but LRU is too complex to compute for thousands

of pages for each page fault. Therefore, they present several LRU approximation

algorithms, including the additional-reference-bits algorithm, the second-chance al-

gorithm, and the enhanced second-chance algorithm. Since each of these algorithms

approximate the LRU algorithm, we can expect that generally they will not perform

better than LRU. But for the demand paging application, the increase in page-faults

is not significant enough to offset the decrease in page-fault handling time that is

realized by implementing the less complex LRU approximation algorithms. Because

of the considerations for the number of pages in physical memory and maintaining

computational simplicity in the page replacement algorithm, only FIFO, LRU, and

approximation algorithms based on FIFO and LRU are used for virtual memory direct

paging algorithms.

3.3 File Migration Algorithms

Similar to the virtual memory direct paging application of replacement algorithms

is file migration. In the earlier days of computing, user processes were stored on large

magnetic tapes. Only the processes that were expected to be run in a given day

were temporarily stored on the computer’s hard disk drives. When the user needed

a process file (software code and data) that was being stored on the magnetic tape,

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 34 -

the process would be migrated from the tape onto the computer hard disk drive. So

file migration deals with higher levels of the memory hierarchy.

The file migration application of replacement algorithms have several differences

from the hardware and direct paging cache algorithms discussed before. The file

migration process files are of variable sizes; the hardware caches have a fixed block

size, and the direct paging pages also are of a fixed size. Furthermore, the [Smi81]

and [LRB82] studies assume that the cache itself has a variable size which may not

be that realistic. Every computer system has a fixed (though sometimes huge) disk

drive capacity. Also, the hardware and direct paging algorithms run on-demand. The

file migration algorithms that were studied were run once a day in the middle of

the night. At that time, the algorithm removed the process files that it predicted

would not to be used in the next day [Smi81, LRB82]. Since the computer disk drive

capacity was fixed, then every night when the algorithm ran, only a fraction of the

drive capacity was freed for process files that were new accesses. If more drive capacity

was needed than was freed the night before, these algorithms ran into trouble. Smith,

though, does acknowledge that the file migration algorithm could have been modified

to accommodate the fixed capacity issue for on-demand use [Smi81].

The study of Smith [Smi81] introduces a stochastically optimal (Stochopt) algo-

rithm which uses the entire reference history for each of the process files in the system.

It records whether each process was accessed in a day, and then it predicts whether

the process will be accessed in the next day. Smith compares this Stochopt algorithm

to VMIN [PF76], GOPT [DS78], Working Set (WS) [Den68], Space-Time Working Set

(STWS), and several stochastic expected-(mean)-time-to-next-reference algorithms.

Smith found that his Stochopt algorithm outperformed all of the other non-optimal

algorithms and performed nearly as well as the optimal VMIN and GOPT algorithms.

Smith does admits, however, that converting his Stochopt algorithm for on-demand

usage would make for a rather computationally complex algorithm.

The Lawrie, Randal, and Barton study [LRB82] substantiates some of the same

comparisons that Smith did in [Smi81]. They compared STWS, GOPT, Size, LRU,

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 35 -

and several Size and LRU combinations. They found that STWS performed best

among the non-optimal algorithms. Note that they did not include Stochopt in their

study. [LRB82] also explored clustered prefetching in which not only the requested

process files are migrated, but also other similar processes. They found this approach

to be rather ineffective to marginally effective.

Because of faster networks, greater use of file servers, and dramatically increasing

hard disk drive capacities, file migration is no longer an issue on most of today’s

computer systems.

3.4 Disk System Caching Algorithms

Caches are used in I/O subsystems of computers to alleviate the bottlenecks caused

by the mechanical latencies of disk and tape drives. One paper written by Karedla,

Love, and Wherry in 1994 [KLW94], examined the performance of cache replace-

ment policies used in these I/O subsystem caches. They investigated the caches used

specifically in disk drive caches. The paper introduced a frequency-based variation of

LRU which they called segmented LRU (SLRU). The SLRU algorithm is described

in Section 2.6 including Equation 2.15. The three replacement algorithms were simu-

lated with four different customer workload traces comprised of an inventory control

workload, a batch processing workload, a scientific time sharing workload, and an

airline reservation workload. The study found that SLRU algorithm performed the

best on all of the workloads for a wide variety of cache sizes.

3.5 Relational Database Buffer Management Algorithms

Relational database buffer management refers to the temporary storage of a subset

of a relational database records in the computer’s main memory. Database records

are usually only processed from the computer’s main memory. Two fundamental

differences set relational database buffer management apart from other cache man-

agement applications. First, the buffer size for a given database process is usually

variable, though the size of the overall memory is fixed. Second, database manage-

ment algorithms generally have more control over the order in which database records

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 36 -

are accessed and processed. This processing order control means more optimization

is possible when buffering those records from the disk drives into main memory for

processing.

A study by Effelsberg and Haerder compared several conventional buffer replace-

ment algorithms on database reference strings [EH84]. They compared Random,

FIFO, LFU, LRU, Second Chance, Generalized Clock, and LRD. They found LRU

and Second Chance to perform satisfactorily, though LRU with locked records some-

times performed worse than their Random algorithm. They also found LRD and

Generalized Clock performed well.

Most studies of relational database buffer management algorithm use allocation

principles to determine which records should be held in main memory. For instance,

Denning’s Working Set algorithm is a cache space allocation algorithm which works

much like LRU [Den68, CD85], while Sacco and Schkolnick’s Hot Set algorithm ana-

lyzes the loops of record accesses and implements an allocation algorithm similar to

LFU [SS82]. Other more complex algorithms try to further exploit on optimize on the

consistent database record access patterns. But since humans are much more random

in selecting media objects, these algorithms are not of much use for multimedia proxy

caches.

3.6 World-Wide Web Proxy Caches

World-Wide Web proxy caches are a fairly recent addition to the list of applications

that require cache replacement algorithms. As it was explained in Section 2.1, these

proxy caches can be situated throughout the Internet. Using standardized protocols,

the caches can communicate with each other to retrieve the requested objects from

the closest source, whether that is the origin server or another cache that is currently

storing the object [MLB95]. However, the concept of of WWW proxy caches came

from simple beginnings.

In reading about these studies, take special note of how few cache replacement

algorithms are compared in each study and how few input data traces are used in

each study. Also note the types of traces that were used in each study. Chapter 5

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 37 -

presents a classification basis of Web proxy cache input workloads, and each of the

input workloads that are mentioned in this section are named with their domain

classification. Simply put, each classification has its own temporal locality, spatial

locality, size distribution, and access pattern characteristics.

3.6.1 The Early Papers

In the first paper that proposed hierarchical proxy caches on the World-Wide

Web, the cache replacement algorithm that was implemented for the simulations was

LRU [MH92], but no comparisons were made to other possible cache replacement

algorithms. In another study that examined FTP traffic on NFSnet, Danzig, Hall,

and Schwartz compared the LRU and the LFU policies on simulated network proxy

servers. They found that the LRU and LFU policies performed similarly on FTP

traffic, because if a file was downloaded more than once, it was usually within a few

hours of the first download [DHS93].

Pitkow and Recker introduced the first cache replacement algorithm specifically

for a World-Wide Web proxy cache. Their algorithm is based on user access pattern

analysis of Georgia Tech WWW access traces and psychological research on human

memory retrieval. It implements a least recently used strategy that is only run once a

day [PR94]. The algorithm uses a seven day access record window to predict whether

the cached object will be used the next day; ties were broken by removing the larger

cache object first. No simulations were run as a part of this study, but the authors

conjectured that this algorithm would be beneficial for use on large proxy cache

servers. But since the algorithm only ran once a day instead of running on-demand,

a significant number of cache objects may be removed from the cache which may

be requested before the object actually needed to be removed from the cache as an

on-demand system would.

Abrams, Standridge, Abdulla, Williams, and Fox explored how cache replacement

algorithms performed when the size of the object was taken into account. They

introduced two algorithms, LRU-Min and LRU-THOLD [ASA+95]. As explained in

Section 2.6, to make space for an incoming cache object, LRU-Min tries to remove all

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 38 -

items larger than the incoming object in LRU order, then tries to remove items larger

than 1/2 the incoming object’s size, then 1/4, etc. The LRU-THOLD algorithm

doesn’t cache any items that are larger than a certain threshold; they found that

it was quite difficult to tune this threshold parameter. Their simulations included

HTTP, Gopher, FTP, and WAIS documents from three different types of educational

workload traces on the Virginia Tech campus (educational client proxy traces), and

LRU was used for comparison. With miss rate as the comparison measure, they found

that LRU never performed best, and that LRU-Min and LRU-THOLD split being the

best in the simulations. They concluded that LRU-Min was the best policy among

the three (and it required no parameter adjustments), while LRU-THOLD was best

when used on small cache sizes.

The majority of an article by Bolot and Hoschka involves analyzing and pre-

dicting World-Wide Web user access patterns using seasonal ARIMA (autoregressive

integrated moving average) trends [BH96]. Near the end of the article, though, they

use those analysis results to propose a proxy cache replacement algorithm with calcu-

lated weightings based on four cache object statistics: time since last reference, size of

object, time to retrieve, and time-to-live. In simulations using an INRIA Web server

trace data (origin server proxy trace), they compared this algorithm to LRU and

showed that it performed slightly better on miss rate and much better on a weighted

miss rate that measured perceived retrieval time.

In Williams, Abrams, Standridge, Abdulla, and Fox’s article from 1996, they

looked at cache replacement algorithms as a problem in sorting the cache objects

by calculated keys to determine the order of removal [WAS+96]. They defined three

factors, the primary sort algorithm, the secondary sort algorithm, and the workload

(data set), and they measured both the hit rate and the weighted hit rate. Six al-

gorithms were considered for sorting: SIZE, log2(SIZE), ETIME (FIFO), ATIME

(LRU), DAY(ATIME) (Pitkow and Recker’s daily LRU), and NREF (LFU). These

simulations used the same three different types of educational workload traces from

the Virginia Tech campus (educational client proxy traces) as [ASA+95], which in-

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 39 -

cluded HTTP, Gopher, FTP, and WAIS documents. The replacement algorithms were

only run on-demand because they saw no advantage in running the algorithms period-

ically as was done in Pitkow and Recker’s study [PR94]. Instead of using an optimal

algorithm against which to compare, they established maximum hit rate by using an

infinitely sized cache; that is, they compared each algorithm to an ideal cache that

only incurred compulsory misses. They found that when hit rate was the measure,

SIZE and log2(SIZE) as primary sort algorithms always did best. This is because

SIZE and log2(SIZE) gave preference to smaller files, and the cache could hold many

more small files than large ones thereby raising the hit rate. When using the weighted

hit rate as the measure, there was no clear best performing algorithm, but ATIME

(LRU) performed consistently well, while SIZE was consistently the worst performer.

Finally, the study found that the secondary sort algorithm had little impact on the

performance of the cache. This is probably because they used the secondary sorting

algorithm to arbitrate between ties from the primary sorting algorithm instead of

giving it more significant influence on the primary sorting. By using multiple simple

cache replacement score formulas to produce a more complex primary cache replace-

ment algorithm, the algorithms of Section 2.6 and 2.7 use more cache object data

than just the primary sort criteria leading to a more informed decision.

3.6.2 Beyond the Basics

Reddy, in his 1997 study, also found that it was advantageous to take the size of the

cached object into account [Red97]. Reddy introduced two modified most-recently-

used (MRU) algorithms (AVI-MRU and Size-MRU), introduced the SPACExAGE

from file migration to the WWW proxy caching research area, and compared them to

LRU. AVI-MRU gives audio and video files a lower priority than all other files so the

audio and video files are removed before any other file types are even considered. The

Size-MRU operates by having files larger than a 32 kilobytes threshold managed by

MRU policy, while those less than 32 kilobytes are handled with LRU. The motivation

behind the Size-MRU algorithm is that large files are not supposed to displace too

many smaller files. Reddy references two file migration papers [Smi81, LRB82] as the

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 40 -

inspiration for his SPACExAGE algorithm. His SPACExAGE algorithm implements

four LRU-managed chains which hold objects that are under four kilobytes, between

four kilobytes and 32 kilobytes, between 32 kilobytes and 64 kilobytes, and over 64

kilobytes. When a cache object needs to be removed, the space × age (size · LRU)

product is calculated and the object with the largest product is removed. Reddy’s

study used NCSA main server traces [KMR95] (origin server proxy trace), and he

measured the request response times and relative miss rates. He did not, however,

measure byte miss rate. Reddy found that AVI-MRU performed slightly better than

LRU and that SIZE-MRU was very sensitive to the threshold value. Generally, he

found that SPACExAGE outperformed the other algorithms, especially on video files.

He also found that the advantage of SPACExAGE over LRU decreased as the cache

capacity was increased.

Breslau, Cao, Fan, Phillips, and Shenker published a study that extensively ana-

lyzed six different traces which included three client proxy traces (a Digital Equipment

Corp. web proxy trace from 17,000 workstations, a Questnet Australian regional ISP

trace, and a FuNet Finnish regional ISP trace), two educational client proxy traces

(a user trace from the Computer Science department at the University di Pisa and a

Home IP service trace from UC Berkeley), and one network proxy trace (a one-day

trace from National Lab for Applied Networking Research – NLANR) [BCF+99]. Un-

fortunately, the proxy server from which the NLANR trace was taken was not shared

in the paper. (Please refer to Section 5.4.5 for an explanation of the NLANR proxy

caching facilities.) The majority of the paper discusses various characteristics of the

access traces, but the last section is most applicable to this chapter. In that last sec-

tion, a comparison of Perfect-LFU (Equation 2.16), In-Cache-LFU (Equation 2.10),

LRU (Equation 2.2), and GD-Size (Equation 2.19) is made using the six aforemen-

tioned traces as input. They found that In-Cache-LFU performed worst on all of

the input traces and was a poor choice for cache replacement algorithms. GD-Size

performed best in terms of hit rates for small caches, while Perfect-LFU generally

performed best in terms of byte hit rate. They conceded that Perfect-LFU needed to

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 41 -

use more memory space to maintain request counts for all of the objects in a trace,

and it didn’t take document size into account. They also explained that LRU usually

performs best when temporal locality effects are strong. However, they concluded

that since Perfect-LFU generally outperformed LRU, these traces may not have as

much of a temporal locality effect as they had expected.

Lorenzetti, Rizzo, and Vicisano set out to design an algorithm based on statistical

parameters and lifetimes of cached objects with the intent to beat LRU [LRV97].

They analyzed a trace from their own department, the Department of Information

Engineering at the University of Pisa. The algorithm that they developed is de-

scribed in Section 2.6. They developed Equation 2.22 as an interaccess distribution

approximation, but a shortfall of this equation is the two coefficient parameters that

could be tuned to the workload characteristics of the proxy server. They went on to

observe that the number of previous accesses is a good indicator of the probability of

further accesses, and that smaller files are accessed more often which they attributed

to slower modem connections. Furthermore, they found that the document type

didn’t influence access requests much since the vast majority of accesses were text or

images. These observations led them to formulate Equation 2.23 which uses LRU,

access count, and document size to embody the cache replacement algorithm. They

compared LRV with FIFO, LRU, Size, and Random using the University of Pisa trace

(educational client trace) as input. They found that LRV consistently outperformed

the other algorithms when byte hit rate was the measure, and that LRV generally out-

performed the others when hit rate was the measure. With hit rate as measure, Size

outperformed LRV on larger cache sizes. These findings prompted them to conclude

that LRV proved to be particularly useful in small caches. This algorithm, though it

may be effective, may be difficult to implement (especially in small caches) since it

does need to collect more statistics than the other cache replacement algorithms in

this dissertation, and requires a great deal more computation including a logarithm

and exponential calculation for each cache object.

As was discussed in Section 2.6, three algorithms based on the GreedyDual-Size

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 42 -

(GD-Size) algorithm family were introduced in [CI97, DAP99, ACD+99]. The GD-

Size(1) and GD-Size(packets) algorithms were developed in [CI97] and were also stud-

ied in [DAP99, ACD+99], while the GD-Size(Hits) (also called GDSF-Hits) was in-

troduced in [DAP99, ACD+99]. The GreedyDual-Size algorithm family was inspired

by the GreedyDual algorithm [You94] which handled uniform-size variable-cost cache

replacement [CI97]. All three algorithms are presented in Section 2.6. Cao and Irani

developed the GD-Size(1) algorithm to minimize the cache miss rate while they de-

veloped GD-Size(packets) to minimize network traffic (byte miss rate). Cao and Irani

proved that GreedyDual-Size is online optimal stating that it is “k-competitive, where

k is the ratio of the size of the cache to the size of the smallest document”. They then

compared these two algorithms to LRU, Size, Hybrid, and LRV using three client

proxy traces from Digital Equipment Corporation (a client proxy trace), Virginia

Tech, and Boston University (two educational client proxy traces). (Hybrid was in-

troduced in [WA97] which is described later.) They found that GD-Size(1) achieved

the best hit rate across all simulations, but it didn’t perform as well when byte hit

rate was the measure. GD-Size(packets) usually achieved the highest byte hit rate

and second best hit rate overall. The study also attempted to explore three other

metrics, latency reduction, hop reduction, and weighted-hop reduction, and they tried

to tailor GD-Size algorithms for those metrics. This type of information usually isn’t

included in the trace files, so they attempted to estimate download latency and net-

work hops from the traces. The study found that GD-Size(1) was the best algorithm

to reduce average latency, and that algorithms that took network costs into account

performed no better than algorithms that ignored network costs.

Arlitt, Dilley, and others at Hewlett-Packard Labs introduced two algorithms,

GreedyDual-Size with Frequency (GD-Size(Hits)) (Equation 2.21) and Least Fre-

quently Used with Dynamic Aging (LFU-DA) (Equation 2.17), which were refine-

ments on the above GD-Size(1) and GD-Size(packets) algorithms. These algorithms

were introduced in [DAP99, ACD+99]. The HP Labs Technical Report [DAP99] im-

plemented LRU, LFU-DA, and GD-Size(Hits) into a Squid cache and used SpecWEB

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 43 -

as the input workload. They found that LRU outperformed GD-Size(Hits) when there

were many large documents in the trace workload. But LFU-DA outperformed LRU

in byte hit rate for all cases. More significantly, they found that CPU demand on the

Squid proxy cache machine actually decreased even though the cache replacement

algorithms were more complex. They attributed this decrease in CPU demand to

the reduced miss rates that were effected by the more complex algorithms. This can

easily be justified when one figures that the usual bottleneck of the proxy cache server

is the I/O subsystem. Since the CPU is usually not the bottleneck, it is worthwhile

to invest some extra cycles in the replacement algorithm to eliminate some more disk

and/or network bandwidth usage. The [ACD+99] study compared LRU, LFU-Aging

(Equation 2.10), GD-Size(1), GD-Size(packets), GD-Size(Hits), and LFU-DA. The

input workload trace was a cable modem ISP proxy trace (large client proxy server)

from the San Francisco Bay area [AFJ99a]. They found that the GD-Size(Hits) al-

gorithm performed best in terms of both hit rate and byte hit rate. LFU-DA always

performed better than LFU-Aging, and LFU-DA can be coded to perform fewer cal-

culations than LFU-Aging. Furthermore, in byte hit rate, LFU-DA was second only

to GD-Size(Hits), but LFU-DA didn’t perform as well in hit rate. Since this study was

with a cable modem ISP trace instead of a plain telephone modem ISP trace, these

results are significant for future consumer client ISP proxy server implementations.

In Tewari, Vin, Dan, and Sitaram’s study [TVDS98], the concern was with de-

veloping a caching algorithm that could guarantee the performance of the server to

the clients. They considered the server’s bandwidth and cache storage capacity as

the two factors for a two-constraint 0-1 knapsack problem. They further split the

two-constraint knapsack problem into two one-constraint problems by having sepa-

rate “goodness” calculations depending on whether the server was currently space-

constrained or bandwidth-constrained. If the server was space-constrained, the “good-

ness” factor was calculated as a mean time-to-reference (averaged inter-reference time)

with the highest scoring object being removed. On the other hand, if the server was

bandwidth-constrained, the “goodness” factor was calculated as the bandwidth con-

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 44 -

sumption of the object, and again the highest scoring object is removed. In their

simulations, they used traces from NCSA [KMR95] (origin server proxy trace) and

NLANR [AW96] servers (network server proxy traces) as well as stochastic Zipf access

distributions [Zip49]. They ran simulations of just continuous media (CM) objects

and combined CM and non-CM objects and found that their algorithm performed

best for both hit rate and byte hit rate. These results should be tempered because

their algorithms best addressed the issues that their measures were evaluating.

3.6.3 Other Related Web Caching Papers

Three papers argued that using the estimated page load delay would provide the

best replacement statistic. [WA97] introduced two algorithms: the Latency Estima-

tion Algorithm (LAT), which attempts to estimate the object access latency (ttr) on

a source server basis of each cached object and replace the object with the shortest

download time, and Hybrid, which considers object access latency, number of refer-

ences, and document size in the replacement decision. They modified a Harvest cache

and used workload traces from Virginia Tech and Boston University (educational

client proxy traces). They were able to run online and replay modes on the Harvest

cache, and they used live network latency values. They found that LAT performed

worse than both LRU and Size for average download time, hit rate, and weighted hit

rate, while Hybrid usually performed best for average download time and hit rate.

In [SSV97] and [SSV99], Scheuermann, Shim, and Vingralek introduce two other al-

gorithms, LNC-R-W3 and LNC-R-W3-U. Least Normalized Cost Replacement for

the World Wide Web (LNC-R-W3) takes the average rate of object reference, object

size, and delay-to-fetch (ttr) into account for the replacement decision. In a compar-

ison study with the LRU and LRU-Min algorithms using a Northwestern University

client proxy cache trace, they found that LNC-R-W3 consistently outperformed LRU

and LRU-Min [SSV97]. Least Normalized Cost Replacement for the World Wide

Web with Updates (LNC-R-W3-U) includes distributed cache consistency into the

replacement decision by including time-to-live with time-to-retrieve. They showed

that LNC-R-W3-U performed better than LNC-R-W3, LRU and LRU-Min for delay

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 45 -

savings ratio, and performed comparably to LNC-R-W3 for hit rate. Also they showed

that integrating time-to-live with other object statistics improved cache staleness over

LRU and LRU-Min. With all three of these studies, determining the time-to-retrieve

and time-to-live were difficult to measure and gain accuracy. Also, ttl and ttr are

not recorded in any proxy trace files. Therefore, the two statistics are not used in

the simulation portion of this dissertation study. However, the simulator has been

written to incorporate these statistics if they become available in trace files.

Two papers address the effectiveness of using an admission policy in proxy caches

and helped prompt the inclusion of studying admission policy usage in this disser-

tation. Aggarwal, Wolf, and Yu developed a algorithm which is very similar to

SPACExAGE (Equation 2.13) called Pyramid Selection Scheme (PSS) which includes

an efficient object metadata implementation. They include an admission policy in

their algorithm so that no requested object that is to be placed in the cache is dis-

placing another object in the cache that is more likely to be accessed in the cache.

They compared their PSS algorithm to SPACExAGE (which they call Size-adjusted

LRU), and in all of their simulations, PSS performed better than Size-adjusted LRU.

Unfortunately, they did not discuss the impact that their admission policy had on

the performance of their PSS algorithm. In [KSW98], Kurcewicz, Sylwestrzak, and

Wierzbicki argue that caching every object that clients on a network request unnec-

essarily tax the disk subsystem which is the main bottleneck of busy proxy caches.

Their algorithm determines whether an origin server has been accessed by more than

one unique client; their rationale is that if an origin server is “shared”, its objects

are more likely to be accessed again. Their algorithm has a parameter T that sets

the time in minutes in which two clients must access an origin server’s objects to be

considered a “shared” server. Using two educational client traces from Warsaw MAN

and University of Cracow, they found that this admission filter lowered disk activity,

but it also lowered the hit rate. They conceded that it was a tradeoff that may not

be effective for everyone.

Several other papers deserve mentioning though they are not as important to

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 46 -

this dissertation as the aforementioned studies. Markatos found that using main

memory (along with disk caches) improves the performance in origin servers for web

documents [Mar96]. Cao, Zhang, and Beach proposed the Active Cache system which

provides proxy caches the ability to cache dynamic content [CZB98]. The Active

Cache temporarily stores a “cache applet” along with the data object. The first

two papers that address cache consistency across distributed cache proxy servers

are [MLB95] and [GS96b]. Finally, Gwertzman and Seltzer published two papers on

geographical push-caching which is an intelligent method for prefetch objects that are

related to requested objects [GS95, GS96a].

Now that we have a background on how cache replacement algorithm research has

developed in a number of disciplines, we can define the simulation model and data

for this study.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 47 -

4. The Simulation Environment

To answer the questions of this study, computer simulation has been used to

compare different cache replacement policies.

The simulator is split into two parts, the data generators and the cache simulator.

This allows the simulator input to come from a variety of sources, and it allows

different simulation runs with different cache scenarios to use the same input data.

In presenting the cache model, the cache simulation model and the cache simulator

functionality will be explained first. Then the construction of the simulation runs

will be explained, as well as how the results will be presented. Finally in Chapter 5,

the set of simulation scenarios that were used in the simulations are explained.

4.1 Simulation Model

The architecture of server system model is hierarchical in nature. Level (i) servers

can receive media object from its corresponding (i−1) level servers or from any other

(i) level server.

For this simulation, we are modeling only one system which is situated somewhere

in the network. Since the simulator assumes the role of this single autonomous cache

proxy server, there are no assumptions concerning from what source requested ob-

jects are received. One can safely assume that the cache proxy server receive media

objects from the central server or from other network proxy servers by using a greedy-

forwarding strategy [LYW91] in which the media objects are forwarded from the most

convenient (least costly) source. Thus, the simulator is able to mimic the cache be-

havior of any of the proxy server configurations shown in Figure 2.2. By assuming this

hierarchical structure for the network, it allows us to assume a deterministic transmis-

sion cost linearly related to the size of the media object. Each server is able to make

decisions independently; there is no central scheduling system that makes decisions

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 48 -

for the entire network. And the system needs no a priori knowledge as the Rangan

patented systems [Ran96, PR97] do, because it is making greedy decisions based on

the information it has from the past accesses and the current scenario. Within the

multimedia distribution system there are M media objects, which are identified as

m1, m2, . . ., mM . Each of these objects, mi, has a object size, ms i, associated with

it. The object size is a positive integer. For simulation flexibility, the object size does

not have units associated with it; for the multimedia objects, the object size is the

length of the video in minutes (rounded up) or the size of the object in kilobytes, while

the object size is the number of bytes in the web proxy server simulations. To make

sure that the cache is the part of the system that is being tested, the networks are

expected to be able to accommodate the bandwidth necessary to deliver the media

objects without degradation in quality of service (using streaming technology for the

video objects).

With this network scenario, the network proxy cache server is described as such.

The cache has a maximum size denoted Cmax as well as a cache replacement algo-

rithm associated with it. It also maintains two variables to keep track of its usage:

the number of size units currently occupying the cache, Cs , and the number of ob-

jects currently occupying space in the cache, Cn. Both Cs and Cn are non-negative

integers, and Cmax and Cs do not have units associated with them. Each media

object that is currently occupying the cache has data associated with it. For each of

the media objects in the cache, Cm i, 1 ≤ i ≤ Cn, the data structure contains the

object number, Cmn i; the object size, Cms i; and the objects current score, Cmci.

On the network proxy server, the storage maintenance time requirements for disk

defragmentation and other tasks are disregarded. The system should be able to do

such maintenance during idle or low-demand times.

Now that the system model has been defined, the simulation parameters can be

defined. For each simulation, the total number of iterations, N , is defined as the total

number of media objects that are requested. Furthermore, a maximum object size,

Msmax , is defined as the maximum size of any of the M objects, ms i ≤ Msmax , for

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 49 -

1 ≤ i ≤ M . Also, a minimum object size, Msmin, is defined as the minimum size

of any of the M objects, ms i ≥ Msmin, for 1 ≤ i ≤ M . These variables come in

handy when defining the data sets used in the simulations, which are presented in

Section 4.3 and Chapter 5.

4.2 Simulator Functionality

The simulation software includes the configuration loading module, the simulation

file loading module, the printing module, and the simulation core including the cache

replacement algorithms. The configuration loading module loads in the configuration

file for the given simulation scenario. The simulation file loading module loads the

data file for the simulation into the simulator. The printing module formats and prints

the output files that are used to generate tables and graphs of the simulation results.

Finally, the simulation core actually implements the cache replacement algorithm

portion of the proxy cache server which is depicted as a flowchart in Figure 4.1.

Each iteration of the simulator involves loading the next requested object into the

cache. If the summation of the sizes of all of the objects in the cache exceeds the

size of the cache (Cs > Cmax), then objects must be evicted from the cache. The

cache replacement scores are then calculated for each of the objects currently in the

cache. The lowest scoring objects are evicted until the summation of the sizes of all

of the objects in the cache no longer exceeds the size of the cache (Cs ≤ Cmax). If

the summation of the sizes of all of the objects in the cache does not exceed the size

of the cache (Cs ≤ Cmax), then the next object is loaded into the cache. For this

simulator, only the metadata is loaded and maintained in the software; the actual

object data is not loaded into the system.

When an admission policy is not being used, the newly requested object is not

included in the calculation of the cache object scores nor is the newly requested object

eligible for eviction for having the lowest cache replacement score. Also, when a video

object is still being used by a client, the video object is not eligible for eviction. This

stems from the assumption that once a video is being streamed from the proxy cache

server, it will continue to be served from the proxy cache server until the client is

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 50 -

Load in next
requested object

Start

Cache size
exceeded?

Cache size
exceeded?

Calculate cache
object scores

Evict lowest
scoring object

More
requests? End

Yes No

Yes

Yes

No

No

Fig. 4.1. Basic Simulator Functionality Flowchart.

done viewing the video object. On the other hand, when an admission policy is being

used, the newly requested object is included in the calculation of the cache object

scores and the newly requested object is eligible for eviction for having the lowest

cache replacement score. And, the fact that a video object is still being used by a

client is disregarded. In this case, it is assumed that when video streaming service

is interrupted by evicting the video object from the cache proxy server, the service

will be seamlessly resumed by the origin server. This may be somewhat unrealistic,

but it was the only way that the simulation would work for the video proxy server

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 51 -

workload traces. Therefore, the simulation results for the video proxy server traces

with admission policies may not be completely accurate.

There are a number of assumptions that are made in implementing the simulator

that need to be discussed. These assumptions are made to force the simulation to

focus only on the cache replacement algorithms. First, it is assumed that the proxy

server being simulated has plenty of memory and I/O bandwidth to serve all of the

requested objects. Furthermore, it is assumed that the video proxy server being

simulated has enough memory and I/O bandwidth to stream and server all of the

videos that clients have requested. Also, all of the disk access latencies and system

latencies are neglected in these simulations. All of the objects in the system are

assumed to be read-only; if the sizes of two identically named objects are different,

the newer one is assumed to be a modification of the older one and the two objects

are treated as two unique objects. No warmup periods have been used for any of

the simulation scenarios. Since there are quite a number of workload traces studied

in this dissertation, it is very difficult to determine equivalent warmup periods that

allow a fair comparison of cache performance for each of the workload traces. Finally,

only on-demand cache replacement is implemented. Periodic cache replacement is not

explored because simulating periodic cache replacement can only increase the miss

rates of the cache replacement algorithms under simulation.

4.3 Presentation of Results

In order to present the results of the simulations, we must first define how the

simulation scenarios will be constructed.

4.3.1 The Measures

Two measures will be used to compare the cache replacement algorithms on the

different simulation data traces. The first measure is miss rate (MR) which relates to

cache miss latency. MR is defined as the fraction of requests that were not serviced

by the cache. The second measure is byte miss rate (BMR) which relates to network

bandwidth usage. BMR uses the actual sizes of the objects and conveys how many

size units were not serviced by the cache divided by the total number of size units

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 52 -

that were requested by the clients. (As explained in Section 4.1, object object size is

expressed in size units which could be bytes, kilobytes, or minutes of video.) Both the

MR and BMR will be reported as a fraction between zero and one or a miss percentage.

These two measures are intended to answer the Main Question of Section 2.9.1.

To answer the Third Question of Section 2.9.3, another measure must be taken.

Some average media object viewing percentages for each session could be set, i.e.,

one percentage value that is applied to all of the unit sizes of the media object

requests. The sum of all of the fractional unit sizes would constitute the total network

bandwidth usage if no caching were used. For example, if three objects, of unit

sizes 80, 100, and 120, are accessed once each with an average media object viewing

percentage of 25%, the sum would be 20 + 25 + 30 = 75 size units.

These average media object viewing percentages could then also be compared for

the caching and non-caching scenarios. Instead of expressing the weighted miss rates

as percentages or fractions of one, raw size units need to be compared; that is to say,

the actual network bandwidth usage values need to be compared. This will constitute

the third measure. And since this third question only applies to the video delivery

systems, it will only be used for those traces.

4.3.2 Simulation Parameters

The simulation parameters are system dependent because of differences in the

workloads that they experience.

The maximum sizes of the cache, Cmax , will be determined as a percentage of

the total unit size of the simulation data set for the video system workload traces.

For the DVJ2 data files, the total unit size of all of the objects will be calculated.

For the stochastic data files, the mean unit size of the data set is calculated as the

product of the average object size and the number of objects in the data set. And

for the OnCommand data files, all of the videos are assumed to be the same size so

the cache sizes can be determined as how many videos should be able to occupy the

cache simultaneously. Multiple cache sizes will be simulated for each data set and

some preliminary percentages of the data set size are 5%, 10%, 15%, 20%, 25%, and

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 53 -

30%.

Finally, for the Web cache traces, one cache size set is defined. For all of the

Web workload sets, the cache sizes are 1 megabytes, 4 megabytes, 16 megabytes,

64 megabytes, and 256 megabytes (1,048,576; 4,194,304; 16,777,216; 67,108,864; and

268,435,456 bytes). These sizes are smaller than current commercial implementations,

but they are the right sizes for the sizes of the workload traces, and the results will

scale up to larger cache sizes.

Furthermore, for each of the stochastic data set scenarios, 50 different data sets

will be generated to adequately eliminate abnormalities in the randomly generated

data. The object sizes will be uniformly distributed between 500 megabytes and 1.000

gigabytes, which models the object sizes of the DVJ2 system. Each data set will have

10,000 requests which is similar to the volume of requests the DVJ2 system had in

the Fall 1999 semester. The resulting measures will reflect the cumulative behavior

over the 50 different data sets.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 54 -

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 55 -

5. Simulation Data Sources

This chapter will describe the sources and statistics of the data used for the

simulations in this study. This chapter begins by describing the simulation file format

and discussing several significant related studies in the area of Web workload trace

analysis. The statistical tables and graphs for the trace workloads are then described.

A number of the statistics for each of the trace workloads are brought together in

tables to discuss the justification of delineating the three cache proxy server domains

from Section 2.1 as well as a different domain of video cache proxy servers. Finally,

a representative trace workload of each of the simulation data sources is described,

and the statistics are given and discussed.

5.1 The Simulator Data Files and Related Analysis Studies

There are several different sources for the simulation data used in this disserta-

tion, but the file format for each simulation data set is the same regardless of the

source. Translation scripts were written in Perl to translate the source data files into

a common simulator data format.

The common simulator data files have a specific format in which data is stored.

Each of the files contains a header that indicates N , Msmax , Msmin, and M . Then

each of the object sizes, the ms i’s, is listed along with the file types and unique integer

identifier numbers. Finally, all of the N media object selections are listed by using

the unique integer identifier numbers to save file space. Each of these lines is an

access request, and each line stores the unique integer identifier number along with

an access time code, the duration of the access, the time-to-retrieve, and the time to

live of the object. Each of the time-related numbers have one-second accuracy. These

simulation data files are generated by translating system logfiles into this file format

or by producing data from stochastic usage models.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 56 -

As these source data files were being translated by the Perl scripts, a number

of statistics were determined for each workload trace. These statistics can help in

hypothesizing which cache replacement algorithms will perform best (and worst) for

the given system’s workload trace. Most of the techniques for analyzing the statis-

tics that were gathered from these logfiles are from papers by John Dilley, Martin

Arlitt, and other researchers at the Internet Systems and Application Laboratory in

the Hewlett-Packard Laboratories in Palo Alto, California. Their first paper on the

subject [DFJR96] discusses measurement tools and modeling techniques for evalu-

ating web servers. Arlitt and Williamson’s papers analyzed six different web server

access logs and developed the ten workload characteristics common to Internet Web

servers [AW96, AW97]. Arlitt and Jin conducted an extensive analysis on the 1998

World Cup Web Site and reported the results in [AJ99]. Some of the data from

the World Cup study is used in this study and is described more extensively in Sec-

tion 5.4.6. Finally, Arlitt, Friedrich, and Jin published an HP-Labs Technical Report

on an analysis of a cable modem Internet service provider’s proxy cache server log-

files [AFJ99a]. That study provided some forward-looking insight into how access

patterns change when clients have greater bandwidth for Internet access.

Several other papers are also worth mentioning. Almeida, Bestavros, Crovella, and

de Oliveira analyzed logfiles from four different web servers in academia and industry,

and they presented a model for both the temporal and spatial locality of accesses to

these servers [ABCdO96]. The other three papers have already been mentioned with

respect to their contributions of new cache replacement algorithms. Lorenzetti, Rizzo,

and Vicisano analyzed a proxy cache logfile from the University of Pisa, Italy as a

basis for their LRV cache replacement algorithm [LRV97]. Cao and Irani analyzed

several proxy server logfiles and concluded that more than access times needed to be

taken into account for proxy cache replacement algorithms to be effective [CI97]. This

was part of their justification of their GreedyDual-Size algorithms. Finally, Breslau,

Cao, Phillips, and Shenker analyzed the Zipf-like distribution characteristics of several

proxy cache logfiles [BCF+99].

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 57 -

5.2 Explanation of the Gathered Trace Statistics

For each of the workload traces, up to nine tables are generated as well as one

graph. Each of the items below describe one of the tables while the last item describes

the concentration of reference graphs. Please note that the term “bytes” is used

generically for the size of objects; among the video files, these “bytes” are either

kilobytes or seconds of video.

Summary of Access Log Characteristics This table imparts basic data about

the workload trace including the start and end date stamps, the total number

of requests, the average number of requests per minute, the total number of

bytes transferred, and the average number of bytes transferred per minute. The

requests per minute and average number of bytes transferred per minute give

a rough estimate of how busy the server was on average over the time period

that the workload was collected.

Summary of Other Characteristics The characteristics covered in this table are

the maximum item size, minimum item size, and several measures that help

determine the uniqueness of the items that are requested. The unique requests

number is the number of unique items that were requested throughout the

workload trace, while the unique workload size is the sum of the sizes of all of

the unique items. The distinct requests/total requests is the percentage of the

total requests of objects for the first time while the distinct bytes/total bytes is

the percentage of bytes that were transferred due to a first-time request. These

are essentially measures of the compulsory miss rate of the workload trace,

without any regard for whether the object will fit into the cache. Ideally, a

cache should only be caching objects that will be accessed again, so the second

requests/distinct requests provides the percentage of the distinct objects that

were accessed a second time while the second bytes/distinct bytes provides the

percentage of the distinct bytes of object requests that were accessed a second

time. Usually, objects that have been accessed twice will be accessed more

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 58 -

times [LRV97]. Finally, the distinct files accessed only once and distinct bytes

accessed only once are percentages of how many of the objects are accessed only

once. That is, how many objects in the workload set are not accessed again

after they are accessed the first time. These one-time-only objects don’t need

to be kept in the cache since they won’t be accessed again; it is the challenge of

the cache replacement algorithms to evict these objects from the cache or to not

even let them into the cache by using an admission policy. But identifying such

objects is much easier to explain than do. Overall, these statistics provide some

rough estimates about how well a proxy cache server can perform optimally

under the given workload.

Breakdown by File Size This table provides a breakdown of all of the accesses

according to the size of the objects. The rows are broken down into powers of

two. The smallest size category of 4 kilobytes and smaller was chosen because

it involves sending only a few network packets. The largest size category of 128

kilobytes or larger was chosen because most large graphic, audio, and video files

will fall into this category. There are two columns. The unique files column

breaks down the percentages of each file size for all of the first accesses or

compulsory misses of the cache. Then the multirequest column breaks down the

percentages of each file size for all requests after that initial compulsory miss.

That is, it addresses all of the reaccesses of objects. This table is intended to

help determine whether file sizes should be included in the cache replacement

algorithms; if there is a very high percentage of reaccesses that are under 4

kilobytes, then using size in the cache replacement algorithm may be beneficial.

Object Reaccess Information by File Size This table breaks down the accesses

into first accesses, second accesses, three+ (three and greater) accesses, and

total accesses for files in the aforementioned size categories. Generally, objects

that have been accessed twice will be accessed more times, and this table tries

to further address this observation from [LRV97]. This breakdown table shows

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 59 -

which size category has the most second and three+ accesses as compared to

their first accesses. The percentage value next to the first accesses number

is the percent of the total accesses that the first accesses constitute. This is

carried on by the percentage next to the second accesses being the percentage

of second accesses over first accesses, and the percentage next to the three+

accesses being the percentage of three+ accesses over second accesses. The

intent of these percentages is to show a breakdown of cascading accesses for

certain categories (usually smaller) of file sizes. In all of the workload traces,

it should be expected that smaller files would have higher reaccess rates than

larger files. But, some workload traces should have higher reaccess rates for

small files than others.

Breakdown by File Type This table displays the number of requests and number

of bytes transferred broken down by the MIME file types [Mim00]. The MIME

file types define a type and a subtype, but this breakdown only takes the type

into account. The most common MIME types are: html, text, image (including

gif and jpeg subtypes), application, video, and dynamic.

Multirequest Breakdown by File Type This table displays the number of re-

quests and number of bytes transferred for items that were accessed more than

once broken down by the MIME file types [Mim00]. The MIME file types define

a type and a subtype, but this breakdown only takes the type into account. The

most common MIME types are: html, text, image (including gif and jpeg sub-

types), application, video, and dynamic. With the aforementioned Breakdown

by File Type table and this table, the intention is to determine whether the file

type would be a good criteria for use in the cache replacement algorithms for

the given workload.

Object Reaccess Information by File Type This table breaks down the accesses

into first accesses, second accesses, three+ (three and greater) accesses, and to-

tal accesses for files in the aforementioned file types. As it was also mentioned

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 60 -

before, objects that have been accessed twice will be accessed more times, and

this table also further addresses this observation from [LRV97]. This break-

down table shows which file types have the most second and three+ accesses as

compared to their first accesses. The percentage value next to the first accesses

number is the percent of the total accesses that the first accesses constitute.

The percentage next to the second accesses being the percentage of second ac-

cesses over first accesses, and the percentage next to the three+ accesses being

the percentage of three+ accesses over second accesses. The intent with these

percentages is to show a breakdown of cascading accesses.

Unique File Size Information by File Type This table displays statistics on file

sizes for each of the unique items in the workload traces broken down by MIME

file type [Mim00] which were described above in the Breakdown by File Type

table description. For each file type, the number of unique item files, mean

item size, median item size, maximum item size, and sum of all unique item

sizes (totalsize) is displayed. The idea behind this table is to provide more

information on the breakdowns of file types and file sizes.

Stack Depth Analysis The stack depth analysis measures the temporal locality

of the workload trace. It utilizes a standard least-recently used stack depth

analysis. When a new item is requested, all the other items on the stack are

pushed down one position, and the requested item’s integer identifier is inserted

on top of the stack. When an item is referenced again, its stack depth is

recorded and the item’s identifier is moved to the top of the stack with the other

item identifiers being moved down to accommodate. Once the entire logfile has

been analyzed, the list of rereferenced stack depths is analyzed. The stack

depth analysis includes the mean stack depth, median stack depth, standard

deviation of the stack depth, maximum stack depth, normalized mean stack

depth, and normalized median stack depth. The two normalized statistics are

taken by dividing the mean stack depth and median stack depth by the total

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 61 -

number of re-references. Logfiles with a high degree of temporal locality have a

relatively small normalized mean and median stack depths, while logfiles with

a low degree of temporal locality have relatively large normalized mean and

median stack depths [AJ99, AFJ99a]. Hence the intention of this analysis table

is to determine the effectiveness of the LRU algorithm and other time-based

algorithms as part of the cache replacement algorithm.

Concentration of References Graph The Concentration of References graph has

three plot lines: requests, content data transferred, and storage space. The

graph shows the distribution of popularity of the items that are requested in

the logfile trace. All of the unique items in the workload set are sorted in

decreasing order by the number of times they are requested. The item order is

then translated to a percentage of total items which is plotted on the x-axis.

Then the cumulative percentage of all client requests for each item is determined

which becomes the requests plot line. The cumulative percentage of all content

data transferred for each item is determined which becomes the content data

transferred plot line. The requests and content data transferred plot lines show

how popular the most-requested items are. If the plot lines increase rapidly near

the y-axis, then the most requested items are very popular as compared to the

other items. Finally, the storage space plot line is the cumulative percentage

of the unique item sizes for the request-sorted items. The storage space plot

line reflects what percentage of the total unique workload size a cache must be

to store a certain percentage of the most popular items. When this plot line is

shallow near the y-axis, it means that a relatively small cache could store the

most popular items [AJ99, AFJ99a]. Essentially, this graph helps determine

how much gain can be had for a cache proxy server for different size caches. For

example, if a server was designed to cache the most popular 1% of the working

set of objects, then it should be designed with the size of the first point of the

storage space curve times the total unique workload size of workload trace.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 62 -

5.3 The Domains for Proxy Cache Server Workload Traces

Some of the statistics described in Section 5.2 only convey characteristics about

that particular trace, and cannot be compared to the statistics of other traces because

they are not normalized by the number of requests, stack size, etc. However, other

statistics from the same workload traces can be compared to each other, and they

can be used to characterize different types of proxy cache server workload traces.

In Section 2.1, four domains in which distributed multimedia cache proxies are

utilized were introduced. In this section, the three server domains and a video server

domain are explored in terms of the statistical characteristics of their workload traces.

In each of the tables of this section, the eight columns are statistics from eight dif-

ferent workload traces which represent those discussed in Section 5.4, 5.5, and 5.6.

The worldcup label refers to the wc week14 trace from the HP World Cup ‘98 origin

server farm (further described in Section 5.4.6); the dsml label refers to the Purdue

Digital Systems Multimedia Lab Web Server origin server trace (further described in

Section 5.4.3); the uc label refers to the uc day1 trace from the Urbana-Champaign

NLANR network proxy cache server (further described in Section 5.4.5); the sj label

refers to the sj novwk5 trace from the San Jose NLANR network proxy cache server

(further described in Section 5.4.5); the boeing label refers to the boeing.990301 trace

from the sixth client proxy cache server from Boeing’s firewall perimeter (further de-

scribed in Section 5.4.4); the stack label refers to the trace from Purdue’s Stack (ECN)

client proxy cache server (further described in Section 5.4.2); the OnC label refers to

a trace from an OnCommand movie on-demand video system (further described in

Section 5.6); and the dvj2 99f label refers to the dvj2 99f trace from Purdue’s Digital

Video Jockey version 2 educational multimedia delivery system (further described in

Section 5.5). It should be noted that the columns are ordered from origin server proxy

traces to network proxy servers to client proxy servers to video-on-demand servers

with two traces from each domain. This will help in the analysis of the statistics.

The first comparison table, Table 5.1, takes the request percentages from the

Other Characteristics tables. As expected, the origin server traces have very low

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 63 -

distinct request percentages and fairly high second request percentages. The video

server traces have very similar percentages to the origin server traces, as should be

expected, since they are similar to origin servers in functionality. The differences

in these two trace sets comes in once-only accesses, of which the video server traces

have very low percentages while the origin server traces have modest percentages. The

two network proxy server traces have very high distinct access and lower once-only

access percentages and correspondingly low second request percentages, as should

be expected. Finally, the two client proxy traces have lower distinct request accesses

and once-only access percentages than the network proxy server traces, and somewhat

higher second request percentages. These statistics suggest that origin server proxy

caches and video proxy cache servers will have rather low miss rates and byte miss

rates overall. Conversely, network proxy caches will have quite high miss rates and

byte miss rates. Meanwhile, client proxy cache servers will have rather high miss

rates and byte miss rates, but not nearly as high as the network proxy cache servers.

Table 5.1
Comparison of Workload Composition Percentages

Workload Trace worldcup dsml uc sj boeing stack OnC dvj2 99f

Distinct Requests/Total Requests (%) 1.61 4.88 81.09 77.13 53.82 54.51 2.23 1.10

Distinct Bytes/Total Bytes (%) 3.96 21.42 82.98 90.30 80.56 77.35 2.23 1.08

Second Requests/Distinct Requests (%) 73.79 42.63 6.79 6.96 15.54 16.93 100.0 95.58

Second Bytes/Distinct Bytes (%) 54.08 32.98 2.16 3.25 8.50 10.85 100.0 96.16

Distinct Files Accessed Only Once (%) 26.21 57.37 93.21 93.04 84.46 83.07 0.00 4.42

Distinct Bytes Accessed Only Once (%) 1.82 67.02 97.84 96.75 91.50 89.15 0.00 3.84

Table 5.2 is drawn from the first rows of the Object Reaccess Information by File

Size tables. The percentages given are for files under 4 kilobytes, and the first row is

the percentage of accesses of these files that were distinct (compulsory miss) accesses,

while the second row is the percentage of distinct files that have been accessed a

second time. For the two origin server traces, a very low percentage of all accesses of

under 4 kilobyte files were first-time accesses, and a rather high percentage of these

distinct files were accessed a second time. For the network proxy cache server traces,

almost the exact opposite occurs: a very high percentage of all accesses are first-time

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 64 -

accesses while under 10% of the files are accessed a second time. Finally, for the

client proxy traces, almost half of their accesses are first-time accesses, but around

one in five of those first-time files are reaccessed. The statistics for the two video

server traces are not available because all of the video objects on these systems are

significantly more than 4 kilobytes in size. This table further suggests the miss rate

and byte miss rate hypotheses presented in the previous paragraph.

Table 5.2
Comparison of Percentage of Files Under 4 kilobytes

Workload Trace worldcup dsml uc sj boeing stack OnC dvj2 99f

First accesses (%) 0.9 1.7 80.5 71.8 46.0 45.7 n/a n/a

Second accesses (%) 68.9 56.4 7.7 8.6 19.0 20.3 n/a n/a

Tables 5.3 and 5.4 compare the percentage of requests and content data transferred

for the three most requested file types: image, html, and application. In Table 5.3, the

first three rows show the percentages of first-time requests of these file types while the

last three rows show the percentages of subsequent (second time and more) requests.

In this table we see that a very high percentage of accesses and reaccesses in the origin

servers are for files of type “image” while around 10% to 20% are for type “html”.

There are many requests for type “application” in the dsml trace because many of

the documents are Adobe PDF files which are classified as “application/pdf”. In the

network proxy cache traces, a very low percentage of all accesses are of type “applica-

tion”. Most first time accesses on the network proxy caches are of type “image” while

the reaccess percentages of “image” and “html” types are more balanced. Finally,

the client proxy traces have similar percentages to the network proxy traces, but they

are not as unbalanced. That is, the access for “image” types versus “html” type are

not as different, and the reaccess percentages are much closer to the first-time access

percentages. This table suggests that using the “image” and “html” types as cache

segment separators may decrease the miss rate of these proxy caches.

In Table 5.4, the first three rows show the percentages of the content data trans-

ferred by first-time request of these file types while the last three rows show the

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 65 -

percentages of the content data transferred by subsequent (second time and more)

requests. Compared to the requests, the percentages of content data transferred is

not skewed as dramatically to the “image” file types. However, a large percentage of

bytes transferred were for “application” types in the dsml, uc, sj, and boeing traces.

This might suggest that using a file type separator for “application” type files may

help decrease the byte miss rates on these types of traces.

Table 5.3
Comparison of Percentages of Requests for Image, Html, and Application File Types

Workload Trace worldcup dsml uc sj boeing stack OnC dvj2 99f

First - image (%) 83.21 55.44 71.50 70.87 40.11 60.79 n/a n/a

First - html (%) 12.28 14.02 22.05 23.39 35.77 34.29 n/a n/a

First - app (%) 0.75 17.35 1.53 0.88 9.00 1.12 n/a n/a

Subsequent - image (%) 83.86 57.62 41.34 61.58 43.83 69.46 n/a n/a

Subsequent - html (%) 11.64 14.46 44.07 30.09 36.08 26.99 n/a n/a

Subsequent - app (%) 0.75 14.51 2.93 1.49 5.69 1.09 n/a n/a

Table 5.4
Comparison of Percentages of Content Data Transferred for Image, Html, and

Application File Types

Workload Trace worldcup dsml uc sj boeing stack OnC dvj2 99f

First - image (%) 41.92 20.79 36.47 49.68 4.77 47.96 n/a n/a

First - html (%) 23.79 1.75 8.02 13.40 60.35 39.70 n/a n/a

First - app (%) 1.59 63.37 31.12 17.84 30.73 3.45 n/a n/a

Subsequent - image (%) 42.83 25.33 5.72 23.47 4.90 60.76 n/a n/a

Subsequent - html (%) 23.39 2.15 11.16 23.65 28.66 31.09 n/a n/a

Subsequent - app (%) 1.62 57.77 76.85 47.47 62.46 2.15 n/a n/a

A comparison of the Stack Depth Analyses is presented in Table 5.5. Though the

first four data rows of the table are interesting, these statistics are difficult to compare

from one domain to another. The worldcup and dsml traces as well as the boeing and

stack traces are from very different sized servers within the origin proxy server domain

and client proxy server domain, respectively. However, the mean stack depths and

median stack depths are similar. Also, the standard deviations of the worldcup and

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 66 -

dsml traces are very similar. As would be expected, the uc and sj traces have very

similar statistics as do the OnC and dvj2 99f traces. When the normalized mean and

median depths are considered, the video server traces and origin server traces have the

smallest numbers which means that their temporal localities are very high. For these

two trace domains, LRU can be a very effective component of a cache replacement

algorithm. The client proxy traces have less temporal locality, but they have more

temporal locality than the network proxy cache traces. This should be expected when

one considers the expected object sets and access patterns of the different domains

as discussed in Section 2.1.

Table 5.5
Comparison of Stack Depth Analysis

Workload Trace worldcup dsml uc sj boeing stack OnC dvj2 99f

mean stack depth 771.07 413.84 14466.71 13597.9 7817.23 2161.18 7.28 6.50

median stack depth 3051 3014 295 30 3 325 2 17

std. deviation 1529.25 1300.11 35153.37 32566.10 17124.71 5432.76 7.13 10.17

max. stack depth 14041 24800 251073 250569 132213 71075 31 98

norm. mean depth 0.0009 0.0080 0.0463 0.0413 0.0315 0.0164 0.0049 0.0006

norm. median depth 0.0035 0.0058 0.0009 0.0001 0.000015 0.0025 0.0014 0.0017

A comparison of the concentration of reference statistics in Tables 5.6, 5.7, and 5.8

yield some interesting results as well. Each of the three tables show concentration

statistics for the most popular 1%, 3%, 5% and 10% objects in the workload traces.

The Comparison of Concentration of Request References in Table 5.6 shows what

percentage of all requests were requests for the most popular 1%, 3%, 5% and 10%

objects in the workload traces. For instance, 55.4% of all requests in the worldcup

trace were for the most popular 1% of the objects in the workload. The origin server

traces have the highest concentration of references of their most popular objects,

and they are followed with a large margin by the client proxy traces and network

proxy traces. The video server traces have a fairly low popularity concentration of

references.

In the Comparison of Concentration of Content Data Transferred of Table 5.7, the

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 67 -

Table 5.6
Comparison of Concentration of Request References

Workload Trace worldcup dsml uc sj boeing stack OnC dvj2 99f

1% most referenced 55.4 68.3 13.7 16.9 31.1 25.2 20.1 3.5

3% most referenced 75.9 81.7 18.3 21.1 38.0 34.7 20.1 10.3

5% most referenced 82.4 87.0 21.5 25.2 42.0 39.8 34.4 14.8

10% most referenced 89.5 91.1 27.0 30.6 48.6 47.2 44.8 27.1

numbers are the percentages of the total content data transferred by the requests for

the most popular 1%, 3%, 5% and 10% objects in the workload traces. As an example,

30.2% of all content data transferred of the worldcup workload trace were from the

most popular 1% of the content data. Again we see the highest concentrations in the

two origin server traces, with the network proxy traces and client proxy traces far

behind. Also, the statistics of the video server traces are more similar to the client

proxy and network proxy statistics.

Table 5.7
Comparison of Concentration of Content Data Transferred

Workload Trace worldcup dsml uc sj boeing stack OnC dvj2 99f

1% most referenced bytes 30.2 20.3 16.0 6.6 7.2 6.1 20.1 4.6

3% most referenced bytes 49.1 31.8 17.0 7.5 12.8 12.3 20.1 12.2

5% most referenced bytes 67.1 45.6 18.1 9.4 15.2 16.0 34.4 16.6

10% most referenced bytes 80.9 65.9 22.0 16.5 19.6 23.7 44.8 28.8

In Table 5.8 which depicts the Comparison of Concentration of Storage Space

Used, the numbers show the percentage of the total workload size that the most

popular 1%, 3%, 5% and 10% objects in the workload traces used. So in the worldcup

trace, the most popular 1% of the requests occupy only 0.2% of the size of the entire

workload set. The origin server traces have the lowest storage space used for 1% and

3%, but they catch up to the client and network proxy traces when the 5% and 10%

values are compared. This implies that the most popular objects on the origin servers

are very small files, while the next tier of popular files in the origin server traces are

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 68 -

somewhat larger. Since the video objects are much larger and are relatively the same

size (within two orders of magnitude), the storage space concentrations of the video

server traces show larger percentages.

Table 5.8
Comparison of Concentration of Storage Space Used

Workload Trace worldcup dsml uc sj boeing stack OnC dvj2 99f

1% most referenced bytes 0.2 0.1 0.6 0.3 0.4 0.2 3.0 1.2

3% most referenced bytes 1.3 0.5 1.1 0.8 1.3 1.2 3.0 3.2

5% most referenced bytes 3.6 1.7 1.7 1.5 2.1 2.2 6.1 4.9

10% most referenced bytes 7.0 6.5 6.0 7.5 4.3 6.1 9.1 10.3

5.4 Web Server Data Files

In order to better understand the different datafiles, more detailed information and

statistics about the traces are necessary. The next several sections will provide these

details about the workload traces that are used in this dissertation study including

the web server data files, the DVJ2 data files, the OnCommand data files, and several

stochastic model files.

5.4.1 Virginia Tech Proxy Servers

The Virginia Tech Proxy workload traces were collected for use in several stud-

ies conducted in the Virginia Tech Computer Science department. The traces were

first introduced in a 1996 paper by Williams, Abrams, Standridge, Abdulla, and

Fox [WAS+96]. It is comprised of three different access traces collected from different

scenarios. Each of these workload traces are described below.

BL Logfile Trace

The BL trace is a educational client proxy trace. It was recorded by a proxy

machine over the course of 37 days in the Fall 1995 semester, and it recorded the

Web accesses of the entire Computer Science department in that time period. There

were 53,742 requests totaling 645 megabytes of data.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 69 -

Table 5.10 shows that 57% of all requests were first-time requests (compulsory

misses), while nearly 77% of all of the objects were accessed only once and they were

generally smaller files. Also, around 20% of the objects accessed once were accessed

a second time. Most of the files accessed and reaccessed were of type “image” and

“html” though nearly 10% were of the type “other” as shown in Tables 5.13 and 5.14.

As for the percentages of bytes transferred, types “image” and “html” are among

the largest percentages, but types “application”, “audio” and “video” are strong

contingents as well. The Virginia Tech Computer Science department clients took

advantage of their high bandwidth connections. The normalized stack depth statistics

in Table 5.17 are fairly typical of client proxy workloads, and they imply that there

is high temporal locality in the reaccesses. Finally, the Concentration of References

graph in Figure 5.1 shows that the most popular 1% of all objects was accessed 13.8%

of the time and they comprised only 9.3% of all bytes transferred. These are not as

concentrated as other traces, but a good replacement algorithm can still perform well

on this trace.

Table 5.9
Summary of Access Log Characteristics for BL Trace

Trace start time: Sun Sep 17 00:24:57 1995

Trace end time: Wed Oct 25 17:43:19 1995

Total Requests: 53,742

Avg Requests/Minute: 0.96

Total Bytes Transferred: 674,846,593

Avg Bytes Transferred/Minute: 12,103.06

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 70 -

Table 5.10
Summary of Other Characteristics for BL Trace

Maximum Size Item (bytes): 7,949,704

Minimum Size Item (bytes): 8

Unique Requests: 30,692

Unique Workload Size (bytes): 453,956,838

Distinct Requests/Total Requests (%): 57.11

Distinct Bytes/Total Bytes (%): 67.27

Second Requests/Distinct Requests (%): 23.14

Second Bytes/Distinct Bytes (%): 17.41

Distinct Files Accessed Only Once (%): 76.86

Distinct Bytes Accessed Only Once (%): 82.59

Table 5.11
Breakdown By File Size for BL Trace

Size Range Unique Files (%) Multirequests (%)

s ≤ 4kb 59.91 66.20

4kb < s ≤ 8kb 16.35 14.38

8kb < s ≤ 16kb 10.62 8.86

16kb < s ≤ 32kb 6.51 5.60

32kb < s ≤ 64kb 3.65 2.39

64kb < s ≤ 128kb 1.75 1.61

128kb < s 1.21 0.98

Table 5.12
Object Reaccess Information by File Size for BL Trace

File Type First Accesses Second Accesses Three+ Accesses Total Accesses

s ≤ 4kb 18,388 (54.7 %) 4,469 (24.3 %) 10,789 (241.4 %) 33,646

4kb < s ≤ 8kb 5,017 (60.2 %) 1,102 (22.0 %) 2,212 (200.7 %) 8,331

8kb < s ≤ 16kb 3,260 (61.5 %) 712 (21.8 %) 1,330 (186.8 %) 5,302

16kb < s ≤ 32kb 1,997 (60.8 %) 432 (21.6 %) 858 (198.6 %) 3,287

32kb < s ≤ 64kb 1,120 (67.1 %) 217 (19.4 %) 333 (153.5 %) 1,670

64kb < s ≤ 128kb 538 (59.3 %) 108 (20.1 %) 262 (242.6 %) 908

128kb < s 372 (62.2 %) 63 (16.9 %) 163 (258.7 %) 598

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 71 -

Table 5.13
Breakdown By File Type for BL Trace

File Type % of Requests % of Bytes Transferred

application 1.69 11.59

audio 0.25 17.99

compressed 0.07 1.46

dynamic 0.59 0.27

html 32.43 14.39

image 54.15 46.22

java 0.71 0.23

other 9.57 3.71

text 0.49 0.56

video 0.05 3.57

Table 5.14
Multirequest Breakdown By File Type for BL Trace

File Type % of Requests % of Bytes Transferred

application 3.04 22.93

audio 0.13 7.03

compressed 0.03 0.37

dynamic 0.27 0.11

html 30.66 15.56

image 52.48 46.99

java 0.52 0.26

other 12.46 5.95

text 0.42 0.44

video 0.01 0.36

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 72 -

Table 5.15
Object Reaccess Information by File Type for BL Trace

File Type First Accesses Second Accesses Other Accesses Total Accesses

application 208 (22.9 %) 107 (51.4 %) 594 (555.1 %) 909

audio 104 (78.2 %) 14 (13.5 %) 15 (107.1 %) 133

compressed 33 (84.6 %) 5 (15.2 %) 1 (20.0 %) 39

dynamic 257 (80.6 %) 42 (16.3 %) 20 (47.6 %) 319

html 10,363 (59.5 %) 2,264 (21.8 %) 4,803 (212.1 %) 17,430

image 17,006 (58.4 %) 3,972 (23.4 %) 8,124 (204.5 %) 29,102

java 260 (68.6 %) 55 (21.2 %) 64 (116.4 %) 379

other 2,273 (44.2 %) 597 (26.3 %) 2,274 (380.9 %) 5,144

text 165 (63.0 %) 45 (27.3 %) 52 (115.6 %) 262

video 23 (92.0 %) 2 (8.7 %) 0 (0.0 %) 25

Table 5.16
Unique File Size Information by File Type for BL Trace

file type number mean (bytes) median (bytes) maximum (bytes) totalsize (bytes)

all 30,692 14,791 303 7,949,704 453,956,838

application 208 132,563 320,537 1,859,386 27,573,121

audio 104 1,017,686 25,630 7,949,704 105,839,351

compressed 33 273,297 388,264 1,447,894 9,018,791

dynamic 257 6,117 3,493 78,804 1,572,133

html 10,363 6,057 2,977 1,830,557 62,766,593

image 17,006 12,239 3,055 1,808,969 208,144,919

java 260 3,786 3,394 21,834 984,293

other 2,273 5,245 3,033 646,844 11,922,598

text 165 17,096 25,765 342,889 2,820,888

video 23 1,013,659 283,206 2,770,091 23,314,151

Table 5.17
Stack Depth Analysis for BL Trace

mean stack depth: 2,773.87

median stack depth: 3

standard deviation: 4,342.17

maximum stack depth: 29,867

normalized mean depth: 0.051,614

normalized median depth: 0.000,056

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 73 -

0

10

20

30

40

50

60

70

80

90

100

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 10
0

Percentage of Unique Files

C
u

m
u

la
ti

ve
 P

er
ce

n
ta

g
e

Requests Content Data Transferred Storage Space

Fig. 5.1. Concentration of References for BL Trace

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 74 -

BR Logfile Trace

The BR workload trace is an origin server proxy workload trace. It is a record of

all of the external access requests of the web servers in the cs.vt.edu domain. (That

is no access requests are recorded from machines within the cs.vt.edu domain.)

The trace is from 38 days in the Fall 1995 semester, and it involves 179,600 accesses

that transferred 10.1 gigabytes of web objects. The first time requests (compulsory

misses) were very low at 5.94% of all the requests, while the percentage of unique files

accessed only once was only 41.54% as shown in Table 5.19. In the same table, one

can see that nearly 60% of all objects were accessed at least twice, and over 82% of

all the unique content was accessed at least twice.

In Tables 5.22 and 5.23, it can be seen that the overwhelming majority of the

object requests and requests for objects that have been requested before in the trace

were for types “image” and “html”. However, the overwhelming majority of bytes

transferred was for files of type “audio”. By looking at the logfile, one finds that

these audio files are basic audio (.au) files and midi audio (.mid) files. Some of these

basic audio files are several megabytes in size which explains why the basic audio file

requests comprise only a small percentage of total requests while constituting a large

percentage of bytes transferred. The very small normalized stack depth statistics in

Table 5.26 are common for origin server proxy workload traces. The Concentration

of References graph in Figure 5.2 shows that the most popular 1% objects constitute

42.8% of all of the requests and 37.5% of all bytes transferred.

Table 5.18
Summary of Access Log Characteristics for BR Trace

Trace start time: Sun Sep 17 00:19:27 1995

Trace end time: Wed Oct 25 17:49:49 1995

Total Requests: 179,600

Avg Requests/Minute: 3.22

Total Bytes Transferred: 10,070,967,283

Avg Bytes Transferred/Minute: 180,579.18

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 75 -

Table 5.19
Summary of Other Characteristics for BR Trace

Maximum Size Item (bytes): 10,032,887

Minimum Size Item (bytes): 18

Unique Requests: 10,660

Unique Workload Size (bytes): 217,525,043

Distinct Requests/Total Requests (%): 5.94

Distinct Bytes/Total Bytes (%): 2.16

Second Requests/Distinct Requests (%): 58.46

Second Bytes/Distinct Bytes (%): 82.44

Distinct Files Accessed Only Once (%): 41.54

Distinct Bytes Accessed Only Once (%): 17.56

Table 5.20
Breakdown By File Size for BR Trace

Size Range Unique Files (%) Multirequests (%)

s ≤ 4kb 69.52 66.91

4kb < s ≤ 8kb 12.05 12.10

8kb < s ≤ 16kb 7.44 7.25

16kb < s ≤ 32kb 5.06 7.00

32kb < s ≤ 64kb 3.02 3.17

64kb < s ≤ 128kb 1.49 0.79

128kb < s 1.43 2.78

Table 5.21
Object Reaccess Information by File Size for BR Trace

File Type First Accesses Second Accesses Three+ Accesses Total Accesses

s ≤ 4kb 7,411 (6.2 %) 4,211 (56.8 %) 108,824 (2584.3 %) 120,446

4kb < s ≤ 8kb 1,284 (5.9 %) 777 (60.5 %) 19,659 (2530.1 %) 21,720

8kb < s ≤ 16kb 793 (6.1 %) 481 (60.7 %) 11,771 (2447.2 %) 13,045

16kb < s ≤ 32kb 539 (4.4 %) 336 (62.3 %) 11,483 (3417.6 %) 12,358

32kb < s ≤ 64kb 322 (5.7 %) 213 (66.1 %) 5,149 (2417.4 %) 5,684

64kb < s ≤ 128kb 159 (10.6 %) 101 (63.5 %) 1,235 (1222.8 %) 1,495

128kb < s 152 (3.1 %) 113 (74.3 %) 4,587 (4059.3 %) 4,852

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 76 -

Table 5.22
Breakdown By File Type for BR Trace

File Type % of Requests % of Bytes Transferred

application 0.49 0.54

audio 3.18 87.79

compressed 0.02 0.01

dynamic 0.72 0.07

html 20.96 2.95

image 67.48 8.09

java 0.00 0.00

other 6.44 0.37

text 0.70 0.13

video 0.01 0.04

Table 5.23
Multirequest Breakdown By File Type for BR Trace

File Type % of Requests % of Bytes Transferred

application 0.38 0.40

audio 3.34 88.45

compressed 0.01 0.01

dynamic 0.69 0.05

html 19.40 2.80

image 69.36 7.85

java 0.00 0.00

other 6.31 0.34

text 0.50 0.09

video 0.00 0.03

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 77 -

Table 5.24
Object Reaccess Information by File Type for BR Trace

File Type First Accesses Second Accesses Other Accesses Total Accesses

application 236 (26.8 %) 153 (64.8 %) 493 (322.2 %) 882

audio 64 (1.1 %) 59 (92.2 %) 5,591 (9476.3 %) 5,714

compressed 10 (34.5 %) 6 (60.0 %) 13 (216.7 %) 29

dynamic 135 (10.4 %) 62 (45.9 %) 1,100 (1774.2 %) 1,297

html 4,864 (12.9 %) 2,613 (53.7 %) 30,162 (1154.3 %) 37,639

image 4,017 (3.3 %) 2,641 (65.7 %) 114,539 (4337.0 %) 121,197

java 3 (75.0 %) 1 (33.3 %) 0 (0.0 %) 4

other 911 (7.9 %) 566 (62.1 %) 10,087 (1782.2 %) 11,564

text 416 (32.9 %) 127 (30.5 %) 721 (567.7 %) 1,264

video 4 (40.0 %) 4 (100.0 %) 2 (50.0 %) 10

Table 5.25
Unique File Size Information by File Type for BR Trace

file type number mean (bytes) median (bytes) maximum (bytes) totalsize (bytes)

all 10,660 20,406 319 10,032,887 217,525,043

application 236 65,929 367,686 793,812 15,559,287

audio 64 1,975,407 2,115,765 10,032,887 126,426,073

compressed 10 45,808 20,480 102,400 458,080

dynamic 135 18,314 29,565 209,173 2,472,430

html 4,864 4,455 303 132,815 21,667,455

image 4,017 10,254 3,484 590,657 41,189,064

java 3 2,346 494 6,334 7,037

other 911 4,628 238 133,916 4,216,349

text 416 9,273 3,549 163,943 3,857,467

video 4 417,950 499,812 499,812 1,671,801

Table 5.26
Stack Depth Analysis for BR Trace

mean stack depth: 544.8

median stack depth: 3

standard deviation: 976.46

maximum stack depth: 10,392

normalized mean depth: 0.003,033

normalized median depth: 0.000,017

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 78 -

0

10

20

30

40

50

60

70

80

90

100

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 10
0

Percentage of Unique Files

C
u

m
u

la
ti

ve
 P

er
ce

n
ta

g
e

Requests Content Data Transferred Storage Space

Fig. 5.2. Concentration of References for BR Trace

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 79 -

G Logfile Trace

The G logfile trace of the Virginia Tech trace set was collected at a popular

workstation at which at least 25 Computer Science graduate students accessed the

Web. This trace is classified as a small educational client proxy trace. In the trace

there are 33,155 access and 486 megabytes were transferred which occurred over the

course of two and a half months in the Spring 1995 semester. The first time requests

(compulsory misses) were almost 60% of all the requests, while the percentage of

unique files accessed only once was 80% as shown in Table 5.28. Also, fewer than

20% of the unique files were requested a second time. The access distribution is fairly

diverse because Table 5.28 shows fairly high percentage for distinct objects that are

accessed only once.

Tables 5.31 and 5.32 show that the majority of requests and bytes transferred are

of type “image” and “html”, while there is a significant percentage of type “other”.

Also, a significant percentage of total transferred bytes are of type “video”. These

videos are generally only accessed once, because such a high percentage does not show

up in the bytes transferred of files that are accessed more than once in Table 5.32.

In Table 5.35, the normalized mean stack depth is rather high while the normalized

median stack depth is rather low for a client proxy trace. Finally, the Concentration

of Reference graph lines in Figure 5.3 have a rather shallow attack as compared with

other client proxy traces.

Table 5.27
Summary of Access Log Characteristics for G Trace

Trace start time: Fri Jan 20 11:26:09 1995

Trace end time: Fri Apr 7 23:50:27 1995

Total Requests: 33,155

Avg Requests/Minute: 0.30

Total Bytes Transferred: 486,368,347

Avg Bytes Transferred/Minute: 4,357.19

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 80 -

Table 5.28
Summary of Other Characteristics for G Trace

Maximum Size Item (bytes): 25,926,373

Minimum Size Item (bytes): 1

Unique Requests: 19,782

Unique Workload Size (bytes): 398,604,542

Distinct Requests/Total Requests (%): 59.67

Distinct Bytes/Total Bytes (%): 81.96

Second Requests/Distinct Requests (%): 19.96

Second Bytes/Distinct Bytes (%): 8.41

Distinct Files Accessed Only Once (%): 80.04

Distinct Bytes Accessed Only Once (%): 91.59

Table 5.29
Breakdown By File Size for G Trace

Size Range Unique Files (%) Multirequests (%)

s ≤ 4kb 68.42 77.77

4kb < s ≤ 8kb 11.61 7.72

8kb < s ≤ 16kb 7.81 6.33

16kb < s ≤ 32kb 4.94 4.79

32kb < s ≤ 64kb 3.57 2.33

64kb < s ≤ 128kb 1.72 0.61

128kb < s 1.93 0.45

Table 5.30
Object Reaccess Information by File Size for G Trace

File Type First Accesses Second Accesses Three+ Accesses Total Accesses

s ≤ 4kb 13,534 (56.5 %) 2,912 (21.5 %) 7,488 (257.1 %) 23,934

4kb < s ≤ 8kb 2,297 (69.0 %) 396 (17.2 %) 636 (160.6 %) 3,329

8kb < s ≤ 16kb 1,544 (64.6 %) 268 (17.4 %) 579 (216.0 %) 2,391

16kb < s ≤ 32kb 977 (60.4 %) 176 (18.0 %) 465 (264.2 %) 1,618

32kb < s ≤ 64kb 707 (69.4 %) 123 (17.4 %) 189 (153.7 %) 1,019

64kb < s ≤ 128kb 341 (80.8 %) 39 (11.4 %) 42 (107.7 %) 422

128kb < s 382 (86.4 %) 35 (9.2 %) 25 (71.4 %) 442

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 81 -

Table 5.31
Breakdown By File Type for G Trace

File Type % of Requests % of Bytes Transferred

application 0.81 8.75

audio 0.07 0.88

compressed 0.40 7.04

dynamic 5.15 1.34

html 25.89 10.73

image 49.70 33.50

java 0.01 0.00

other 16.93 8.24

text 0.63 0.77

video 0.41 28.75

Table 5.32
Multirequest Breakdown By File Type for G Trace

File Type % of Requests % of Bytes Transferred

application 0.67 8.40

audio 0.01 0.24

compressed 0.13 2.54

dynamic 3.95 1.72

html 22.28 18.02

image 55.23 59.03

java 0.00 0.00

other 17.33 7.08

text 0.36 0.40

video 0.04 2.58

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 82 -

Table 5.33
Object Reaccess Information by File Type for G Trace

File Type First Accesses Second Accesses Other Accesses Total Accesses

application 178 (66.4 %) 38 (21.3 %) 52 (136.8 %) 268

audio 21 (91.3 %) 2 (9.5 %) 0 (0.0 %) 23

compressed 116 (87.2 %) 12 (10.3 %) 5 (41.7 %) 133

dynamic 1,179 (69.1 %) 198 (16.8 %) 330 (166.7 %) 1,707

html 5,606 (65.3 %) 1,047 (18.7 %) 1,932 (184.5 %) 8,585

image 9,092 (55.2 %) 1,910 (21.0 %) 5,476 (286.7 %) 16,478

java 2 (100.0 %) 0 (0.0 %) 0 (0.0 %) 2

other 3,296 (58.7 %) 713 (21.6 %) 1,604 (225.0 %) 5,613

text 161 (77.0 %) 23 (14.3 %) 25 (108.7 %) 209

video 131 (95.6 %) 6 (4.6 %) 0 (0.0 %) 137

Table 5.34
Unique File Size Information by File Type for G Trace

file type number mean (bytes) median (bytes) maximum (bytes) totalsize (bytes)

all 19,782 20,150 2,922 25,926,373 398,604,542

application 178 197,564 27,475 3,732,116 35,166,362

audio 21 193,455 299,669 1,743,400 4,062,560

compressed 116 275,844 309,033 2,909,871 31,997,949

dynamic 1,179 4,249 2,862 476,521 5,009,092

html 5,606 6,489 2,960 961,739 36,374,995

image 9,092 12,222 300 1,053,970 111,123,548

java 2 3,080 1,630 4,529 6,159

other 3,296 10,277 2,708 13,498,876 33,873,192

text 161 21,163 3,569 724,617 3,407,254

video 131 1,050,255 292,455 25,926,373 137,583,431

Table 5.35
Stack Depth Analysis for G Trace

mean stack depth: 1,601.41

median stack depth: 3

standard deviation: 2,489.5

maximum stack depth: 16,829

normalized mean depth: 0.048,301

normalized median depth: 0.0001

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 83 -

0

10

20

30

40

50

60

70

80

90

100

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 10
0

Percentage of Unique Files

C
u

m
u

la
ti

ve
 P

er
ce

n
ta

g
e

Requests Content Data Transferred Storage Space

Fig. 5.3. Concentration of References for G Trace

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 84 -

5.4.2 Purdue Stack (ECN) Proxy Server

The Purdue Stack Proxy Server is maintained by the Purdue University Engineer-

ing Computer Network (ECN), and it is run on the stack.ecn.purdue.edu server.

This proxy is used by many individuals on the ECN staff as well as a few engineer-

ing faculty members and students to cache objects that they are accessing from the

Internet. Since this proxy does not serve a great number of people, its references per

minute is relatively low. But this trace is comprised of fourteen months of accesses

(from September 1998 to October 1999), and it is a complete and sizable data set

for a smaller client set. A total of 915 megabytes of data were transferred in 131,823

requests.

Since the Stack proxy is a client proxy, the percentage of first time requests (com-

pulsory misses) is somewhat high at 54.51%, and the percentage of distinct files that

are accessed only once is high at 83% as is shown in Table 5.37. Table 5.40 reflects

that almost all of the accessed objects and objects accessed more than once are of

type “image” and “html”. The normalized stack depth statistics in Table 5.44 show

that there is moderate temporal locality among reaccesses of objects. Finally, the

Concentration of References graph shows that the most popular 1% of the objects

comprise 25.2% of all requests, while they only comprise 0.2% of the size of the entire

unique data set. This implies that by caching the right objects, fairly low miss rates

can be attained.

Table 5.36
Summary of Access Log Characteristics for stackproxy Trace

Trace start time: Mon Aug 31 07:46:32 1998

Trace end time: Thu Oct 28 16:14:03 1999

Total Requests: 131,823

Avg Requests/Minute: 0.22

Total Bytes Transferred: 914,688,843

Avg Bytes Transferred/Minute: 1,500.41

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 85 -

Table 5.37
Summary of Other Characteristics for stackproxy Trace

Maximum Size Item (bytes): 17,670,168

Minimum Size Item (bytes): 1

Unique Requests: 71,853

Unique Workload Size (bytes): 707,494,492

Distinct Requests/Total Requests (%): 54.51

Distinct Bytes/Total Bytes (%): 77.35

Second Requests/Distinct Requests (%): 16.93

Second Bytes/Distinct Bytes (%): 10.85

Distinct Files Accessed Only Once (%): 83.07

Distinct Bytes Accessed Only Once (%): 89.15

Table 5.38
Breakdown By File Size for stackproxy Trace

Size Range Unique Files (%) Multirequests (%)

s ≤ 4kb 55.73 79.25

4kb < s ≤ 8kb 14.14 9.90

8kb < s ≤ 16kb 17.56 7.09

16kb < s ≤ 32kb 7.11 2.71

32kb < s ≤ 64kb 3.68 0.81

64kb < s ≤ 128kb 1.25 0.21

128kb < s 0.53 0.04

Table 5.39
Object Reaccess Information by File Size for stackproxy Trace

File Type First Accesses Second Accesses Three+ Accesses Total Accesses

s ≤ 4kb 40,043 (45.7 %) 8,146 (20.3 %) 39,379 (483.4 %) 87,568

4kb < s ≤ 8kb 10,159 (63.1 %) 1,513 (14.9 %) 4,422 (292.3 %) 16,094

8kb < s ≤ 16kb 12,617 (74.8 %) 1,499 (11.9 %) 2,753 (183.7 %) 16,869

16kb < s ≤ 32kb 5,112 (75.9 %) 674 (13.2 %) 952 (141.2 %) 6,738

32kb < s ≤ 64kb 2,641 (84.5 %) 249 (9.4 %) 237 (95.2 %) 3,127

64kb < s ≤ 128kb 901 (87.9 %) 67 (7.4 %) 57 (85.1 %) 1,025

128kb < s 380 (94.5 %) 14 (3.7 %) 8 (57.1 %) 402

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 86 -

Table 5.40
Breakdown By File Type for stackproxy Trace

File Type % of Requests % of Bytes Transferred

application 1.12 3.45

audio 0.09 0.23

compressed 0.01 0.27

dynamic 2.78 2.52

html 34.29 39.70

image 60.79 47.96

java 0.27 0.20

multipart 0.03 1.16

other 0.29 0.65

text 0.30 1.50

video 0.01 2.35

Table 5.41
Multirequest Breakdown By File Type for stackproxy Trace

File Type % of Requests % of Bytes Transferred

application 1.09 2.15

audio 0.04 0.11

compressed 0.00 0.00

dynamic 1.61 1.28

html 26.99 31.09

image 69.46 60.76

java 0.26 0.33

multipart 0.01 1.01

other 0.23 0.20

text 0.32 2.97

video 0.01 0.08

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 87 -

Table 5.42
Object Reaccess Information by File Type for stackproxy Trace

File Type First Accesses Second Accesses Other Accesses Total Accesses

application 822 (55.7 %) 274 (33.3 %) 380 (138.7 %) 1,476

audio 97 (80.2 %) 15 (15.5 %) 9 (60.0 %) 121

compressed 10 (100.0 %) 0 (0.0 %) 0 (0.0 %) 10

dynamic 2,707 (73.8 %) 252 (9.3 %) 711 (282.1 %) 3,670

html 29,013 (64.2 %) 3,722 (12.8 %) 12,464 (334.9 %) 45,199

image 38,486 (48.0 %) 7,763 (20.2 %) 33,890 (436.6 %) 80,139

java 207 (57.2 %) 57 (27.5 %) 98 (171.9 %) 362

multipart 29 (85.3 %) 4 (13.8 %) 1 (25.0 %) 34

other 266 (66.5 %) 36 (13.5 %) 98 (272.2 %) 400

text 206 (51.6 %) 38 (18.4 %) 155 (407.9 %) 399

video 10 (76.9 %) 1 (10.0 %) 2 (200.0 %) 13

Table 5.43
Unique File Size Information by File Type for stackproxy Trace

file type number mean (bytes) median (bytes) maximum (bytes) totalsize (bytes)

all 71,853 9,846 2,951 17,670,168 707,494,492

application 822 32,913 260 4,538,214 27,054,704

audio 97 18,967 2,899 242,628 1,839,827

compressed 10 245,399 53,834 1,120,541 2,453,985

dynamic 2,707 7,526 366 2,986,038 20,372,821

html 29,013 10,295 2,567 705,284 298,698,146

image 38,486 8,128 325 843,452 312,823,559

java 207 5,426 2,446 30,581 1,123,098

multipart 29 293,561 4,178 1,439,523 8,513,281

other 400 235 249 279 24,439

text 206 36,909 2,900 4,866,818 7,603,266

video 10 2,134,526 258,981 17,670,168 21,345,258

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 88 -

Table 5.44
Stack Depth Analysis for stackproxy Trace

mean stack depth: 2,161.18

median stack depth: 325

standard deviation: 5,432.76

maximum stack depth: 71,075

normalized mean depth: 0.016,395

normalized median depth: 0.002,465

0

10

20

30

40

50

60

70

80

90

100

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 10
0

Percentage of Unique Files

C
u

m
u

la
ti

ve
 P

er
ce

n
ta

g
e

Requests Content Data Transferred Storage Space

Fig. 5.4. Concentration of References for stackproxy Trace

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 89 -

5.4.3 Purdue DSML Web Server

The Digital Systems/Multimedia Learning Lab (DSML) is in the School of Elec-

trical and Computer Engineering at Purdue University. The DSML web server is

the origin of web pages not only for the Digital Systems Laboratory, which conducts

research in Multimedia Education and Computer Architecture, but also for several

classes offered by the School of Electrical and Computer Engineering. These classes

include EE 266/7 Digital Logic Design, EE 362 Microprocessor System and Interfac-

ing, EE 467 Advanced Digital Systems/Embedded Microcontroller Design Lab, EE 477

Digital Systems Senior Project, EE 566 CISC Microprocessor System Design, and EE

568 RISC and DSP Microprocessor System Design. The EE 266/7 and EE 362 classes

use this web server extensively to view and download course documents, homework

assignments, lab assignments, reference documents, and links to online digital videos

(see Section 5.5). These digital video links spawn a helper application with which the

students actually view the videos. This workload trace was collected during the Fall

1999 semester in which the DSML server had 520,783 requests and transferred 10.7

gigabytes of content. In Table 5.46, the percentage of first time requests (compulsory

misses) was 4.88%, while the percentage of unique files that were accessed only once

was 57.37%. And over 40% of the objects that were accessed for the first time were

accessed for a second time.

From Table 5.49, one can see that most of the requests of this server are of type

“image” and “html”, though “application” and “other” types are also significantly

represented. Most of the “application” type requests are for Adobe PDF files which

is a common format for homework, lecture notes, and other course documents on this

web server. It should be noted in Tables 5.49 and 5.50 that the “application” type

comprises more than half of all bytes transferred by the server. Most of the “other”

type requests are for ABEL hardware description language source files, assembly code

source files, and html index pages that are referenced in the URL with an ending right

slash. The large percentage of file types other than “images” and “html” types in

this workload trace implies that PLRU will probably not perform well since PLRU

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 90 -

gives priority to “images” and “html” types.

Because the server delivers educational material, a great deal of its content is

time sensitive with respect to the time within a semester. Therefore, this workload

trace shows a better temporal locality in the stack depth analysis of Table 5.53 and

Correlation of Reference graph of Figure 5.5, and shows a relatively low percentage

of documents that are referenced only once. Not surprisingly, the most popular

1% of all of the documents served by the DSML web server comprises 68.3% of all

accesses, and the most popular 10% comprises 91.7% of all accesses. This implies

that cache replacement algorithms based on LRU and LFU should perform well with

this workload trace as input. The Content Data Transferred line of the Correlation

of References graph implies that size-based cache replacement algorithms could help

improve performance.

Table 5.45
Summary of Access Log Characteristics for dsl log Trace

Trace start time: Mon Aug 23 00:15:53 1999

Trace end time: Fri Dec 17 14:13:22 1999

Total Requests: 520,783

Avg Requests/Minute: 3.10

Total Bytes Transferred: 10,668,883,959

Avg Bytes Transferred/Minute: 63.00

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 91 -

Table 5.46
Summary of Other Characteristics for dsl log Trace

Maximum Size Item (bytes): 16,154,624

Minimum Size Item (bytes): 1

Unique Requests: 25,395

Unique Workload Size (bytes): 2,285,530,300

Distinct Requests/Total Requests (%): 4.88

Distinct Bytes/Total Bytes (%): 21.42

Second Requests/Distinct Requests (%): 42.63

Second Bytes/Distinct Bytes (%): 32.98

Distinct Files Accessed Only Once (%): 57.37

Distinct Bytes Accessed Only Once (%): 67.02

Table 5.47
Breakdown By File Size for dsl log Trace

Size Range Unique Files (%) Multirequests (%)

s ≤ 4kb 22.17 65.76

4kb < s ≤ 8kb 7.01 12.70

8kb < s ≤ 16kb 6.97 4.13

16kb < s ≤ 32kb 9.84 9.47

32kb < s ≤ 64kb 21.45 3.79

64kb < s ≤ 128kb 19.96 2.37

128kb < s 12.59 1.78

Table 5.48
Object Reaccess Information by File Size for dsl log Trace

File Type First Accesses Second Accesses Three+ Accesses Total Accesses

s ≤ 4kb 5,630 (1.7 %) 3,175 (56.4 %) 322,589 (10160.3 %) 331,394

4kb < s ≤ 8kb 1,781 (2.8 %) 949 (53.3 %) 61,958 (6528.8 %) 64,688

8kb < s ≤ 16kb 1,771 (8.0 %) 797 (45.0 %) 19,687 (2470.1 %) 22,255

16kb < s ≤ 32kb 2,499 (5.1 %) 1,045 (41.8 %) 45,858 (4388.3 %) 49,402

32kb < s ≤ 64kb 5,447 (22.5 %) 2,195 (40.3 %) 16,603 (756.4 %) 24,245

64kb < s ≤ 128kb 5,069 (30.2 %) 1,691 (33.4 %) 10,045 (594.0 %) 16,805

128kb < s 3,198 (26.7 %) 973 (30.4 %) 7,823 (804.0 %) 11,994

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 92 -

Table 5.49
Breakdown By File Type for dsl log Trace

File Type % of Requests % of Bytes Transferred

application 17.35 63.37

compressed 0.01 0.03

dynamic 0.00 0.00

html 14.02 1.75

image 55.44 20.79

other 12.77 13.78

text 0.40 0.01

video 0.00 0.26

Table 5.50
Multirequest Breakdown By File Type for dsl log Trace

File Type % of Requests % of Bytes Transferred

application 14.51 57.77

compressed 0.00 0.01

dynamic 0.00 0.00

html 14.46 2.15

image 57.62 25.33

other 12.98 14.74

text 0.41 0.01

video 0.00 0.00

Table 5.51
Object Reaccess Information by File Type for dsl log Trace

File Type First Accesses Second Accesses Other Accesses Total Accesses

application 18,467 (20.4 %) 7,338 (39.7 %) 64,555 (879.7 %) 90,360

compressed 24 (66.7 %) 4 (16.7 %) 8 (200.0 %) 36

dynamic 4 (44.4 %) 3 (75.0 %) 2 (66.7 %) 9

html 1,380 (1.9 %) 949 (68.8 %) 70,706 (7450.6 %) 73,035

image 3,298 (1.1 %) 1,388 (42.1 %) 284,058 (20465.3 %) 288,744

other 2,169 (3.3 %) 1,099 (50.7 %) 63,223 (5752.8 %) 66,491

text 48 (2.3 %) 43 (89.6 %) 2,011 (4676.7 %) 2,102

video 5 (83.3 %) 1 (20.0 %) 0 (0.0 %) 6

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 93 -

Table 5.52
Unique File Size Information by File Type for dsl log Trace

file type number mean (bytes) median (bytes) maximum (bytes) totalsize (bytes)

all 25,395 89,999 3,693 16,154,624 2,285,530,300

application 18,467 103,876 42,050 4,519,129 1,918,281,185

compressed 24 123,383 5,402 1,809,428 2,961,186

dynamic 4 181 214 214 725

html 1,380 4,985 237 201,691 6,878,846

image 3,298 28,788 27,624 608,318 94,941,927

other 2,169 107,968 212 13,452,800 234,183,158

text 48 758 294 4,745 36,375

video 5 5,649,380 229 16,154,624 28,246,898

Table 5.53
Stack Depth Analysis for dsl log Trace

mean stack depth: 413.84

median stack depth: 3,014

standard deviation: 1,300.11

maximum stack depth: 24,800

normalized mean depth: 0.000,795

normalized median depth: 0.005,787

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 94 -

0

10

20

30

40

50

60

70

80

90

100

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 10
0

Percentage of Unique Files

C
u

m
u

la
ti

ve
 P

er
ce

n
ta

g
e

Requests Content Data Transferred Storage Space

Fig. 5.5. Concentration of References for dsl log Trace

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 95 -

5.4.4 Boeing Proxy Cache Server Traces

The Boeing Puget Sound firewall perimeter consists of six proxy cache servers for

employee Web accesses. Boeing Corporate Headquarters is in the Puget Sound and

Seattle areas and employs several tens of thousands of people at various locations

in that area. Five of the six proxy servers operate in a round-robin fashion and do

not record the file type of the objects that they cache. The sixth server is used for

occasional internal proxy cache testing. It receives some of the proxy caching load

when it is not in testing mode, and also gets certain web site and ftp traffic directed

to it. Because of this, the sixth server’s data files were manageably small number

of accesses in each data file (under 500,000 per day). All of the other data files had

around four million requests per day per server. The trace set consists of five days

(from March 1 to March 5, 1999) of access data split into 24-hour long files. The data

presented in the tables and figure below are from the March 1, 1999 trace workload

data set.

On March 1, 1999 on the sixth Boeing server, there were 249,079 object requests

totaling 8.72 gigabytes of data transferred. This turns out to be an average of 173

accesses per minute and 6.1 megabytes of data transferred per minute. Table 5.55

shows that 54% of the accesses are first time accesses (compulsory misses), while

84% of the objects were accessed only once. Also, only around 15% of all unique

objects were accessed a second time. Most of the accesses were of type “image”,

“text”, and “application” as shown by Tables 5.58 and 5.59. From examining the

logfile, the subtypes of the “application” types are mostly “octet-stream” and “x-

javascripts” which are downloaded executables. Also the “text” files are almost all of

subtype “html”. In the stack depth analysis of Table 5.62, the normalized mean stack

depth is fairly large while the normalized median stack depth is very small. Looking

at the actual numbers in the same table shows that the standard deviation and the

maximum stack depth are quite large. This implies that most of an object’s reaccesses

are fairly soon after its previous access. However, there are a minority of reaccesses

that occur a significant time later, which skews the mean stack depth. With such a

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 96 -

low normalized mean stack depth, LRU-based cache replacement algorithms should

perform well. Finally the Concentration of References graph in Figure 5.6 shows a

moderate initial attack on the graph lines showing that the most popular files are

among the most referenced. It show that the most popular 1% of the objects are

accessed 31% of the time and account for 7.7% of all bytes transferred.

Table 5.54
Summary of Access Log Characteristics for boeing.990301 Trace

Trace start time: Mon Mar 1 02:59:16 1999

Trace end time: Tue Mar 2 02:58:54 1999

Total Requests: 248,228

Avg Requests/Minute: 172.42

Total Bytes Transferred: 8,776,017,746

Avg Bytes Transferred/Minute: 6,094,456.77

Table 5.55
Summary of Other Characteristics for boeing.990301 Trace

Maximum Size Item (bytes): 633,427,627

Minimum Size Item (bytes): 1

Unique Requests: 133,589

Unique Workload Size (bytes): 7,070,163,831

Distinct Requests/Total Requests (%): 53.82

Distinct Bytes/Total Bytes (%): 80.56

Second Requests/Distinct Requests (%): 15.54

Second Bytes/Distinct Bytes (%): 8.50

Distinct Files Accessed Only Once (%): 84.46

Distinct Bytes Accessed Only Once (%): 91.50

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 97 -

Table 5.56
Breakdown By File Size for boeing.990301 Trace

Size Range Unique Files (%) Multirequests (%)

s ≤ 4kb 62.97 86.07

4kb < s ≤ 8kb 11.02 3.58

8kb < s ≤ 16kb 12.09 4.61

16kb < s ≤ 32kb 6.98 1.87

32kb < s ≤ 64kb 4.19 3.32

64kb < s ≤ 128kb 1.08 0.20

128kb < s 1.66 0.35

Table 5.57
Object Reaccess Information by File Size for boeing.990301 Trace

File Type First Accesses Second Accesses Three+ Accesses Total Accesses

s ≤ 4kb 84,127 (46.0 %) 15,986 (19.0 %) 82,687 (517.2 %) 182,800

4kb < s ≤ 8kb 14,726 (78.2 %) 1,475 (10.0 %) 2,626 (178.0 %) 18,827

8kb < s ≤ 16kb 16,152 (75.3 %) 1,758 (10.9 %) 3,530 (200.8 %) 21,440

16kb < s ≤ 32kb 9,326 (81.3 %) 737 (7.9 %) 1,412 (191.6 %) 11,475

32kb < s ≤ 64kb 5,594 (59.5 %) 516 (9.2 %) 3,287 (637.0 %) 9,397

64kb < s ≤ 128kb 1,443 (86.3 %) 119 (8.2 %) 110 (92.4 %) 1,672

128kb < s 2,221 (84.9 %) 168 (7.6 %) 228 (135.7 %) 2,617

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 98 -

Table 5.58
Breakdown By File Type for boeing.990301 Trace

File Type % of Requests % of Bytes Transferred

1.01 1.77

(null) 0.00 0.00

* 0.01 0.01

- 13.96 0.14

application 9.00 30.73

audio 0.11 1.28

encoding 0.00 0.00

image 40.11 4.77

java 0.00 0.00

magnus-internal 0.00 0.00

multipart 0.01 0.02

text 35.77 60.35

video 0.02 0.92

www 0.00 0.00

x-world 0.00 0.00

Table 5.59
Multirequest Breakdown By File Type for boeing.990301 Trace

File Type % of Requests % of Bytes Transferred

0.98 1.26

(null) 0.00 0.00

* 0.00 0.00

- 13.39 0.12

application 5.69 62.46

audio 0.03 0.01

encoding 0.00 0.00

image 43.83 4.90

java 0.00 0.00

magnus-internal 0.00 0.00

multipart 0.00 0.00

text 36.08 28.66

video 0.01 2.58

www 0.00 0.00

x-world 0.00 0.00

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 99 -

Table 5.60
Object Reaccess Information by File Type for boeing.990301 Trace

File Type First Accesses Second Accesses Other Accesses Total Accesses

1,379 (55.2 %) 204 (14.8 %) 914 (448.0 %) 2,497

(null) 1 (100.0 %) 0 (0.0 %) 0 (0.0 %) 1

* 28 (100.0 %) 0 (0.0 %) 0 (0.0 %) 28

- 19,313 (55.7 %) 5,443 (28.2 %) 9,902 (181.9 %) 34,658

application 15,833 (70.8 %) 2,262 (14.3 %) 4,256 (188.2 %) 22,351

audio 238 (86.2 %) 19 (8.0 %) 19 (100.0 %) 276

encoding 1 (100.0 %) 0 (0.0 %) 0 (0.0 %) 1

image 49,314 (49.5 %) 6,207 (12.6 %) 44,036 (709.5 %) 99,557

java 1 (50.0 %) 0 (0.0 %) 1 (0.0 %) 2

magnus-internal 3 (75.0 %) 0 (0.0 %) 1 (0.0 %) 4

multipart 25 (92.6 %) 2 (8.0 %) 0 (0.0 %) 27

text 47,422 (53.4 %) 6,615 (13.9 %) 34,746 (525.3 %) 88,783

video 26 (68.4 %) 7 (26.9 %) 5 (71.4 %) 38

www 2 (100.0 %) 0 (0.0 %) 0 (0.0 %) 2

x-world 3 (100.0 %) 0 (0.0 %) 0 (0.0 %) 3

Table 5.61
Unique File Size Information by File Type for boeing.990301 Trace

file type number mean (bytes) median (bytes) maximum (bytes) totalsize (bytes)

1,379 96,809 2,429 15,585,280 133,499,048

(null) 1 1,332 1,332 1,332 1,332

* 28 27,393 36,211 85,425 767,011

- 19,313 545 121 4,803,156 10,530,052

all 133,589 52,925 2,458 633,427,627 7,070,163,831

application 15,833 103,047 3,547 34,210,686 1,631,547,323

audio 238 472,452 2,893 26,287,704 112,443,562

encoding 1 432 432 432 432

image 49,314 6,798 297 5,054,022 335,214,194

java 1 11,909 11,909 11,909 11,909

magnus-internal 3 239 219 331 718

multipart 25 66,049 4,305 754,169 1,651,215

text 47,422 101,382 24,961 633,427,627 4,807,750,858

video 26 1,412,112 617 28,659,255 36,714,917

www 2 4,369 3,153 5,585 8,738

x-world 3 7,507 15,545 15,545 22,522

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 100 -

Table 5.62
Stack Depth Analysis for boeing.990301 Trace

mean stack depth: 7,817.23

median stack depth: 3

standard deviation: 17,124.71

maximum stack depth: 132,213

normalized mean depth: 0.031,492

normalized median depth: 0.000,012

0

10

20

30

40

50

60

70

80

90

100

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 10
0

Percentage of Unique Files

C
u

m
u

la
ti

ve
 P

er
ce

n
ta

g
e

Requests Content Data Transferred Storage Space

Fig. 5.6. Concentration of References for boeing.990301 Trace

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 101 -

5.4.5 NLANR Proxy Servers

The National Laboratory for Applied Network Research (NLANR) is a small U.S.

Government agency that studies and maintains portions of the Internet backbone in

the United States. The organization operates a number of backbone network Squid

cache proxy servers on the very high performance Backbone Network Service (vBNS).

These servers operate in Pittsburgh, Urbana-Champaign, Boulder, Silicon Valley, San

Diego, and Palo Alto, and they are cooperative backbone servers which means that

each of the servers specialize in one or more root domains like .edu, .com, .gov, etc.

These servers share their content with other lower-tiered network cache proxy servers

and with other backbone network cache proxy servers in other countries. Further,

they also run a general network cache proxy server in San Jose which runs on the

MAE-West network. NLANR posts sanitized logfiles from all of their proxy cache

servers for seven days after they are collected. For this study, the traces of three

proxy cache servers were taken over the course of three months: October, November,

and December of 1999. The three proxies were from Urbana-Champaign, which is

the primary cache of the .com domain; from one of the two Boulder proxies, which

are the primary caches of the .edu, .gov, .org, .mil and .us domains; and from

San Jose, which caches all of the backbone accesses for the Silicon Valley area.

From these three months of data, small sets of accesses were taken out for this

study. Each of these sets is comprised of less than 500,000 requests. These sets pro-

vided typical loads and access patterns of these cache proxy servers without causing

excessive computational resources to be used. (With these sets of less than 500,000

requests, the statistical data processing often took over six hours per set, while a

simulation run for a set took as much as 240 hours (ten days) on a single processor

Pentium3-Zeon machine.) Some of these sets are one day’s worth of requests, while

others contain three consecutive days of requests, and a few others contain seven

days worth of data. For choosing a single day workload trace, a weekday trace was

usually chosen since weekdays usually have more business traffic than the weekends.

On multiple day traces, a Sunday-to-Monday transition was always included because

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 102 -

the weekend traffic is generally different than weekday traffic in terms of the busi-

ness traffic content. By having a Sunday-to-Monday transition, the cache proxy is

challenged and exercised more than on any other day-to-day transition.

Below, the statistics of one of each of the proxy servers’ sets will be presented.

These sets are then also the basis for comparison of the cache replacement algorithms

that will be presented in Chapter 6.

The National Laboratory for Applied Network Research is supported by the Na-

tional Science Foundation on grants NCR-9616602 and NCR-9521745. The National

Laboratory for Applied Network Research requires mentioning this funding when

their logfiles are used for research or commercial purposes.

Boulder1 Proxy Logfile Traces

As mentioned in the above section, the Boulder bo1 cache proxy server is the

primary root backbone network cache for the .edu, .gov, .org, .mil and .us do-

mains. The logfile statistics in this section are from a 24 hour period on Wednesday,

December 15, 1999. During this time, the bo1 server had 325,969 total requests which

resulted in 3.2 gigabytes of data transferred as shown in Table 5.63. This translates

into over 226 requests per minute and over 2.2 megabytes transferred per minute.

Table 5.64 shows that over 75% of all accesses are first time accessed (compulsory

misses), and 90% of all of the objects are only accessed once. Also, less than 10% of

all unique objects are accessed a second time. In Tables 5.67 and 5.68, it is shown

that most of the requests and requests past the first are for file types “image” and

“html”. The percentages of requests for file type “dynamic” is very interesting. The

logfiles show that these files are actually cachable because they are mostly graphic

advertising banners that were originally generated by a cgi script. Since the adver-

tising banners had unique, reproducible URLs, they were often forwarded by the bo1

cache. It is also interesting that a significant percentage of transferred data is of type

“application”. Looking at the logfile, many of these “application” files are of subtype

“cache-digest” which is a database file that the bo1 cache transmits to subordinate

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 103 -

caches to share what files its cache currently contains. These “cache-digest” files are

often as much as 800 kilobytes in size. The normalized mean stack depth in Table 5.71

is relatively large as would be expected from a network proxy cache. However, the

normalized median stack depth is surprisingly small; this trace had good temporal

locality. In the Concentration of References graph in Figure 5.7, the most popular

1% of the objects were 15.3% of all access requests and constituted 28.1% of all bytes

transferred. These numbers are low but are expected for network proxy caches.

Table 5.63
Summary of Access Log Characteristics for bo1 day1.dat Trace

Trace start time: Wed Dec 15 03:00:20 1999

Trace end time: Thu Dec 16 03:00:00 1999

Total Requests: 325,969

Avg Requests/Minute: 226.42

Total Bytes Transferred: 3,275,168,537

Avg Bytes Transferred/Minute: 2,274,422.60

Table 5.64
Summary of Other Characteristics for bo1 day1.dat Trace

Maximum Size Item (bytes): 21,473,658

Minimum Size Item (bytes): 17

Unique Requests: 247,563

Unique Workload Size (bytes): 2,222,586,444

Distinct Requests/Total Requests (%): 75.95

Distinct Bytes/Total Bytes (%): 67.86

Second Requests/Distinct Requests (%): 9.34

Second Bytes/Distinct Bytes (%): 5.14

Distinct Files Accessed Only Once (%): 90.66

Distinct Bytes Accessed Only Once (%): 94.86

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 104 -

Table 5.65
Breakdown By File Size for bo1 day1.dat Trace

Size Range Unique Files (%) Multirequests (%)

s ≤ 4kb 73.09 81.26

4kb < s ≤ 8kb 10.28 10.42

8kb < s ≤ 16kb 8.84 4.19

16kb < s ≤ 32kb 4.56 1.46

32kb < s ≤ 64kb 2.21 0.81

64kb < s ≤ 128kb 0.55 0.12

128kb < s 0.47 1.73

Table 5.66
Object Reaccess Information by File Size for bo1 day1.dat Trace

File Type First Accesses Second Accesses Three+ Accesses Total Accesses

s ≤ 4kb 180,951 (74.0 %) 18,309 (10.1 %) 45,406 (248.0 %) 244,666

4kb < s ≤ 8kb 25,445 (75.7 %) 2,280 (9.0 %) 5,892 (258.4 %) 33,617

8kb < s ≤ 16kb 21,892 (86.9 %) 1,659 (7.6 %) 1,629 (98.2 %) 25,180

16kb < s ≤ 32kb 11,277 (90.8 %) 403 (3.6 %) 739 (183.4 %) 12,419

32kb < s ≤ 64kb 5,469 (89.6 %) 291 (5.3 %) 346 (118.9 %) 6,106

64kb < s ≤ 128kb 1,358 (93.3 %) 44 (3.2 %) 53 (120.5 %) 1,455

128kb < s 1,171 (46.4 %) 131 (11.2 %) 1,224 (934.4 %) 2,526

Table 5.67
Breakdown By File Type for bo1 day1.dat Trace

File Type % of Requests % of Bytes Transferred

application 1.53 36.92

audio 0.19 1.88

compressed 0.14 7.85

dynamic 6.46 5.20

html 23.40 15.59

image 65.34 25.49

java 0.22 0.28

other 1.29 2.91

text 1.36 1.30

video 0.07 2.57

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 105 -

Table 5.68
Multirequest Breakdown By File Type for bo1 day1.dat Trace

File Type % of Requests % of Bytes Transferred

application 2.63 75.90

audio 0.05 0.05

compressed 0.06 0.07

dynamic 17.90 5.50

html 30.22 7.80

image 43.97 5.97

java 0.12 0.05

other 2.26 4.43

text 2.79 0.20

video 0.02 0.03

Table 5.69
Object Reaccess Information by File Type for bo1 day1.dat Trace

File Type First Accesses Second Accesses Other Accesses Total Accesses

application 2,934 (58.7 %) 316 (10.8 %) 1,746 (552.5 %) 4,996

audio 590 (94.2 %) 28 (4.7 %) 8 (28.6 %) 626

compressed 419 (89.7 %) 27 (6.4 %) 21 (77.8 %) 467

dynamic 7,029 (33.4 %) 2,605 (37.1 %) 11,426 (438.6 %) 21,060

html 52,590 (68.9 %) 5,934 (11.3 %) 17,759 (299.3 %) 76,283

image 178,513 (83.8 %) 13,382 (7.5 %) 21,093 (157.6 %) 212,988

java 618 (87.0 %) 37 (6.0 %) 55 (148.6 %) 710

other 2,361 (57.2 %) 430 (18.2 %) 1,335 (310.5 %) 4,126

text 2,250 (50.7 %) 344 (15.3 %) 1,840 (534.9 %) 4,434

video 205 (94.5 %) 11 (5.4 %) 1 (9.1 %) 217

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 106 -

Table 5.70
Unique File Size Information by File Type for bo1 day1.dat Trace

file type number mean (bytes) median (bytes) maximum (bytes) totalsize (bytes)

all 247,563 8,978 256 21,473,658 2,222,586,444

application 2,934 139,693 274 21,473,658 409,860,148

audio 590 103,579 25,541 5,007,124 61,111,796

compressed 419 611,861 2,916,749 14,409,474 256,369,947

dynamic 7,029 16,006 494 11,632,510 112,508,239

html 52,590 8,149 388 1,402,982 428,568,999

image 178,513 4,326 2,524 706,244 772,181,112

java 618 13,948 250 962,464 8,619,964

other 2,361 19,283 15,292 8,098,157 45,525,985

text 2,250 17,990 345 4,279,419 40,477,766

video 205 408,891 35,385 7,675,780 83,822,627

Table 5.71
Stack Depth Analysis for bo1 day1.dat Trace

mean stack depth: 16,561.94

median stack depth: 3

standard deviation: 35,998.11

maximum stack depth: 245,924

normalized mean depth: 0.050,808

normalized median depth: 0.000,038

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 107 -

0

10

20

30

40

50

60

70

80

90

100

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 10
0

Percentage of Unique Files

C
u

m
u

la
ti

ve
 P

er
ce

n
ta

g
e

Requests Content Data Transferred Storage Space

Fig. 5.7. Concentration of References for bo1 day1.dat Trace

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 108 -

San Jose Proxy Logfile Traces

The San Jose cache proxy server is a network proxy server that is located in San

Jose, California situated right off of the MAE-West network. It caches all Internet

traffic that is requested in the San Jose area over the MAE-West network. The

statistics of a San Jose workload trace from Saturday, November 27, 1999 to Friday,

December 3, 1999 are presented here. Over this week, the San Jose proxy cache server

received 343,468 requests totaling 4.3 gigabytes of transferred data. This translates

to 34.1 requests per minute and over 384 kilobytes per minutes. This is shown in

Table 5.72. Over 77% of all requests are first time requests (compulsory misses),

while 93% of all unique files are accessed only once as is shown in Table 5.73. These

percentages should be expected for a network proxy server.

In Tables 5.76 and 5.77, one can see that most of the requests and rerequests

are for file types “image” and “html”. Note that the “application” type constitutes

a fairly significant percentage of data transferred for the first time and for requests

after the first. These “application” type objects are some cache-digests as in the

Boulder trace which are database files that the San Jose cache proxy server sends

to its client cache proxy servers to share what items it has in its cache. Also note

that almost 7% of the data transferred for first-time requests in Table 5.76 are for

file type “video”. However, these videos are not rerequested since they don’t show up

in Table 5.77. In the stack depth analysis of Table 5.80, the normalized mean stack

depth is rather high, while the normalized median stack depth is low. As with the

Boulder trace discussed before, this trace has good temporal locality based on the

normalized median stack depth. Finally in Figure 5.8, the most popular 1% of the

objects were 16.7% of all access requests and constituted 6.1% of all bytes transferred.

These numbers are low but are expected for network proxy caches.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 109 -

Table 5.72
Summary of Access Log Characteristics for sj novwk5.dat Trace

Trace start time: Sat Nov 27 03:00:18 1999

Trace end time: Sat Dec 4 03:00:00 1999

Total Requests: 329,222

Avg Requests/Minute: 32.66

Total Bytes Transferred: 3,871,038,504

Avg Bytes Transferred/Minute: 384,031.60

Table 5.73
Summary of Other Characteristics for sj novwk5.dat Trace

Maximum Size Item (bytes): 55,647,563

Minimum Size Item (bytes): 88

Unique Requests: 253,928

Unique Workload Size (bytes): 3,495,355,673

Distinct Requests/Total Requests (%): 77.13

Distinct Bytes/Total Bytes (%): 90.30

Second Requests/Distinct Requests (%): 6.96

Second Bytes/Distinct Bytes (%): 3.25

Distinct Files Accessed Only Once (%): 93.04

Distinct Bytes Accessed Only Once (%): 96.75

Table 5.74
Breakdown By File Size for sj novwk5.dat Trace

Size Range Unique Files (%) Multirequests (%)

s ≤ 4kb 64.67 85.66

4kb < s ≤ 8kb 12.56 5.22

8kb < s ≤ 16kb 10.55 6.04

16kb < s ≤ 32kb 5.78 1.92

32kb < s ≤ 64kb 2.97 0.77

64kb < s ≤ 128kb 2.33 0.14

128kb < s 1.13 0.25

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 110 -

Table 5.75
Object Reaccess Information by File Size for sj novwk5.dat Trace

File Type First Accesses Second Accesses Three+ Accesses Total Accesses

s ≤ 4kb 164,222 (71.8 %) 14,133 (8.6 %) 50,361 (356.3 %) 228,716

4kb < s ≤ 8kb 31,903 (89.0 %) 1,172 (3.7 %) 2,762 (235.7 %) 35,837

8kb < s ≤ 16kb 26,801 (85.5 %) 1,362 (5.1 %) 3,186 (233.9 %) 31,349

16kb < s ≤ 32kb 14,667 (91.0 %) 675 (4.6 %) 769 (113.9 %) 16,111

32kb < s ≤ 64kb 7,543 (92.9 %) 257 (3.4 %) 322 (125.3 %) 8,122

64kb < s ≤ 128kb 5,926 (98.3 %) 62 (1.0 %) 43 (69.4 %) 6,031

128kb < s 2,866 (93.8 %) 20 (0.7 %) 170 (850.0 %) 3,056

Table 5.76
Breakdown By File Type for sj novwk5.dat Trace

File Type % of Requests % of Bytes Transferred

application 0.88 17.84

audio 0.23 1.90

compressed 0.23 6.27

dynamic 1.10 0.18

html 23.39 13.40

image 70.87 49.68

java 0.24 0.15

magnus-internal 0.00 0.00

model 0.01 0.01

multipart 0.00 0.02

other 2.09 1.07

text 0.89 1.95

video 0.07 7.51

x-shockwave-flash 0.00 0.01

x-world 0.00 0.00

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 111 -

Table 5.77
Multirequest Breakdown By File Type for sj novwk5.dat Trace

File Type % of Requests % of Bytes Transferred

application 1.49 47.47

audio 0.08 0.42

compressed 0.37 1.54

dynamic 1.69 0.42

html 30.09 23.65

image 61.58 23.47

java 0.09 0.04

magnus-internal 0.00 0.00

model 0.00 0.00

multipart 0.00 0.00

other 2.77 2.29

text 1.84 0.70

video 0.00 0.00

x-shockwave-flash 0.00 0.00

x-world 0.00 0.00

Table 5.78
Object Reaccess Information by File Type for sj novwk5.dat Trace

File Type First Accesses Second Accesses Other Accesses Total Accesses

application 1,761 (61.1 %) 217 (12.3 %) 906 (417.5 %) 2,884

audio 704 (91.9 %) 38 (5.4 %) 24 (63.2 %) 766

compressed 472 (62.8 %) 65 (13.8 %) 214 (329.2 %) 751

dynamic 2,348 (64.8 %) 345 (14.7 %) 929 (269.3 %) 3,622

html 54,365 (70.6 %) 6,254 (11.5 %) 16,402 (262.3 %) 77,021

image 186,964 (80.1 %) 9,774 (5.2 %) 36,590 (374.4 %) 233,328

java 741 (92.0 %) 55 (7.4 %) 9 (16.4 %) 805

magnus-internal 3 (100.0 %) 0 (0.0 %) 0 (0.0 %) 3

model 26 (100.0 %) 0 (0.0 %) 0 (0.0 %) 26

multipart 4 (100.0 %) 0 (0.0 %) 0 (0.0 %) 4

other 4,781 (69.6 %) 769 (16.1 %) 1,315 (171.0 %) 6,865

text 1,530 (52.5 %) 163 (10.7 %) 1,224 (750.9 %) 2,917

video 219 (99.5 %) 1 (0.5 %) 0 (0.0 %) 220

x-shockwave-flash 1 (100.0 %) 0 (0.0 %) 0 (0.0 %) 1

x-world 2 (100.0 %) 0 (0.0 %) 0 (0.0 %) 2

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 112 -

Table 5.79
Unique File Size Information by File Type for sj novwk5.dat Trace

file type number mean (bytes) median (bytes) max (bytes) totalsize (bytes)

all 253,928 13,765 270 55,647,563 3,495,355,673

application 1,761 290,981 2,806 55,647,563 512,418,309

audio 704 101,989 261 8,238,947 71,800,257

compressed 472 502,236 3,680,312 9,171,722 237,055,307

dynamic 2,348 2,377 376 463,762 5,581,845

html 54,365 7,910 3,823 9,360,068 430,023,691

image 186,964 9,815 264 2,337,129 1,835,041,166

java 741 7,580 251 877,025 5,617,024

magnus-internal 3 415 415 415 1,244

model 26 15,769 20,559 37,293 410,004

multipart 4 153,908 300,610 300,610 615,632

other 4,781 6,891 1,296 1,207,593 32,946,730

text 1,530 47,546 254 8,374,803 72,745,789

video 219 1,327,012 2,403,660 15,866,696 290,615,622

x-shockwave-flash 1 427,953 427,953 427,953 427,953

x-world 2 11,202 12,853 12,853 22,404

Table 5.80
Stack Depth Analysis for sj novwk5.dat Trace

mean stack depth: 13,597.9

median stack depth: 30

standard deviation: 32,566.1

maximum stack depth: 250,569

normalized mean depth: 0.041,303

normalized median depth: 0.000,091

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 113 -

0

10

20

30

40

50

60

70

80

90

100

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 10
0

Percentage of Unique Files

C
u

m
u

la
ti

ve
 P

er
ce

n
ta

g
e

Requests Content Data Transferred Storage Space

Fig. 5.8. Concentration of References for sj novwk5.dat Trace

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 114 -

Urbana-Champaign Logfile Traces

The third NLANR cache proxy server from which data has been collected is the

Urbana-Champaign (UC) server. It is the primary root backbone network cache for

the .com domain. The logfile statistics in this section are from a 24 hour period

on Saturday, December 18, 1999. In these 24 hours, the UC server received 312,465

requests which totaled 5.6 gigabytes of transferred data. In terms of server loading,

the UC server averaged 217 requests per minute and transferred nearly 3.9 megabytes

of data per minute as shown in Table 5.81. Table 5.82 shows that almost 81% of all

requests were first-time requests (compulsory misses), and 93% of all unique objects

were accessed only once. Again, these percentages should be expected for a network

proxy server.

In Tables 5.85 and 5.86, one can see that most of the requests and rerequests are

for file types “image” and “html”. As in the Boulder and San Jose workload traces,

note that the “application” type constitutes a fairly significant percentage of data

transferred for the first time and for requests after the first. These applications are

some cache-digests as in the Boulder and San Jose traces which are database files that

the Urbana Champaign cache proxy server sends to its client cache proxy servers to

share what items it has in its cache. The normalized statistics in the stack depth

analysis in Table 5.89 are quite similar to those in the Boulder and San Jose traces;

the normalized mean stack depth is rather high, while the normalized median stack

depth is low. The low normalized median stack depth suggests that this trace has

good temporal locality. The Concentration of References graph in Figure 5.9 is also

similar to the Boulder and San Jose traces. The most popular 1% of the objects were

13.8% of all access requests and constituted 16.3% of all bytes transferred. These

numbers are low but are expected for network proxy caches.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 115 -

Table 5.81
Summary of Access Log Characteristics for uc day1.dat Trace

Trace start time: Sat Dec 18 03:00:18 1999

Trace end time: Sun Dec 19 03:00:01 1999

Total Requests: 312,465

Avg Requests/Minute: 217.03

Total Bytes Transferred: 5,593,480,281

Avg Bytes Transferred/Minute: 3,885,125.74

Table 5.82
Summary of Other Characteristics for uc day1.dat Trace

Maximum Size Item (bytes): 55,659,143

Minimum Size Item (bytes): 97

Unique Requests: 253,376

Unique Workload Size (bytes): 4,641,571,917

Distinct Requests/Total Requests (%): 81.09

Distinct Bytes/Total Bytes (%): 82.98

Second Requests/Distinct Requests (%): 6.79

Second Bytes/Distinct Bytes (%): 2.16

Distinct Files Accessed Only Once (%): 93.21

Distinct Bytes Accessed Only Once (%): 97.84

Table 5.83
Breakdown By File Size for uc day1.dat Trace

Size Range Unique Files (%) Multirequests (%)

s ≤ 4kb 70.36 72.97

4kb < s ≤ 8kb 11.08 17.77

8kb < s ≤ 16kb 8.48 4.37

16kb < s ≤ 32kb 4.86 1.84

32kb < s ≤ 64kb 2.72 0.84

64kb < s ≤ 128kb 1.13 0.13

128kb < s 1.37 2.08

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 116 -

Table 5.84
Object Reaccess Information by File Size for uc day1.dat Trace

File Type First Accesses Second Accesses Three+ Accesses Total Accesses

s ≤ 4kb 178,269 (80.5 %) 13,734 (7.7 %) 29,381 (213.9 %) 221,384

4kb < s ≤ 8kb 28,074 (72.8 %) 1,381 (4.9 %) 9,121 (660.5 %) 38,576

8kb < s ≤ 16kb 21,493 (89.3 %) 1,085 (5.0 %) 1,495 (137.8 %) 24,073

16kb < s ≤ 32kb 12,309 (91.9 %) 554 (4.5 %) 531 (95.8 %) 13,394

32kb < s ≤ 64kb 6,899 (93.3 %) 273 (4.0 %) 223 (81.7 %) 7,395

64kb < s ≤ 128kb 2,860 (97.3 %) 65 (2.3 %) 14 (21.5 %) 2,939

128kb < s 3,472 (73.8 %) 108 (3.1 %) 1,124 (1040.7 %) 4,704

Table 5.85
Breakdown By File Type for uc day1.dat Trace

File Type % of Requests % of Bytes Transferred

application 1.53 31.12

audio 0.18 1.24

compressed 0.43 17.42

dynamic 0.80 0.10

html 22.03 8.02

image 71.50 36.47

java 0.22 0.17

other 1.59 1.45

text 1.65 2.26

video 0.05 1.74

Table 5.86
Multirequest Breakdown By File Type for uc day1.dat Trace

File Type % of Requests % of Bytes Transferred

application 2.93 76.85

audio 0.04 0.00

compressed 0.14 0.11

dynamic 2.63 0.16

html 44.07 11.16

image 41.34 5.72

java 0.12 0.01

other 5.25 5.72

text 3.47 0.27

video 0.01 0.00

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 117 -

Table 5.87
Object Reaccess Information by File Type for uc day1.dat Trace

File Type First Accesses Second Accesses Other Accesses Total Accesses

application 3,061 (63.9 %) 324 (10.6 %) 1,407 (434.3 %) 4,792

audio 526 (96.0 %) 17 (3.2 %) 5 (29.4 %) 548

compressed 1,255 (93.7 %) 34 (2.7 %) 50 (147.1 %) 1,339

dynamic 944 (37.8 %) 282 (29.9 %) 1,270 (450.4 %) 2,496

html 42,800 (62.2 %) 5,329 (12.5 %) 20,713 (388.7 %) 68,842

image 198,970 (89.1 %) 10,451 (5.3 %) 13,976 (133.7 %) 223,397

java 627 (90.0 %) 48 (7.7 %) 22 (45.8 %) 697

other 1,854 (37.5 %) 319 (17.2 %) 2,777 (870.5 %) 4,950

text 3,111 (60.2 %) 386 (12.4 %) 1,667 (431.9 %) 5,164

video 165 (96.5 %) 6 (3.6 %) 0 (0.0 %) 171

Table 5.88
Unique File Size Information by File Type for uc day1.dat Trace

file type number mean (bytes) median (bytes) maximum (bytes) totalsize (bytes)

all 253,376 18,319 254 55,659,143 4,641,571,917

application 3,061 329,659 3,005 55,659,143 1,009,085,514

audio 526 131,274 256,331 9,432,994 69,050,191

compressed 1,255 775,694 226,333 29,342,094 973,495,666

dynamic 944 4,233 341 374,877 3,995,615

html 42,800 8,000 3,797 1,594,877 342,393,756

image 198,970 9,980 253 10,804,620 1,985,790,813

java 627 15,120 2,512 4,478,779 9,480,022

other 1,854 13,371 230 2,102,374 24,789,961

text 3,111 39,850 350 3,174,409 123,973,981

video 165 590,897 254 8,360,090 97,498,082

Table 5.89
Stack Depth Analysis for uc day1.dat Trace

mean stack depth: 14,466.71

median stack depth: 295

standard deviation: 35,153.37

maximum stack depth: 251,073

normalized mean depth: 0.046,299

normalized median depth: 0.000,944

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 118 -

0

10

20

30

40

50

60

70

80

90

100

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 10
0

Percentage of Unique Files

C
u

m
u

la
ti

ve
 P

er
ce

n
ta

g
e

Requests Content Data Transferred Storage Space

Fig. 5.9. Concentration of References for uc day1.dat Trace

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 119 -

5.4.6 HP World Cup 1998 Web Server Farm

In 1998, Hewlett-Packard hosted the Web site for the 1998 World Cup Soccer

Championship. World Cup fans could access game scores in real time as well as

previous game results, player statistics and biographies, team histories, stadium in-

formation and many photos and sound clips. They used 30 machines to host the

entire site in both French and English. Of the 30 servers, four were located in Paris,

France; 10 were located in Herndon, Virginia; 10 were located in Plano, Texas; and

six were located in Santa Clara, California. Accesses from all of these servers were

combined and collated by date and time. So this data set is an access pattern for a

origin server proxy cache. A full description of the entire 14 week logfile is in [AJ99].

The access log presented here and used in this study is for the last two days that

the World Cup 1998 site was up: Saturday, July 25, 1998 and Sunday, July 26, 1998.

The number of accesses per day made it virtually impossible to thoroughly analyze

any of the other 13 weeks of workload data that was collected. This logfile was the

only one which had less than one million accesses for the week, and that was only

because this last week file only contained one 24 hour period.

In this 24 hour period, there were 876,530 requests totalling 5.7 gigabytes of

transferred data. That translated to over 608 requests per minute on average and over

4.0 megabytes of data transferred per minute across the 30 servers. In Table 5.91,

the first time request percentage (distinct requests/total requests) is very low at

1.61%, as is the distinct files accessed only once at 26.21%. Tables 5.94 and 5.95

show that the overwhelming majority of requests were for files of type “image” with

a distant second most requested file type being “html”. The file type “compressed”

constituted a significant percentage of the total bytes transferred though they were not

a significant percentage of the total requests. Most of the files of type “compressed”

were compressed screen saver files for PCs and Macintoshes. Many of these screen

saver files were larger than one megabyte in size which provides an explanation for the

low request percentage while still being a significant portion of the bytes transferred.

As expected for a origin server proxy cache, the normalized mean and median

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 120 -

stack depths are very small as shown in Table 5.10. Also the Concentration of Refer-

ences graph in Figure 5.10 shows that the most popular 1% of the objects that were

requested constituted 55.4% of all requests and 30.2% of all data bytes transferred.

Table 5.90
Summary of Access Log Characteristics for wc week14 Trace

Trace start time: Sat Jul 25 21:59:51 1998

Trace end time: Sun Jul 26 21:59:55 1998

Total Requests: 876,530

Avg Requests/Minute: 608.67

Total Bytes Transferred: 5,655,973,870

Avg Bytes Transferred/Minute: 3,927,759.63

Table 5.91
Summary of Other Characteristics for wc week14 Trace

Maximum Size Item (bytes): 2,891,887

Minimum Size Item (bytes): 2

Unique Requests: 14,111

Unique Workload Size (bytes): 224,184,681

Distinct Requests/Total Requests (%): 1.61

Distinct Bytes/Total Bytes (%): 3.96

Second Requests/Distinct Requests (%): 73.79

Second Bytes/Distinct Bytes (%): 54.08

Distinct Files Accessed Only Once (%): 26.21

Distinct Bytes Accessed Only Once (%): 45.92

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 121 -

Table 5.92
Breakdown By File Size for wc week14 Trace

Size Range Unique Files (%) Multirequests (%)

s ≤ 4kb 38.93 71.71

4kb < s ≤ 8kb 34.55 12.38

8kb < s ≤ 16kb 14.78 9.06

16kb < s ≤ 32kb 6.53 4.91

32kb < s ≤ 64kb 4.22 1.61

64kb < s ≤ 128kb 0.23 0.11

128kb < s 0.76 0.21

Table 5.93
Object Reaccess Information by File Size for wc week14 Trace

File Type First Accesses Second Accesses Three+ Accesses Total Accesses

s ≤ 4kb 5,493 (0.9 %) 3,785 (68.9 %) 614,698 (16240.4 %) 623,976

4kb < s ≤ 8kb 4,876 (4.4 %) 3,663 (75.1 %) 103,139 (2815.7 %) 111,678

8kb < s ≤ 16kb 2,085 (2.6 %) 1,581 (75.8 %) 76,569 (4843.1 %) 80,235

16kb < s ≤ 32kb 922 (2.1 %) 795 (86.2 %) 41,555 (5227.0 %) 43,272

32kb < s ≤ 64kb 595 (4.1 %) 536 (90.1 %) 13,335 (2487.9 %) 14,466

64kb < s ≤ 128kb 33 (3.3 %) 23 (69.7 %) 944 (4104.3 %) 1,000

128kb < s 107 (5.6 %) 29 (27.1 %) 1,767 (6093.1 %) 1,903

Table 5.94
Breakdown By File Type for wc week14 Trace

File Type % of Requests % of Bytes Transferred

application 0.75 1.59

audio 0.02 0.15

compressed 0.20 29.72

dynamic 0.01 0.00

html 12.28 23.79

image 83.21 41.92

java 1.04 0.67

other 2.45 1.79

text 0.05 0.00

video 0.00 0.37

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 122 -

Table 5.95
Multirequest Breakdown By File Type for wc week14 Trace

File Type % of Requests % of Bytes Transferred

application 0.75 1.62

audio 0.01 0.00

compressed 0.19 29.51

dynamic 0.00 0.00

html 11.64 23.39

image 83.86 42.83

java 1.06 0.70

other 2.43 1.86

text 0.05 0.00

video 0.00 0.09

Table 5.96
Object Reaccess Information by File Type for wc week14 Trace

File Type First Accesses Second Accesses Other Accesses Total Accesses

application 43 (0.7 %) 22 (51.2 %) 6,484 (29472.7 %) 6,549

audio 49 (31.4 %) 39 (79.6 %) 68 (174.4 %) 156

compressed 88 (5.1 %) 22 (25.0 %) 1,601 (7277.3 %) 1,711

dynamic 18 (40.0 %) 13 (72.2 %) 14 (107.7 %) 45

html 7,291 (6.8 %) 5,474 (75.1 %) 94,899 (1733.6 %) 107,664

image 6,140 (0.8 %) 4,589 (74.7 %) 718,639 (15660.0 %) 729,368

java 27 (0.3 %) 12 (44.4 %) 9,119 (75991.7 %) 9,158

other 441 (2.1 %) 238 (54.0 %) 20,753 (8719.7 %) 21,432

text 3 (0.7 %) 1 (33.3 %) 429 (42900.0 %) 433

video 11 (78.6 %) 2 (18.2 %) 1 (50.0 %) 14

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 123 -

Table 5.97
Unique File Size Information by File Type for wc week14 Trace

file type number mean (bytes) median (bytes) maximum (bytes) totalsize (bytes)

all 14,111 15,887 4,055 2,891,887 224,184,681

application 43 37,336 5,450 654,490 1,605,453

audio 49 168,513 134 1,396,314 8,257,132

compressed 88 889,513 2,082,593 2,891,887 78,277,130

dynamic 18 306 207 892 5,504

html 7,291 10,317 4,604 159,258 75,224,423

image 6,140 7,298 3,390 1,380,876 44,812,648

java 27 1,581 207 6,507 42,681

other 441 431 207 4,930 190,050

text 3 280 311 322 840

video 11 1,433,529 1,367,199 1,946,584 15,768,820

Table 5.98
Stack Depth Analysis for wc week14 Trace

mean stack depth: 771.07

median stack depth: 3,051

standard deviation: 1,529.25

maximum stack depth: 14,041

normalized mean depth: 0.000,880

normalized median depth: 0.003,481

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 124 -

0

10

20

30

40

50

60

70

80

90

100

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 10
0

Percentage of Unique Files

C
u

m
u

la
ti

ve
 P

er
ce

n
ta

g
e

Requests Content Data Transferred Storage Space

Fig. 5.10. Concentration of References for wc week14 Trace

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 125 -

5.5 DVJ2 Educational Multimedia Video Server

Over the past five years, educational multimedia delivery testbed systems have

been in operation in the Digital Systems/Multimedia Learning Lab in the School of

Electrical and Computer Engineering at Purdue University. These systems are used

to augment course lectures, to study how students use educational multimedia, and

to study technology-based course formats. The analog video jockey (AVJ), digital

video jockey (DVJ), and digital video jockey version 2 (DVJ2) systems are “a multi-

user, . . . , interactive multimedia delivery system” [Bho95]. The AVJ system was a

digitally-controlled analog video delivery system, and it is thoroughly described in

[Bho95]. The DVJ and DVJ2 systems are both fully digital educational multimedia

delivery systems that serve digital video lectures and class support material over

an Ethernet local area network and multimedia personal computers [Ban95]. The

DVJ system was thoroughly described in [Ban95]. Several papers, [MK94, MBN96,

MNR97], describe further development and utilization of the AVJ and DVJ systems

at Purdue University, as well as experimental course formats designed around using

these systems. The current version of the system is the DVJ2 system which grew

out of the original DVJ system implementation. It is also a fully digital system

that serves lectures, help session, and tutorials for several classes offered in the the

School of Electrical and Computer Engineering at Purdue University including EE

266/7 Digital Logic Design, EE 362 Microprocessor System and Interfacing, and EE

467 Advanced Digital Systems/Embedded Microcontroller Design Lab. The videos are

all MPEG videos and are served by StarWorks video server software over 100Base-T

Ethernet networks. There are about 60 client workstations at which students can view

the videos. Students with sufficiently high bandwidth connections (e.g., residence hall

network) can also stream the videos to their own computers. For all of these systems,

all of the actions of users are recorded while they are interacting with the systems.

Software was written to compile the usage characteristics of the users, and further

software was written to create input files for this study.

From these testbed systems, we have many semesters of student usage data [RM97].

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 126 -

For this study the data files from the DVJ2 system are used. The tables and graphs

presented in this section are from the Fall 1999 semester. The trace records accesses

from Monday, August 23, 1999 to Thursday, December 16, 1999. During this time, the

DVJ2 video server received 10,298 requests to view videos which resulted in transfer-

ring almost 8.6 terabytes of data (see Table 5.99), assuming that the entire video was

watched each time it was downloaded. This assumption is generally true in an educa-

tional environment, but this issue will be discussed further in Chapter 6. Table 5.100

shows that only 1.08% of all accesses were first-time accesses (compulsory misses),

and almost all of the videos were accessed more than once. Finally, the stack depth

analysis in Table 5.103 shows that both the normalized mean stack depth and the

normalized median stack depths are relatively low. This implies that this workload

trace has very good temporal locality.

Table 5.99
Summary of Access Log Characteristics for dvj2 99f Trace

Trace start time: Mon Aug 23 14:47:37 1999

Trace end time: Thu Dec 16 14:50:59 1999

Total Requests: 10,298

Avg Requests/Minute: 0.06

Total Kilobytes Transferred: 8,578,738,595

Avg Kilobytes Transferred/Minute: 51,802.92

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 127 -

Table 5.100
Summary of Other Characteristics for dvj2 99f Trace

Maximum Size Item (kilobytes): 1,232,620

Minimum Size Item (kilobytes): 141,260

Unique Requests: 113

Unique Workload Size (kilobytes): 92,665,903

Distinct Requests/Total Requests (%): 1.10

Distinct Bytes/Total Bytes (%): 1.08

Second Requests/Distinct Requests (%): 95.58

Second Bytes/Distinct Bytes (%): 96.16

Distinct Files Accessed Only Once (%): 4.42

Distinct Bytes Accessed Only Once (%): 3.84

Table 5.101
Object Reaccess Information by File Type for dvj2 99f Trace

File Type First Accesses Second Accesses Other Accesses Total Accesses

video 113 (1.1 %) 108 (95.6 %) 10,077 (9330.6 %) 10,298

Table 5.102
Unique File Size Information by File Type for dvj2 99f Trace

file type number mean (bytes) median (bytes) maximum (bytes) totalsize (bytes)

all 113 820,052 785,050 1,232,620 92,665,903

video 113 820,052 785,050 1,232,620 92,665,903

Table 5.103
Stack Depth Analysis for dvj2 99f Trace

mean stack depth: 6.5

median stack depth: 17

standard deviation: 10.17

maximum stack depth: 98

normalized mean depth: 0.000,632

normalized median depth: 0.001,651

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 128 -

0

10

20

30

40

50

60

70

80

90

100

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 10
0

Percentage of Unique Files

C
u

m
u

la
ti

ve
 P

er
ce

n
ta

g
e

Requests Content Data Transferred Storage Space

Fig. 5.11. Concentration of References for dvj2 99f Trace

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 129 -

5.6 OnCommand On-Demand Movie Server

The On Command system is a on-demand hotel video delivery system that allows

guests to select from a set of movies that the system has available [OnC99a]. The

On Command workload trace is from a hotel that has 722 rooms for which 33 titles

were available. These titles are in five categories: action & adventure, comedy, kids

& family, drama, and adult. The system that is deployed in this particular hotel is

called a “Modular 600 D”. On this system, the most popular titles are stored on a

hard disk cache and support nearly unlimited access. Less popular titles are stored

using another technology that limits access to one user for a period of approximately

one half hour. That is, a single two-hour title may have four users (spaced one half

hours apart each) while users who wished to access the titles in the meantime may

be denied (given an out-of-copy message). Fortunately, this occurs infrequently. The

system supports a well-known, but unpublicized, preview feature. Movies may be

started, but will not be billed for two minutes. Titles cancelled before the preview

time elapses will not be billed. This causes users to behave in a particular way.

Since an transaction record for reaching the end of a movie is not alway recorded, an

assumption must be made that a movie that was not cancelled during the preview

period was watched in its entirety. It is assumed that each movie is 120 minutes long.

In Table 5.104, the number of total requests for videos was 1479, totaling 2,958.0

hours of video. The average minutes of video transferred per minute means that on

average there were over 16 videos playing at a time. Every video was accessed more

than once during the course of the week, and only 2.23% of all of the accesses were first

time accesses (compulsory misses) according to Table 5.105. Tables 5.106 and 5.107

show that all of the accesses were of type “video” as expected. In Table 5.109, the

normalized mean and median stack depths are rather small. This should be expected

since there are not many unique videos available; yet these videos have a very random

access pattern as opposed to what would be expected from an educational video

delivery system. Out of all the accesses in the week, 390 out of 1479 requests or

26.37% were for preview only.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 130 -

The OnCommand system trace has been graciously provided by Don Power, the

Chief Technologist at OnCommand Corporation of San Jose, California.

Table 5.104
Summary of Access Log Characteristics for daysum1 Trace

Trace start time: Tue Nov 9 00:06:03 1999

Trace end time: Wed Nov 17 13:15:11 1999

Total Requests: 1,479

Avg Requests/Minute: 0.12

Total Minutes of Video Transferred: 177,480

Avg Minutes of Video Transferred/Minute: 16.33

Table 5.105
Summary of Other Characteristics for daysum1 Trace

Maximum Size Item (seconds): 7,200

Minimum Size Item (seconds): 7,200

Unique Requests: 33

Unique Workload Size (seconds): 237,600

Distinct Requests/Total Requests (%): 2.23

Distinct Bytes/Total Bytes (%): 2.23

Second Requests/Distinct Requests (%): 100.00

Second Bytes/Distinct Bytes (%): 100.00

Distinct Files Accessed Only Once (%): 0.00

Distinct Bytes Accessed Only Once (%): 0.00

Table 5.106
Breakdown By File Type for daysum1 Trace

File Type % of Requests % of Bytes Transferred

video 100.00 100.00

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 131 -

Table 5.107
Multirequest Breakdown By File Type for daysum1 Trace

File Type % of Requests % of Bytes Transferred

video 100.00 100.00

Table 5.108
Object Reaccess Information by File Type for daysum1 Trace

File Type First Accesses Second Accesses Other Accesses Total Accesses

video 33 (2.2 %) 33 (100.0 %) 1,413 (4281.8 %) 1,479

Table 5.109
Stack Depth Analysis for daysum1 Trace

mean stack depth: 7.28

median stack depth: 2

standard deviation: 7.13

maximum stack depth: 31

normalized mean depth: 0.004,919

normalized median depth: 0.001,352

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 132 -

0

10

20

30

40

50

60

70

80

90

100

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 10
0

Percentage of Unique Files

C
u

m
u

la
ti

ve
 P

er
ce

n
ta

g
e

Requests Content Data Transferred Storage Space

Fig. 5.12. Concentration of References for daysum1 Trace

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 133 -

5.7 Stochastically Generated Video Server Model Traces

As part of my Masters thesis, I developed several stochastic models that simulate

different student access patterns that we have seen on the DVJ2 educational multi-

media testbed systems [Reu96]. Using these stochastic models, simulated usage data

was also generated. Over the course of a semester, the number of accesses will rise

as the topic of a given object is being covered in the sequence of the course. The

popularity of that given object will wane after its topic has been covered in class,

and thereafter will only be accessed for review of the material. So in terms of the

probability, say an object, mi is chosen, where 1 ≤ i ≤ M , and the object numbers

progress sequentially as the semester proceeds. If the object mi is one of the first

objects of the sequence, its probability of being chosen is very high at the beginning

of the semester and then fades. Similarly a object later in the sequence will have

little or no probability of being chosen early in the sequence and gains probability

later in the sequence. For each of these distributions, the simulation parameters were

presented in Section 4.3.2.

5.7.1 Defining the Sequential Distribution Data Sets

With this in mind, a simulation can be built that attempts to model these char-

acteristics. The intention of this simulation is to use a set of conditional discrete

distributions with a differing parameter t. This t is an integer, 0 ≤ t < M , which

is an index to the tth time period of the semester and tracks some aspect of the dis-

tribution. For instance, with the binomial set of distributions, t is the numerator of

the equation p = t/(M − 1) that is then used to calculate the individual probabilities

for that given t. Since this t can be seen as a marking point relative to where a class

is in a semester, it may indicate what video object is the most popular or the video

object most likely to be chosen, depending on the distribution.

The composition of these data sets then entails traversing sequentially over all

possible values of t, 0 ≤ t < M , where M is the number of media objects and the

total number of time periods in the semester. For each value of t, the tth conditional

discrete distribution is used to choose a certain number of random integers which

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 134 -

correspond to objects that are chosen to be viewed by students.

Define pi,j = P{m = i|t = j} to be the probability that the random variable m,

which is the object currently chosen, is equal to i given the time period index t is

equal to j. Let pj be the column vector whose ith entry is pi,j. Each pj is then a

conditional distribution.

With this, define the matrix:

P =
[

p0 p1 . . . pM−1

]
. (5.1)

This makes P an M × M matrix. Now define di as the probability that object i is

chosen at any point in the entire semester. Define:

d =
[

d0 d1 . . . dM−1

]T
. (5.2)

So, di = P{m = i}. Finally define xj as the probability of each t occurring, xj =

P{t = j}, and

x =
[

x0 x1 . . . xM−1

]T
. (5.3)

Now, in terms of conditional probability:

∑M−1
j=0 P{m = i|t = j} · P{t = j} = P{m = i}, 0 ≤ i < M . (5.4)

And in terms of the vectors and matrices defined above:

∑M−1
j=0 pi,jxj = di 0 ≤ i < M . (5.5)

From these equations, one can see that the probabilities, t, for choosing object m, pi,j,

multiplied times the probability that the tth distribution is used overall, xj, summed

together equals the overall expected probability of object m being used in the entire

experiment, di. From this it can be written:

Px = d. (5.6)

P will be a M ×M matrix while x and d are both M × 1 vectors.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 135 -

5.7.2 Truncated Discrete Exponential Distribution P Matrix

Now a truncated discrete exponential distribution can be defined. pi,j is the jth

element of the conditional distribution , 0 ≤ j ≤ i. For a given i, λ = c/(i + 1) and

p̂i,j = λe−λ(i−(j+1)) − λe−λ(i−j), 0 < i ≤ j (5.7)

pi,j = 0, i < j < M . (5.8)

Because this exponential distribution goes to negative infinity past j = 0, the distri-

bution must be truncated. To realize the truncation, take the modulo of any objects

that fall out of the bounds, 0 ≤ j ≤ i, as modulo i thereby distributing the probability

almost evenly over the range 0 to i. (Actually the modulo i probability over the range

0 to i is not even but with c = 8, out-of-bounds objects only account for 0.0335%

of all occurrences, so the approximation is justifiable.) In terms of the probabilities,

pi,j,

pi,j = p̂i,j +
1−
∑M−1

k=0
p̂i,k

i+1
, 0 ≤ j ≤ i . (5.9)

Basically, the pi,j’s share the leftovers of the vector to make the vector components

sum to 1, but the leftovers are usually fairly small. Yet, they are significant because

the sum of the vector components of pj must each sum to 1 to satisfy one of the

axioms of probability [Pap91].

This distribution models the peak in popularity of a object when the object’s

topic is being covered in class and the possibility of students wanting to access a very

early object late in the semester. To better visualize these conditional distributions,

Figure 5.13 shows selected discrete probability density functions, while Figure 5.14

shows selected discrete cumulative distribution functions of the truncated discrete

exponential distributions.

To obtain the x vector, assume that each i is equally probable, xi = 1/M , 0 ≤ i <

M . Knowing the P matrix from Equations 5.6, 5.7, and 5.8 and the values of the x

vector, it is possible to solve for the d vector, the overall distribution of object choices

for the entire experiment. Figure 5.15 illustrates the values of the d vector. This

resulting d vector can be explained by some student usage characteristics. The very

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 136 -

0

0 . 1

0 . 2

0 . 3

0 . 4

0 . 5

0 . 6

0 . 7

0 . 8

1 4 7

1
0

1
3

1
6

1
9

2
2

2
5

2
8

3
1

3
4

3
7

4
0

4
3

4
6

4
9

Module, i

P
ro

b
a

b
il

it
y

Dist. with j=5

Dist. with j=15

Dist. with j=25

Dist. with j=35

Dist. with j=45

Fig. 5.13. Selected conditional probability density functions for truncated discrete
exponential distribution P matrix.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 137 -

0

0 . 2

0 . 4

0 . 6

0 . 8

1

1 . 2

1 5 9

1
3

1
7

2
1

2
5

2
9

3
3

3
7

4
1

4
5

4
9

Module, i

C
u

m
u

la
ti

v
e

P

ro
b

a
b

il
it

y

Dist. with j=5

Dist. with j=15

Dist. with j=25

Dist. with j=35

Dist. with j=45

Fig. 5.14. Selected conditional cumulative distribution functions for truncated
discrete exponential distribution P matrix.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 138 -

0

0 . 0 0 5

0 . 0 1

0 . 0 1 5

0 . 0 2

0 . 0 2 5

0 3 6 9

1
2

1
5

1
8

2
1

2
4

2
7

3
0

3
3

3
6

3
9

4
2

4
5

4
8

Module, i

O
v

e
ra

ll

P
ro

b
a

b
il

it
y

Fig. 5.15. Overall object choice distribution, d, for truncated discrete exponential
distribution P matrix.

early video objects may not be quite as popular than others because they contain

review material. Early in the semester, students are dedicated to keeping up in the

class and they watch every object that corresponds to the current course material.

But as the semester progresses and other courses invade on the students’ time, they

find less time to watch the video objects and keep up with the class. The usage of

the objects reflect this by tapering off.

5.7.3 Binomial distribution P matrix

For a conditional set of binomial distributions, define distribution parameter q =

i/(M − 1), 0 ≤ i < M . For each i, define:

pi,j =

 M

j

 i

M

j

(1 − i

M
)M−j =

 M

j

 qj(1 − q)M−j (5.10)

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 139 -

0

0 . 0 5

0 . 1

0 . 1 5

0 . 2

0 . 2 5

1 4 7

1
0

1
3

1
6

1
9

2
2

2
5

2
8

3
1

3
4

3
7

4
0

4
3

4
6

4
9

Module, i

P
ro

b
a

b
il

it
y

Dist. with j=5

Dist. with j=15

Dist. with j=25

Dist. with j=35

Dist. with j=45

Fig. 5.16. Selected conditional probability density functions for binomial
distribution P matrix.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 140 -

0

0 . 2

0 . 4

0 . 6

0 . 8

1

1 . 2

1 5 9

1
3

1
7

2
1

2
5

2
9

3
3

3
7

4
1

4
5

4
9

Module, i

C
u

m
u

la
ti

v
e

P

ro
b

a
b

il
it

y

Dist. with j=5

Dist. with j=15

Dist. with j=25

Dist. with j=35

Dist. with j=45

Fig. 5.17. Selected conditional cumulative distribution functions for binomial
distribution P matrix.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 141 -

Since the conditional distributions, pj, are discrete Gaussian distributions, this set of

distributions models the expectation that objects on similar topics will all be popular

around the same time period. It also does well with the possibility of a student

watching a object with a topic from early in the semester or looking ahead to a object

whose topic is covered late in the semester. To better visualize these conditional

distributions, Figure 5.16 shows selected discrete probability density functions, while

Figure 5.17 shows selected discrete cumulative distribution functions of the binomial

distributions.

To obtain the x vector, assume that each value of i is equally probable, xi = 1/M ,

0 ≤ i < M . Knowing the P matrix from Equation5.10 and the values of the x vector,

it is possible to solve for the d vector, the overall distribution of object choices for the

entire experiment. Figure 5.18 illustrates the values of the d vector. This resulting

d vector models a student usage pattern where they access each video object with

equal probability over the entire semester.

5.7.4 Triangular Window Distribution P Matrix

The truncated discrete exponential distribution and the binomial distribution

each have some limitations in how they model expected student activity on a dis-

tributed multimedia system. The exponential distribution does not model any stu-

dents’ choices of objects that are greater than parameter t. The binomial distribution

makes it equally likely that a object j + k will be access as the object j − k for a

given integer j and arbitrary interval integer k. This is not what would be expected

because students generally are more likely to access the object j − k rather than the

object j + k. Thus, a third distribution was developed. The set of triangular window

distributions accounts for students being more likely to access objects j − k than

accessing objects j + k and accounts for students working ahead as well as lagging

behind. It is comprised of the area under a triangle. This triangle is depicted in

Figure 3.13 as a dotted line while the probabilities of choosing the individual objects

is the underlying bar graph.

The triangle is determined by how many objects to the left of parameter j have

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 142 -

0

0 . 0 0 5

0 . 0 1

0 . 0 1 5

0 . 0 2

0 . 0 2 5

0 . 0 3

0 . 0 3 5

0 3 6 9

1
2

1
5

1
8

2
1

2
4

2
7

3
0

3
3

3
6

3
9

4
2

4
5

4
8

Module, i

O
v

e
ra

ll

P
ro

b
a

b
il

it
y

Fig. 5.18. Overall object choice distribution, d, for binomial distribution P matrix.

0

0.05

0.1

0.15

0.2

0 10 20 30 40 50

Module, i

P
ro

b
a
b

il
it

y

A B C D E F

Fig. 5.19. Triangular window distribution for j = 35 with M = 50.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 143 -

a nonzero probability, which is variable a, and how many objects to the right of

parameter m have a nonzero probability, which is variable b. There are two input

parameters, amax and bmax . amax is the largest fraction of M that variable a can

become (when j = M − 1), while bmax is the largest fraction of M that variable b

can become (when j = 0). The variables a and b scale linearly from 0 to M −1. So as

j increases, b decreases linearly simulating the likelihood of students working ahead

which is expected to decrease as the semester progresses. Also a increases linearly

as t increases simulating the higher probability of students reviewing material as the

semester advances. To calculate the individual probabilities, pi,j, first the values of a

and b are calculated:

a =
(

amax − 1

M − 1

)
j +

(
M − amax

M − 1

)
(5.11)

and

b = −
(

bmax

M − 1

)
j +

(
M · bmax

M − 1

)
. (5.12)

By knowing a and b, the maximum height, h, of the triangle can be determined:

h =
2

a + b
. (5.13)

Now the lines that bound the triangle can then be determined:

ay(x) =

(
h

a

)
x +

(
h− j · h

a

)
(5.14)

and

bz (w) = −
(

h

b

)
w +

(
h +

j · h
b

)
. (5.15)

The ay equation defines the line that connects (j−a, 0) to (j, h), while the bz equation

defines the line that connects (j + b, 0) to (j, h).

With these lines, the probabilities for each object can be calculated for each pi,j

given t = j. As illustrated in Figure 5.19, the conditional probability density cal-

culations can be divided into six parts, labeled A through F . In region A, where

i < bj−ac, pi,j = 0. (j−a and j + b are a real numbers while j is always an integer.)

The leftmost tip of the triangle is region B where i = bj − ac. Here,

pi,j =
1

2
(a− (j − (i + 1))) ∗ ay(i + 1). (5.16)

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 144 -

0

0 . 0 5

0 . 1

0 . 1 5

0 . 2

0 . 2 5

1 4 7

1
0

1
3

1
6

1
9

2
2

2
5

2
8

3
1

3
4

3
7

4
0

4
3

4
6

4
9

Module, i

P
ro

b
a

b
il

it
y

Dist. with j=5

Dist. with j=15

Dist. with j=25

Dist. with j=35

Dist. with j=45

Fig. 5.20. Selected conditional probability density functions for triangular window
distribution P matrix with amax = 0.45 and bmax = 0.1.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 145 -

0

0 . 2

0 . 4

0 . 6

0 . 8

1

1 . 2

1 5 9

1
3

1
7

2
1

2
5

2
9

3
3

3
7

4
1

4
5

4
9

Module, i

C
u

m
u

la
ti

v
e

P

ro
b

a
b

il
it

y

Dist. with j=5

Dist. with j=15

Dist. with j=25

Dist. with j=35

Dist. with j=45

Fig. 5.21. Selected conditional cumulative distribution functions for triangular
window distribution P matrix with amax = 0.45 and bmax = 0.1.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 146 -

Region C is where bj − ac < i < j and

pi,j =
[
1

2
(at(i + 1) − ay(i)) ∗ 1

]
+ [ay(i) ∗ 1] . (5.17)

In the above equation, the first bracketed portion is the triangular part of the area

on top of the column, while the second bracketed part is the column below. Region

D is defined where j ≤ i < bj + bc and

pi,j =
[
1

2
(bz (i) − bz (i + 1)) ∗ 1

]
+ [bz (i + 1) ∗ 1] . (5.18)

Again in this equation, the first bracketed portion is the triangular part of the area

on top of the column, while the second bracketed part is the column below. The

rightmost tip of the triangle is region E, where i = bj + bc and

pi,j =
1

2
(b− (i− j)) ∗ bz (i) (5.19)

Finally, Region F is where i > bj + bc and pi,j = 0. To better visualize these

conditional distributions, Figure 5.20 shows selected discrete conditional probability

density functions, while Figure 5.21 shows selected discrete conditional cumulative

distribution functions of the triangular window distributions.

To obtain the x vector, assume that each value of i is equally probable, xi = 1/M ,

0 ≤ i < M . Knowing the P matrix as defined above and the values of the x vector, it

is possible to solve for the d vector, the overall distribution of object choices for the

entire experiment. Figure 5.22 illustrates the values of the d vector. This resulting

d vector can be explained by some student usage characteristics. As with the overall

object choice distribution of the truncated discrete exponential distributions, the very

early video objects may not be quite as popular than others because they contain

review material. Early in the semester, students are dedicated to keeping up in the

class and they watch every object that corresponds to the current course material.

But as the semester progresses and other courses invade on the students’ time, they

find less time to watch the video objects and keep up with the class. The usage of the

objects reflect this by tapering off even more dramatically than in the overall object

choice distribution of the truncated discrete exponential distributions.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 147 -

0

0 . 0 0 5

0 . 0 1

0 . 0 1 5

0 . 0 2

0 . 0 2 5

0 3 6 9

1
2

1
5

1
8

2
1

2
4

2
7

3
0

3
3

3
6

3
9

4
2

4
5

4
8

Module, i

O
v

e
ra

ll

P
ro

b
a

b
il

it
y

Fig. 5.22. Overall object choice distribution,d, for triangular window distribution P
matrix with amax = 0.45 and bmax = 0.1.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 148 -

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 149 -

6. Simulation Results

Now that an understanding of the characteristics of the workload traces from

Chapter 5 has been achieved, the results of the cache replacement algorithm simula-

tions will be presented. This chapter is divided into three sections which correspond to

the three questions that were posed in Section 2.9. These questions asked which cache

replacement algorithms perform best for which workload traces, inquired whether ad-

mission policies are effective in increasing performance in a cache, and questioned

whether entire videos should be cached in a video proxy cache server.

6.1 Which Cache Replacement Algorithms Are Best for Each Workload

Trace?

The first set of questions in Section 2.9 asked the following: By including more

statistics of the cache object in the determination of cache removal, do the more

complex cache replacement algorithms better predict the expected demand for objects

in the cache? And which object statistics are involved in the algorithms that perform

better, i.e., which algorithms produce a lower cache miss rate and which produce a

lower cache byte hit rate? Is the additional computational complexity of using more

cache object statistics worth the decrease in cache miss rates and byte miss rates?

To answer these questions, the workload traces are further segmented into the

domains that were developed in Section 5.3. Then within each segment, the results

are discussed for its constituent workload traces. For each workload, eight graphs

have been generated; four compare the miss rate results, and four compare the byte

miss rate results.

To better compare how the cache replacement algorithms perform for different

cache sizes, three line graphs are then presented. On each of these three line graphs,

the COMP (compulsory miss), OPT (Belady’s optimal) and RND (random) cache

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 150 -

Table 6.1
Comparison of Object Statistics in Cache Replacement Algorithms

on no. of first last access size file admission

Policy chart stats access access count size type affect

COMP all 0 no

OPT all 0 yes

RND all 0 no

FIFO 1 1 x no

LRU 1 1 x no

SizeL 1 1 x yes

LFU 1 1 x no

PrfctLFU 1 1 x yes

LFU-DA 1 1 x yes

LRD 2 2 x x no

SizeLRD 3 3 x x x no

LRU-MIN 1 2 x x yes

SLRU 2 2 x x yes

PLRU 2 2 x x no

SPCxAGE 2 2 x x no

SPCxAGEtc 2 2 x x no

LFLRU 2 2 x x no

SizeLFLRU 3 3 x x x no

GDS1 3 1 x yes

GDSPacket 3 1 x yes

GDSHits 3 2 x x yes

LRV 3 3 x x x no

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 151 -

replacement policy lines are displayed for the sake of comparison. COMP and OPT

indicate how close to optimal the performance results are while RND provides an indi-

cation of how bad a poorly performing algorithm is. If a cache replacement algorithm

is performing worse than random, it is performing quite poorly on that particular

workload trace. The first of the three line graphs compares those algorithms that

use only one object statistic or a simple combination of two statistics. These al-

gorithms are FIFO, LRU, SizeL, LFU, PerfectLFU, LFU-DA, and LRU-MIN. The

results of the best performing of these algorithms (except for PerfectLFU, see next

paragraph for an explanation) are forwarded to the second line graph. On the second

line graph, algorithms that use two statistics and are somewhat more complex are

compared. These algorithms are LRD, SLRU, PLRU, SPACExAGE, SPACExAGEtc,

and LFLRU. The results of the two top performing algorithms from the second line

graph are forwarded to the third line graph. The third line graph displays the final

comparison and includes the algorithms that use three object statistics and are yet

more complex. These include SizeLRD, SizeLFLRU, GDS1, GDSPacket, GDSHits,

and LRV. Table 6.1 summarizes which algorithms are compared on each of the line

graphs, but it does not include the forwarded algorithms. Also for each given work-

load, an overview miss rate bar graph is first presented which displays the average

miss rates over all five cache sizes. These average miss rates are a very good indication

of the overall performance of the algorithms. For instance, one policy may be very

effective for smaller cache sizes and then perform relatively poorly for larger cache

sizes. After the miss rate results have been discussed for a given workload trace, the

byte miss rate graphs are displayed and discussed in a parallel manner.

For all of the line graphs, the COMP, OPT, RND, and PerfectLFU cache replace-

ment algorithms are not forwarded because they are ideal algorithms that are in this

study for the sake of comparison. The matter that COMP, OPT, and RND should

be comparison algorithms is quite straightforward and follows from the discussion in

Section 2.8. However, the choice to make PerfectLFU a comparison algorithm is not

as clear. This choice was made because PerfectLFU does not have any mechanism

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 152 -

for aging the score of its objects, whether the object is in the cache or not. This

means that an object that was very popular months ago would probably still occupy

the cache because most other objects had not been accessed as many times. Also

as mentioned in Section 2.6, PerfectLFU can be prohibitively expensive in memory

consumption because it requires the cache proxy server software to maintain access

counts of all of the objects that it has cached since it was started. The PerfectLFU

algorithm could be modified so that it purges the access count data structure when

it seems that an object would no longer be accessed, but such a modification would

no longer be implementing the PerfectLFU algorithm in its purest sense. Therefore,

the PerfectLFU algorithm results are not forwarded among the line graphs.

For each of the proxy server domains, a summary will be drawn for both miss rate

and byte miss rate trends. In these domain summaries, a table is presented showing

the top performing algorithms for each trace and both measures. Then, a number

of comparisons will be made among the cache replacement algorithms which will

elucidate certain performance advantages and disadvantages of the object statistics

as part of the cache replacement algorithms. Among these comparisons are:

• A comparison of LRU to LRU-MIN, SPACExAGE, LFLRU, SLRU, and PLRU

for influences of size, access count, segmenting, and file type with the given

workload trace.

• A comparison of LFU to LFU-DA and PerfectLFU which provides an indication

of how well the algorithms work with access counts.

• A comparison of FIFO to LRD and SizeLRD and LRU to LFLRU and Size-

LFLRU which helps determine whether access count and object size improve

the performance of the FIFO algorithm.

• A comparison of SPACExAGE versus SPACExAGEtc which gives indication of

how sensitive a trace is to time measured either by number of other requests

since a certain object was requested versus the actual seconds elapsed since a

certain object was requested.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 153 -

• A comparison of LFU-DA, GDS1, GDSPacket, and GDSHits with the other

algorithms to determine the effectiveness of the inflation parameter in these

algorithms.

• A comparison of LRV with the other algorithms to determine whether the com-

plexity of the LRV algorithm is worth the computational effort.

6.1.1 Origin Server Traces

By using origin server traces, the simulation acts like an origin proxy cache server.

HP World Cup 1998 Web Server Farm Trace

For the simple cache replacement algorithms on the HP World Cup 1998 Web

Server Farm wc week14 trace, Figure 6.1 shows that the SizeL algorithm on the

whole performs best. PerfectLFU is the top performing algorithm, but its results

are not forwarded to the next graph. It is interesting to note that both SizeL and

LRU-MIN outperform Belady’s OPT optimal algorithm. The reason that OPT is not

completely optimal is that it doesn’t take object size into account; it assumes that

all objects are of the same size. This situation comes up for the HP World Cup 1998

Web Server Farm Trace and several other traces that will be discussed in this chapter.

With the more complex algorithms in Figure 6.2, SPACExAGE and SPACEx-

AGEtc perform exactly the same and are the best. Since those two algorithms have

the exact same miss rates, only the results of one of them are forwarded, and the SizeL

results, the next best algorithm, are forwarded on to the final comparison graph.

In the final comparison graph, Figure 6.3, and the average comparison graph,

Figure 6.4, the GDSHits algorithm performs best by an average of 2% better than its

next competitor. Overall, there is a three way tie for second between SPACExAGE,

SPACExAGEtc, and SizeLFLRU.

For the simple algorithms with byte miss rate as the measure in Figure 6.5, the

PerfectLFU is the best algorithm while the LFU-DA algorithm is a close second. The

LFU-DA algorithm results are forwarded to the next graph.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 154 -

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 4 16 64 256

Cache Size (Mbytes)

M
is

s
R

at
e

(F
ra

ct
io

n
)

COMP
OPT
RND
FIFO
LRU
SizeL
LFU
PrfctLFU
LFU-DA
LRU-MIN

Fig. 6.1. Miss Rates of Simple Cache Replacement Algorithms on HP World Cup
1998 Web Server Farm wc week14 Trace.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 155 -

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 4 16 64 256

Cache Size (Mbytes)

M
is

s
R

at
e

(F
ra

ct
io

n
)

COMP
OPT
RND
LRD
SLRU
PLRU
SPCxAGE
SPCxAGEtc
LFLRU
SizeL

Fig. 6.2. Miss Rates of More Complex Cache Replacement Algorithms on HP World
Cup 1998 Web Server Farm wc week14 Trace.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 156 -

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 4 16 64 256

Cache Size (Mbytes)

M
is

s
R

at
e

(F
ra

ct
io

n
)

COMP
OPT
RND
SizeLRD
SizeLFLRU
GDS1
GDSPacket
GDSHits
LRV
SizeL
SPCxAGE

Fig. 6.3. Miss Rates of Complex Cache Replacement Algorithms on HP World Cup
1998 Web Server Farm wc week14 Trace.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 157 -

0.
25

1

0.
21

0.
14

1

0.
24

8

0.
13

1

0.
14

2

0.
19

5

0.
14

5

0.
14

4

0.
14

8 0.
18

7

0.
12

0.
12

0.
21

0.
12 0.

14
1

0.
14

1

0.
09

8

0.
42

7

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

F
IF

O

LR
U

S
iz

eL

LF
U

P
rf

ct
LF

U

LF
U

-D
A

LR
D

S
iz

eL
R

D

LR
U

-M
IN

S
LR

U

P
LR

U

S
P

C
xA

G
E

S
P

C
xA

G
E

tc

LF
LR

U

S
iz

eL
F

LR
U

G
D

S
1

G
D

S
P

ac
ke

t

G
D

S
H

its

LR
V

Cache Replacement Algorithm

M
is

s
R

at
e

(f
ra

ct
io

n
)

Fig. 6.4. Average Miss Rates on HP World Cup 1998 Web Server Farm wc week14
Trace.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 158 -

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 4 16 64 256

Cache Size (Mbytes)

M
is

s
R

at
e

(F
ra

ct
io

n
)

COMP
OPT
RND
FIFO
LRU
SizeL
LFU
PrfctLFU
LFU-DA
LRU-MIN

Fig. 6.5. Byte Miss Rates of Simple Cache Replacement Algorithms on HP World
Cup 1998 Web Server Farm wc week14 Trace.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 159 -

LFU-DA and LRD performed best among the more complex cache replacement

policies in Figure 6.6, and their results are forwarded to the next graph.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 4 16 64 256

Cache Size (Mbytes)

M
is

s
R

at
e

(F
ra

ct
io

n
)

COMP
OPT
RND
LRD
SLRU
PLRU
SPCxAGE
SPCxAGEtc
LFLRU
LFU-DA

Fig. 6.6. Byte Miss Rates of More Complex Cache Replacement Algorithms on HP
World Cup 1998 Web Server Farm wc week14 Trace.

Finally, the two forwarded algorithms performed the best among the complex

algorithms in Figure 6.7. On the average overview graph of Figure 6.8, the LFU-DA

algorithm performed best, while SLRU was second, and LRD was third.

Purdue DSML Web Server Trace

For the simple cache replacement algorithms on the Purdue DSML Web Server

dsl log trace in Figure 6.9, the SizeL algorithm had the lowest miss rate, and its

results are forwarded to the next graph. LRU generally beats both LFU and FIFO

but it did not better any of the other frequency based algorithms.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 160 -

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 4 16 64 256

Cache Size (Mbytes)

B
yt

e
M

is
s

R
at

e
(F

ra
ct

io
n

)

COMP
OPT
RND
SizeLRD
SizeLFLRU
GDS1
GDSPacket
GDSHits
LRV
LFU-DA
LRD

Fig. 6.7. Byte Miss Rates of Complex Cache Replacement Algorithms on HP World
Cup 1998 Web Server Farm wc week14 Trace.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 161 -

0.
36

3

0.
33

1

0.
51

0.
36

0.
27

9

0.
29

2

0.
31

7

0.
40

6

0.
42

6

0.
31

5 0.
36

9

0.
38

6

0.
38

6

0.
33

1 0.
38

5

0.
51

0.
51

0.
39

3

0.
47

3

0

0.1

0.2

0.3

0.4

0.5

0.6

F
IF

O

LR
U

S
iz

eL

LF
U

P
rf

ct
LF

U

LF
U

-D
A

LR
D

S
iz

eL
R

D

LR
U

-M
IN

S
LR

U

P
LR

U

S
P

C
xA

G
E

S
P

C
xA

G
E

tc

LF
LR

U

S
iz

eL
F

LR
U

G
D

S
1

G
D

S
P

ac
ke

t

G
D

S
H

its

LR
V

Cache Replacement Algorithm

B
yt

e
M

is
s

R
at

e
(f

ra
ct

io
n

)

Fig. 6.8. Average Byte Miss Rates on HP World Cup 1998 Web Server Farm
wc week14 Trace.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 162 -

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 4 16 64 256

Cache Size (Mbytes)

M
is

s
R

at
e

(F
ra

ct
io

n
)

COMP
OPT
RND
FIFO
LRU
SizeL
LFU
PrfctLFU
LFU-DA
LRU-MIN

Fig. 6.9. Miss Rates of Simple Cache Replacement Algorithms on Purdue dsl log
DSML Web Server Trace.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 163 -

Both the SizeL and SPACExAGE results are forwarded to the final graph by

barely outperforming LFLRU and SPACExAGEtc as shown in Figure 6.10. SizeL

performs better on the smaller cache sizes while SPACExAGE performs better on the

larger cache sizes.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 4 16 64 256

Cache Size (Mbytes)

M
is

s
R

at
e

(F
ra

ct
io

n
)

COMP
OPT
RND
LRD
SLRU
PLRU
SPCxAGE
SPCxAGEtc
LFLRU
SizeL

Fig. 6.10. Miss Rates of More Complex Cache Replacement Algorithms on Purdue
dsl log DSML Web Server Trace.

In the final miss rate comparison on Figure 6.11, GDSHits outperforms all of the

other algorithms by a significant margin for smaller caches. On the average miss rate

comparison graph of Figure 6.12, we see that GDSHits performs best with SPACEx-

AGE and SizeLFLRU tied for second, and having about 2% higher average miss rate.

The fact that SPACExAGE and SizeLFLRU tied indicates that for SizeLFLRU, the

frequency component was not as important as the size and LFU components.

On the graph for the simple algorithms for byte miss rate in Figure 6.13, the Per-

fectLFU algorithm had the best miss rate followed closely by the LFU-DA algorithm.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 164 -

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 4 16 64 256

Cache Size (Mbytes)

M
is

s
R

at
e

(F
ra

ct
io

n
)

COMP
OPT
RND
SizeLRD
SizeLFLRU
GDS1
GDSPacket
GDSHits
LRV
SizeL
SPCxAGE

Fig. 6.11. Miss Rates of Complex Cache Replacement Algorithms on Purdue dsl log
DSML Web Server Trace.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 165 -

0.
31

2

0.
26

9

0.
15

9

0.
27

9

0.
18

3

0.
19

7 0.
25

9

0.
17

6

0.
18

7

0.
21

2 0.
25

9

0.
15

6

0.
16

6

0.
26

3

0.
15

6

0.
15

9

0.
15

9

0.
13

7

0.
51

4

0

0.1

0.2

0.3

0.4

0.5

0.6

F
IF

O

LR
U

S
iz

eL

LF
U

P
rf

ct
LF

U

LF
U

-D
A

LR
D

S
iz

eL
R

D

LR
U

-M
IN

S
LR

U

P
LR

U

S
P

C
xA

G
E

S
P

C
xA

G
E

tc

LF
LR

U

S
iz

eL
F

LR
U

G
D

S
1

G
D

S
P

ac
ke

t

G
D

S
H

its

LR
V

Cache Replacement Algorithm

M
is

s
R

at
e

(f
ra

ct
io

n
)

Fig. 6.12. Average Miss Rates on Purdue dsl log DSML Web Server Trace.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 166 -

Hence the LFU-DA algorithm results are forwarded to the next line graph.

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 4 16 64 256

Cache Size (Mbytes)

M
is

s
R

at
e

(F
ra

ct
io

n
)

COMP
OPT
RND
FIFO
LRU
SizeL
LFU
PrfctLFU
LFU-DA
LRU-MIN

Fig. 6.13. Byte Miss Rates of Simple Cache Replacement Algorithms on Purdue
dsl log DSML Web Server Trace.

Among the more complex cache replacement algorithms on Figure 6.14, the LFU-

DA algorithm performs best for smaller cache sizes, while the LRD algorithm performs

best for larger cache sizes. The results of both of these algorithms are forwarded to

the final graph.

Overall, these two forwarded algorithms, LRD placing first and LFU-DA placing

second, perform best with LRU placing third on average as shown in Figure 6.16.

One should note that SLRU came in fourth with only a 0.1% worse average byte miss

rate than LRU.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 167 -

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 4 16 64 256

Cache Size (Mbytes)

M
is

s
R

at
e

(F
ra

ct
io

n
)

COMP
OPT
RND
LRD
SLRU
PLRU
SPCxAGE
SPCxAGEtc
LFLRU
LFU-DA

Fig. 6.14. Byte Miss Rates of More Complex Cache Replacement Algorithms on
Purdue dsl log DSML Web Server Trace.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 168 -

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 4 16 64 256

Cache Size (Mbytes)

B
yt

e
M

is
s

R
at

e
(F

ra
ct

io
n

)

COMP
OPT
RND
SizeLRD
SizeLFLRU
GDS1
GDSPacket
GDSHits
LRV
LFU-DA
LRD

Fig. 6.15. Byte Miss Rates of Complex Cache Replacement Algorithms on Purdue
dsl log DSML Web Server Trace.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 169 -

0.
61

6

0.
59

0.
72

3

0.
60

6

0.
56

9

0.
58

0.
57

8

0.
62

1

0.
65

6

0.
59

1

0.
60

3

0.
60

5

0.
6

0.
58

8 0.
60

4

0.
72

3

0.
72

3

0.
65

8

0.
71

3

0.5

0.55

0.6

0.65

0.7

0.75

F
IF

O

LR
U

S
iz

eL

LF
U

P
rf

ct
LF

U

LF
U

-D
A

LR
D

S
iz

eL
R

D

LR
U

-M
IN

S
LR

U

P
LR

U

S
P

C
xA

G
E

S
P

C
xA

G
E

tc

LF
LR

U

S
iz

eL
F

LR
U

G
D

S
1

G
D

S
P

ac
ke

t

G
D

S
H

its

LR
V

Cache Replacement Algorithm

B
yt

e
M

is
s

R
at

e
(f

ra
ct

io
n

)

Fig. 6.16. Average Byte Miss Rates on Purdue dsl log DSML Web Server Trace.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 170 -

Virginia Tech BR Trace

Among the simple cache replacement algorithms with miss rate as the measure in

Figure 6.17, SizeL outperforms all of the other algorithms so its results are forwarded

to the next graph.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 4 16 64 256

Cache Size (Mbytes)

M
is

s
R

at
e

(F
ra

ct
io

n
)

COMP
OPT
RND
FIFO
LRU
SizeL
LFU
PrfctLFU
LFU-DA
LRU-MIN

Fig. 6.17. Miss Rates of Simple Cache Replacement Algorithms on Virginia Tech
BR Trace.

SPACExAGE and SPACExAGEtc are the top performers among the more com-

plex cache replacement algorithms on the Virginia Tech BR trace in Figure 6.18 so

their results are forwarded to the final line graph.

The GDSHits algorithm performs best overall on the Virginia Tech BR trace

as shown in Figure 6.19. This is also evident on the average miss rate graph in

Figure 6.20. This isn’t surprising because GDSHits takes access count, size, and age

(with the inflation factor) into account for the replacement decision and it has been

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 171 -

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 4 16 64 256

Cache Size (Mbytes)

M
is

s
R

at
e

(F
ra

ct
io

n
)

COMP
OPT
RND
LRD
SLRU
PLRU
SPCxAGE
SPCxAGEtc
LFLRU
SizeL

Fig. 6.18. Miss Rates of More Complex Cache Replacement Algorithms on Virginia
Tech BR Trace.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 172 -

shown to be quite effective for decreasing miss rates [ACD+99]. The second and third

best algorithms are SPACExAGE and SizeLFLRU, respectively, with their average

miss rates being around 2.5% more than GDSHits.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 4 16 64 256

Cache Size (Mbytes)

M
is

s
R

at
e

(F
ra

ct
io

n
)

COMP
OPT
RND
SizeLRD
SizeLFLRU
GDS1
GDSPacket
GDSHits
LRV
SPCxAGE
SPCxAGEtc

Fig. 6.19. Miss Rates of Complex Cache Replacement Algorithms on Virginia Tech
BR Trace.

For the simple cache replacement algorithms with byte miss rate as the measure

in Figure 6.21, PerfectLFU is the best by a small margin over LFU-DA. Since the

PerfectLFU results are not forwarded, the LFU-DA results are forwarded to Fig-

ure 6.22. Note, though, SizeL performs particularly poorly when byte miss rate is

the measure. SizeL does not keep the large files that incur a huge cache miss loss in

terms of transferring bytes.

Among the more complex replacement policies in Figure 6.22, LFU-DA and SLRU

are the top performers, and their results are forwarded to the final graph.

In Figure 6.23, the two forwarded algorithms performed best. All of the complex

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 173 -

0.
43

1

0.
40

7

0.
23

5

0.
41

0.
36

5

0.
32

7

0.
40

5

0.
24

1 0.
28

7 0.
35 0.

38
3

0.
22

3

0.
22

8

0.
40

3

0.
22

5

0.
23

5

0.
23

5

0.
19

7

0.
50

5

0

0.1

0.2

0.3

0.4

0.5

0.6

F
IF

O

LR
U

S
iz

eL

LF
U

P
rf

ct
LF

U

LF
U

-D
A

LR
D

S
iz

eL
R

D

LR
U

-M
IN

S
LR

U

P
LR

U

S
P

C
xA

G
E

S
P

C
xA

G
E

tc

LF
LR

U

S
iz

eL
F

LR
U

G
D

S
1

G
D

S
P

ac
ke

t

G
D

S
H

its

LR
V

Cache Replacement Algorithm

M
is

s
R

at
e

(f
ra

ct
io

n
)

Fig. 6.20. Average Miss Rates on Virginia Tech BR Trace.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 174 -

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 4 16 64 256

Cache Size (Mbytes)

M
is

s
R

at
e

(F
ra

ct
io

n
)

COMP
OPT
RND
FIFO
LRU
SizeL
LFU
PrfctLFU
LFU-DA
LRU-MIN

Fig. 6.21. Byte Miss Rates of Simple Cache Replacement Algorithms on Virginia
Tech BR Trace.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 175 -

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 4 16 64 256

Cache Size (Mbytes)

M
is

s
R

at
e

(F
ra

ct
io

n
)

COMP
OPT
RND
LRD
SLRU
PLRU
SPCxAGE
SPCxAGEtc
LFLRU
LFU-DA

Fig. 6.22. Byte Miss Rates of More Complex Cache Replacement Algorithms on
Virginia Tech BR Trace.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 176 -

algorithms do not perform as well as the simpler ones on the Virginia Tech BR trace

using byte miss rate as a measure. Figure 6.24 shows that LFU-DA, SLRU, and LRD

are the three best algorithms on average for byte miss rate.

0

0.2

0.4

0.6

0.8

1

1.2

1 4 16 64 256

Cache Size (Mbytes)

B
yt

e
M

is
s

R
at

e
(F

ra
ct

io
n

)

COMP
OPT
RND
SizeLRD
SizeLFLRU
GDS1
GDSPacket
GDSHits
LRV
LFU-DA
SLRU

Fig. 6.23. Byte Miss Rates of Complex Cache Replacement Algorithms on Virginia
Tech BR Trace.

Origin Server Traces Summary

For this domain’s summary, the table of top performing algorithms for each trace

and both measures is presented in Table 6.2. In this table, one can see that the best

algorithms for this domain are consistently GDSHits when optimizing for miss rate,

and LRU-DA when optimizing for byte miss rate. Among the best algorithms for

miss rate, SPACExAGE and SizeLFLRU are consistently the next best algorithms,

while LRD and SLRU show some consistency among the top contenders for byte miss

rate.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 177 -

0.
51

4

0.
49

7

0.
63

1

0.
51

1

0.
46

3

0.
47

5 0.
49

2

0.
55

4

0.
53

7

0.
48

5

0.
51

4

0.
54

3

0.
53

2

0.
49

7

0.
54

1

0.
63

1

0.
63

1

0.
55

6

0.
55

3

0.4

0.45

0.5

0.55

0.6

0.65

F
IF

O

LR
U

S
iz

eL

LF
U

P
rf

ct
LF

U

LF
U

-D
A

LR
D

S
iz

eL
R

D

LR
U

-M
IN

S
LR

U

P
LR

U

S
P

C
xA

G
E

S
P

C
xA

G
E

tc

LF
LR

U

S
iz

eL
F

LR
U

G
D

S
1

G
D

S
P

ac
ke

t

G
D

S
H

its

LR
V

Cache Replacement Algorithm

B
yt

e
M

is
s

R
at

e
(f

ra
ct

io
n

)

Fig. 6.24. Average Byte Miss Rates on Virginia Tech BR Trace.

Table 6.2
Summary of Top Cache Replacement Algorithms for Origin Proxy Server Traces

Trace worldcup dsml VaTech BR

Miss GDSHits (1st) GDSHits (1st) GDSHits (1st)

Rate SPACExAGE (2nd-tie) SPACExAGE (2nd-tie) SPACExAGE (2nd)

SPACExAGEtc (2nd-tie) SizeLFLRU (2nd-tie) SizeLFLRU (3rd)

SizeLFLRU (2nd-tie)

Byte LFU-DA (1st) LFU-DA (1st) LFU-DA (1st)

Miss SLRU (2nd) LRD (2nd) SLRU (2nd)

Rate LRD (3rd) LRU (3rd) LRD (3rd)

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 178 -

Now some generalities will be drawn on the performance of the cache replacement

policies for the traces of the origin server domain. The average miss rate graphs of

Figures 6.4, 6.12, and 6.20 are shrunk and brought together in Figure 6.25, while

Figures 6.8, 6.16, and 6.24 are shrunk and brought together in Figure 6.26. From

these graphs, one can see that LRU is among the worst of the algorithms in miss rate

performance, but it performs respectably for byte miss rate performance. Therefore,

LRU is among the worst choices when implementing an origin server proxy cache

when optimizing for miss rate, but is not such a bad choice for byte miss rate. When

looking at the performance of size-based and access count based algorithms, the size-

based ones are the better performers for miss rate. Among the origin server proxies,

the access count for cached objects is not as good of a criteria for miss rate as shown

by the relatively poorer performance of the access count based algorithms, LFU, LFU-

DA, and PerfectLFU. So for these traces, a better indicator of being reaccessed is the

size of the object. Among the access count (frequency) based algorithms, LFU-DA

outperforms both LFU and PerfectLFU, which further suggests that the access count

isn’t a good replacement indicator for miss rate since LFU and PerfectLFU use only

frequency while LFU-DA includes the inflation factor to age objects. Also, when

looking at the performance of LRD versus SizeLRD and LFLRU versus SizeLFLRU,

the two latter algorithms always outperform the former two by a large margin. For

byte miss rate, the access count statistic seems to be a marginally better indicator

for replacement.

FIFO is generally only marginally improved upon when it is augmented by the

access count and size in the LRD and SizeLRD, and the average results of SizeLRD

for byte miss rate is actually worse than for both FIFO and LRD. This implies that

using the first-accessed object statistic is not beneficial. The fact that SPACExAGE

and SPACExAGEtc perform within 1% of each other on average implies that the dif-

ference between measuring the number of other accesses since an object was requested

and actual time that has elapsed since an object was accessed is almost negligible.

When there was a difference between the performance of the two algorithms, though,

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 179 -

World Cup

0
.2

5
1

0
.2

1

0
.1

4
1

0
.2

4
8

0
.1

3
1

0
.1

4
2

0
.1

9
5

0
.1

4
5

0
.1

4
4

0
.1

4
8 0
.1

8
7

0
.1

2

0
.1

2

0
.2

1

0
.1

2 0
.1

4
1

0
.1

4
1

0
.0

9
8

0
.4

2
7

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

F
IF

O

L
R

U

S
iz

e
L

L
F

U

P
rf

c
tL

F
U

L
F

U
-D

A

L
R

D

S
iz

e
L

R
D

L
R

U
-M

IN

S
L

R
U

P
L

R
U

S
P

C
x
A

G
E

S
P

C
x
A

G
E

tc

L
F

L
R

U

S
iz

e
L

F
L

R
U

G
D

S
1

G
D

S
P

a
c
k
e

t

G
D

S
H

it
s

L
R

V

Cache Replacement Algorithm

M
is

s
 R

a
te

 (
fr

a
c

ti
o

n
)

DSML

0
.3

1
2

0
.2

6
9

0
.1

5
9

0
.2

7
9

0
.1

8
3

0
.1

9
7 0

.2
5

9

0
.1

7
6

0
.1

8
7

0
.2

1
2 0
.2

5
9

0
.1

5
6

0
.1

6
6

0
.2

6
3

0
.1

5
6

0
.1

5
9

0
.1

5
9

0
.1

3
7

0
.5

1
4

0

0.1

0.2

0.3

0.4

0.5

0.6

F
IF

O

L
R

U

S
iz

e
L

L
F

U

P
rf

c
tL

F
U

L
F

U
-D

A

L
R

D

S
iz

e
L

R
D

L
R

U
-M

IN

S
L

R
U

P
L

R
U

S
P

C
x
A

G
E

S
P

C
x
A

G
E

tc

L
F

L
R

U

S
iz

e
L

F
L

R
U

G
D

S
1

G
D

S
P

a
c
k
e

t

G
D

S
H

it
s

L
R

V

Cache Replacement Algorithm

M
is

s
 R

a
te

 (
fr

a
c

ti
o

n
)

Virginia Tech BR

0
.4

3
1

0
.4

0
7

0
.2

3
5

0
.4

1

0
.3

6
5

0
.3

2
7

0
.4

0
5

0
.2

4
1 0
.2

8
7 0

.3
5 0
.3

8
3

0
.2

2
3

0
.2

2
8

0
.4

0
3

0
.2

2
5

0
.2

3
5

0
.2

3
5

0
.1

9
7

0
.5

0
5

0

0.1

0.2

0.3

0.4

0.5

0.6

F
IF

O

L
R

U

S
iz

e
L

L
F

U

P
rf

c
tL

F
U

L
F

U
-D

A

L
R

D

S
iz

e
L

R
D

L
R

U
-M

IN

S
L

R
U

P
L

R
U

S
P

C
x
A

G
E

S
P

C
x
A

G
E

tc

L
F

L
R

U

S
iz

e
L

F
L

R
U

G
D

S
1

G
D

S
P

a
c
k
e

t

G
D

S
H

it
s

L
R

V

Cache Replacement Algorithm

M
is

s
 R

a
te

 (
fr

a
c

ti
o

n
)

Fig. 6.25. Composite of Average Miss Rates for Origin Server Traces.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 180 -

0

0.1

0.2

0.3

0.4

0.5

0.6

Cache Replacement Algorithm
World Cup

DSML

0
.6

1
6

0
.5

9

0
.7

2
3

0
.6

0
6

0
.5

6
9

0
.5

8

0
.5

7
8

0
.6

2
1

0
.6

5
6

0
.5

9
1

0
.6

0
3

0
.6

0
5

0
.6

0
.5

8
8

0
.6

0
4

0
.7

2
3

0
.7

2
3

0
.6

5
8

0
.7

1
3

0.5

0.55

0.6

0.65

0.7

0.75

F
IF

O

L
R

U

S
iz

e
L

L
F

U

P
rf

c
tL

F
U

L
F

U
-D

A

L
R

D

S
iz

e
L

R
D

L
R

U
-M

IN

S
L

R
U

P
L

R
U

S
P

C
x
A

G
E

S
P

C
x
A

G
E

tc

L
F

L
R

U

S
iz

e
L

F
L

R
U

G
D

S
1

G
D

S
P

a
c
k
e

t

G
D

S
H

it
s

L
R

V

Cache Replacement Algorithm

B
y

te
 M

is
s

 R
a

te
 (

fr
a

c
ti

o
n

)

Virginia Tech BR

0
.5

1
4

0
.4

9
7

0
.6

3
1

0
.5

1
1

0
.4

6
3

0
.4

7
5

0
.4

9
2

0
.5

5
4

0
.5

3
7

0
.4

8
5 0

.5
1

4 0
.5

4
3

0
.5

3
2

0
.4

9
7

0
.5

4
1

0
.6

3
1

0
.6

3
1

0
.5

5
6

0
.5

5
3

0.4

0.45

0.5

0.55

0.6

0.65

F
IF

O

L
R

U

S
iz

e
L

L
F

U

P
rf

c
tL

F
U

L
F

U
-D

A

L
R

D

S
iz

e
L

R
D

L
R

U
-M

IN

S
L

R
U

P
L

R
U

S
P

C
x
A

G
E

S
P

C
x
A

G
E

tc

L
F

L
R

U

S
iz

e
L

F
L

R
U

G
D

S
1

G
D

S
P

a
c
k
e

t

G
D

S
H

it
s

L
R

V

Cache Replacement Algorithm

B
y

te
 M

is
s

 R
a

te
 (

fr
a

c
ti

o
n

)

Fig. 6.26. Composite of Average Byte Miss Rates for Origin Server Traces.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 181 -

SPACExAGE always performed better than SPACExAGEtc for miss rate, and the

opposite for byte miss rate.

Finally, the inflation parameter algorithms of LFU-DA, GDS1, GDSPacket, and

GDSHits perform quite well for miss rate with GDSHits being the top algorithm. On

the other hand, the GreedyDual-Size algorithms perform poorly for byte miss rate,

while LFU-DA is the top performing algorithm for byte miss rate. LRV consistently

performed poorly for both miss rates and byte miss rates on all of the origin server

traces.

6.1.2 Network Proxy Cache Server Traces

NLANR Boulder1 Proxy Server Trace

Before discussing the results of the Boulder1 Proxy Server trace, please note

that on the graphs associated with the NLANR Boulder1 Proxy Server Trace the

256 megabyte simulation was not completed due to simulation system memory con-

straints. However, the results surely would scale up to the 256 megabyte system so

all results and conclusions that are gleaned from these graphs apply for larger cache

systems.

From the simple cache replacement policies in Figure 6.27, the SizeL cache re-

placement policy performed best, so its results are forwarded to Figure 6.28.

In Figure 6.28, the SPACExAGE and SPACExAGEtc algorithms performed equal-

ly well and were the best algorithms, so their performance results are forwarded to

Figure 6.29.

From Figure 6.29, one can see that the GDSHits algorithm performs best, es-

pecially with the smaller cache sizes. And from Figures 6.29 and 6.30, there is

a three way tie for second place between the SPACExAGE, SPACExAGEtc, and

SizeLFLRU algorithms. This three way tie suggests that the access count portion of

the SizeLFLRU algorithm does not have much influence on the overall performance

of that algorithm. And this should be expected since the percentage of objects that

are accessed more than once is fairly low as evidenced in Table 5.64 and to some

extent in Table 5.69. (In the latter table, the significant evidence is comparing the

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 182 -

0.75

0.8

0.85

0.9

0.95

1

1 4 16 64 256

Cache Size (Mbytes)

M
is

s
R

at
e

(F
ra

ct
io

n
)

COMP
OPT
RND
FIFO
LRU
SizeL
LFU
PrfctLFU
LFU-DA
LRU-MIN

Fig. 6.27. Miss Rates of Simple Cache Replacement Algorithms on Boulder1 Proxy
Server bo1 day1 Trace.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 183 -

0.75

0.8

0.85

0.9

0.95

1

1 4 16 64 256

Cache Size (Mbytes)

M
is

s
R

at
e

(F
ra

ct
io

n
)

COMP
OPT
RND
LRD
SLRU
PLRU
SPCxAGE
SPCxAGEtc
LFLRU
SizeL

Fig. 6.28. Miss Rates of More Complex Cache Replacement Algorithms on Boulder1
Proxy Server bo1 day1 Trace.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 184 -

First Access column to the Second Access column.)

0.75

0.8

0.85

0.9

0.95

1

1 4 16 64 256

Cache Size (Mbytes)

M
is

s
R

at
e

(F
ra

ct
io

n
)

COMP
OPT
RND
SizeLRD
SizeLFLRU
GDS1
GDSPacket
GDSHits
LRV
SPCxAGE
SPCxAGEtc

Fig. 6.29. Miss Rates of Complex Cache Replacement Algorithms on Boulder1
Proxy Server bo1 day1 Trace.

When using byte miss rate as the measure among the simple cache replacement

algorithms in Figure 6.31, the LFU-DA algorithm performed best, so its results are

forwarded to Figure 6.32.

In Figure 6.32, the LFU-DA algorithm is also the best while the SLRU algo-

rithm is also very competitive. The results of these two algorithms are forwarded to

Figure 6.33.

Now in Figure 6.33, it can be seen that the two forwarded algorithms, LFU-DA

and SLRU, perform the best and second best, respectively. In Figure 6.34, the third

best algorithm for byte miss rate is LFLRU. Surprisingly, LRV is actually somewhat

competitive for this trace and the byte miss rate measure; its parameters must have

been set to work well for this type of trace.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 185 -

0.
89

6

0.
88

8

0.
85

4

0.
89

5

0.
86

9

0.
87

0 0.
88

4

0.
85

0 0.
86

3

0.
87

0

0.
89

7

0.
84

4

0.
84

4

0.
88

8

0.
84

4 0.
85

4

0.
85

4

0.
83

8

0.
92

0

0.780

0.800

0.820

0.840

0.860

0.880

0.900

0.920

0.940

F
IF

O

LR
U

S
iz

eL

LF
U

P
rf

ct
LF

U

LF
U

-D
A

LR
D

S
iz

eL
R

D

LR
U

-M
IN

S
LR

U

P
LR

U

S
P

C
xA

G
E

S
P

C
xA

G
E

tc

LF
LR

U

S
iz

eL
F

LR
U

G
D

S
1

G
D

S
P

ac
ke

t

G
D

S
H

its

LR
V

Cache Replacement Algorithm

M
is

s
R

at
e

(f
ra

ct
io

n
)

Fig. 6.30. Average Miss Rates on Boulder1 Proxy Server bo1 day1 Trace.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 186 -

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1 4 16 64 256

Cache Size (Mbytes)

M
is

s
R

at
e

(F
ra

ct
io

n
)

COMP
OPT
RND
FIFO
LRU
SizeL
LFU
PrfctLFU
LFU-DA
LRU-MIN

Fig. 6.31. Byte Miss Rates of Simple Cache Replacement Algorithms on Boulder1
Proxy Server bo1 day1 Trace.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 187 -

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1 4 16 64 256

Cache Size (Mbytes)

M
is

s
R

at
e

(F
ra

ct
io

n
)

COMP
OPT
RND
LRD
SLRU
PLRU
SPCxAGE
SPCxAGEtc
LFLRU
LFU-DA

Fig. 6.32. Byte Miss Rates of More Complex Cache Replacement Algorithms on
Boulder1 Proxy Server bo1 day1 Trace.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 188 -

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1 4 16 64 256

Cache Size (Mbytes)

B
yt

e
M

is
s

R
at

e
(F

ra
ct

io
n

)

COMP
OPT
RND
SizeLRD
SizeLFLRU
GDS1
GDSPacket
GDSHits
LRV
LFU-DA
SLRU

Fig. 6.33. Byte Miss Rates of Complex Cache Replacement Algorithms on Boulder1
Proxy Server bo1 day1 Trace.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 189 -

0.
85

3

0.
84

0

0.
94

6

0.
85

1

0.
78

6 0.
81

2 0.
83

2

0.
91

8

0.
93

3

0.
81

9

0.
88

6

0.
91

7

0.
91

5

0.
83

9

0.
91

4

0.
94

6

0.
94

6

0.
94

0

0.
88

9

0.750

0.800

0.850

0.900

0.950

1.000

F
IF

O

LR
U

S
iz

eL

LF
U

P
rf

ct
LF

U

LF
U

-D
A

LR
D

S
iz

eL
R

D

LR
U

-M
IN

S
LR

U

P
LR

U

S
P

C
xA

G
E

S
P

C
xA

G
E

tc

LF
LR

U

S
iz

eL
F

LR
U

G
D

S
1

G
D

S
P

ac
ke

t

G
D

S
H

its

LR
V

Cache Replacement Algorithm

B
yt

e
M

is
s

R
at

e
(f

ra
ct

io
n

)

Fig. 6.34. Average Byte Miss Rates on Boulder1 Proxy Server bo1 day1 Trace.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 190 -

NLANR San Jose Proxy Server Trace

For the San Jose Proxy Server trace among the simple cache replacement algo-

rithms, the SizeL algorithm performs best as shown in Figure 6.35. The results from

this algorithm are forwarded to Figure 6.36.

0.75

0.77

0.79

0.81

0.83

0.85

0.87

0.89

0.91

0.93

0.95

1 4 16 64 256

Cache Size (Mbytes)

M
is

s
R

at
e

(F
ra

ct
io

n
)

COMP
OPT
RND
FIFO
LRU
SizeL
LFU
PrfctLFU
LFU-DA
LRU-MIN

Fig. 6.35. Miss Rates of Simple Cache Replacement Algorithms on San Jose Proxy
Server sj novwk5 Trace.

From Figure 6.36, the SPACExAGE and SPACExAGEtc algorithms perform best

so their results are forwarded to Figure 6.37.

According to Figures 6.37 and 6.38, the top three performing algorithms for the

San Jose trace with miss rate as the measure are GDSHits placing first, and SPACEx-

AGE and SizeLFLRU tying for second.

When byte miss rate is the measure, Figure 6.39 shows that LFU-DA is the best

performing algorithm among the simple cache replacement algorithms. The LFU-DA

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 191 -

0.75

0.77

0.79

0.81

0.83

0.85

0.87

0.89

0.91

0.93

0.95

1 4 16 64 256

Cache Size (Mbytes)

M
is

s
R

at
e

(F
ra

ct
io

n
)

COMP
OPT
RND
LRD
SLRU
PLRU
SPCxAGE
SPCxAGEtc
LFLRU
SizeL

Fig. 6.36. Miss Rates of More Complex Cache Replacement Algorithms on San Jose
Proxy Server sj novwk5 Trace.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 192 -

0.75

0.77

0.79

0.81

0.83

0.85

0.87

0.89

0.91

0.93

0.95

1 4 16 64 256

Cache Size (Mbytes)

M
is

s
R

at
e

(F
ra

ct
io

n
)

COMP
OPT
RND
SizeLRD
SizeLFLRU
GDS1
GDSPacket
GDSHits
LRV
SPCxAGE
SPCxAGEtc

Fig. 6.37. Miss Rates of Complex Cache Replacement Algorithms on San Jose
Proxy Server sj novwk5 Trace.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 193 -

0.
86

6

0.
85

9

0.
82

9

0.
86

5

0.
83 0.

83
7 0.

85
4

0.
83 0.

83
8

0.
83

9

0.
86

1

0.
82

5

0.
82

6

0.
85

9

0.
82

5

0.
82

9

0.
82

9

0.
81

8

0.
89

8

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

F
IF

O

LR
U

S
iz

eL

LF
U

P
rf

ct
LF

U

LF
U

-D
A

LR
D

S
iz

eL
R

D

LR
U

-M
IN

S
LR

U

P
LR

U

S
P

C
xA

G
E

S
P

C
xA

G
E

tc

LF
LR

U

S
iz

eL
F

LR
U

G
D

S
1

G
D

S
P

ac
ke

t

G
D

S
H

its

LR
V

Cache Replacement Algorithm

M
is

s
R

at
e

(f
ra

ct
io

n
)

Fig. 6.38. Average Miss Rates on San Jose Proxy Server sj novwk5 Trace.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 194 -

results are then forwarded to Figure 6.40.

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

1 4 16 64 256

Cache Size (Mbytes)

B
yt

e
M

is
s

R
at

e
(F

ra
ct

io
n

)
COMP OPT
RND FIFO
LRU SizeL
LFU PrfctLFU
LFU-DA LRU-MIN

Fig. 6.39. Byte Miss Rates of Simple Cache Replacement Algorithms on San Jose
Proxy Server sj novwk5 Trace.

In Figure 6.40, the top two algorithms are LFU-DA and SLRU whose results are

subsequently forwarded to Figure 6.41.

Now from Figures 6.41 and 6.42, the top three cache replacement algorithms for

the San Jose trace with byte miss rate as the measure are LFU-DA, SLRU, and LRD

placing first, second, and third, respectively. In should be noted that LFLRU is only

0.1% worse in average byte miss rate than LRD.

NLANR Urbana-Champaign Proxy Server Trace

Among the simple cache replacement algorithms in Figure 6.43, the SizeL algo-

rithm clearly performed the best, and its results are forwarded to Figure 6.44.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 195 -

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

1 4 16 64 256

Cache Size (Mbytes)

B
yt

e
M

is
s

R
at

e
(F

ra
ct

io
n

)

COMP OPT
RND LRD
SLRU PLRU
SPCxAGE SPCxAGEtc
LFLRU LFU-DA

Fig. 6.40. Byte Miss Rates of More Complex Cache Replacement Algorithms on San
Jose Proxy Server sj novwk5 Trace.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 196 -

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

1 4 16 64 256

Cache Size (Mbytes)

B
yt

e
M

is
s

R
at

e
(F

ra
ct

io
n

)

COMP OPT
RND SizeLRD
SizeLFLRU GDS1
GDSPacket GDSHits
LRV LFU-DA
SLRU

Fig. 6.41. Byte Miss Rates of Complex Cache Replacement Algorithms on San Jose
Proxy Server sj novwk5 Trace.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 197 -

0.
95

8

0.
95

4

0.
97

7

0.
95

8

0.
94

0.
94

6

0.
95

3

0.
96

8 0.
97

3

0.
94

7

0.
96

7

0.
96

7

0.
96

7

0.
95

4

0.
96

7

0.
97

7

0.
97

7

0.
97

3

0.
96

8

0.92

0.93

0.94

0.95

0.96

0.97

0.98

F
IF

O

LR
U

S
iz

eL

LF
U

P
rf

ct
LF

U

LF
U

-D
A

LR
D

S
iz

eL
R

D

LR
U

-M
IN

S
LR

U

P
LR

U

S
P

C
xA

G
E

S
P

C
xA

G
E

tc

LF
LR

U

S
iz

eL
F

LR
U

G
D

S
1

G
D

S
P

ac
ke

t

G
D

S
H

its

LR
V

Cache Replacement Algorithm

B
yt

e
M

is
s

R
at

e
(f

ra
ct

io
n

)

Fig. 6.42. Average Byte Miss Rates on San Jose Proxy Server sj novwk5 Trace.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 198 -

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

1 4 16 64 256

Cache Size (Mbytes)

M
is

s
R

at
e

(F
ra

ct
io

n
)

COMP
OPT
RND
FIFO
LRU
SizeL
LFU
PrfctLFU
LFU-DA
LRU-MIN

Fig. 6.43. Miss Rates of Simple Cache Replacement Algorithms on Urbana
Champaign Proxy Server uc day1 Trace.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 199 -

In Figure 6.44, the top performing algorithms are SPACExAGE and SPACEx-

AGEtc. Their results are forwarded to Figure 6.45.

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

1 4 16 64 256

Cache Size (Mbytes)

M
is

s
R

at
e

(F
ra

ct
io

n
)

COMP
OPT
RND
LRD
SLRU
PLRU
SPCxAGE
SPCxAGEtc
LFLRU
SizeL

Fig. 6.44. Miss Rates of More Complex Cache Replacement Algorithms on Urbana
Champaign Proxy Server uc day1 Trace.

In Figure 6.45, GDSHits performs best, and it performs especially well for the

smaller cache sizes. It is more difficult to determine the other top performing algo-

rithms from Figure 6.45, but from Figure 6.46, it can be seen that there is a tie for

second place between SPACExAGE and SizeLFLRU.

For the byte miss rate measure in Figure 6.47, the LFU-DA algorithm performs

best, and its results are forwarded to Figure 6.48.

In Figure 6.48, the LFU-DA and SLRU algorithms perform best, and their results

are forwarded to Figure 6.49.

From Figures 6.49 and 6.50, one can see that the LFU-DA algorithm performs

best, and it performs better than the second place algorithm, SLRU, for the smaller

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 200 -

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

1 4 16 64 256

Cache Size (Mbytes)

M
is

s
R

at
e

(F
ra

ct
io

n
)

COMP
OPT
RND
SizeLRD
SizeLFLRU
GDS1
GDSPacket
GDSHits
LRV
SPCxAGE
SPCxAGEtc

Fig. 6.45. Miss Rates of Complex Cache Replacement Algorithms on Urbana
Champaign Proxy Server uc day1 Trace.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 201 -

0.
89

0.
88

4

0.
85

8

0.
88

8

0.
87

1

0.
87

2

0.
88

2

0.
85

8 0.
86

7 0.
87

2

0.
88

8

0.
85

4

0.
85

5

0.
88

4

0.
85

4

0.
85

8

0.
85

8

0.
85

1

0.
91

4

0.84

0.85

0.86

0.87

0.88

0.89

0.9

0.91

0.92

F
IF

O

LR
U

S
iz

eL

LF
U

P
rf

ct
LF

U

LF
U

-D
A

LR
D

S
iz

eL
R

D

LR
U

-M
IN

S
LR

U

P
LR

U

S
P

C
xA

G
E

S
P

C
xA

G
E

tc

LF
LR

U

S
iz

eL
F

LR
U

G
D

S
1

G
D

S
P

ac
ke

t

G
D

S
H

its

LR
V

Cache Replacement Algorithm

M
is

s
R

at
e

(f
ra

ct
io

n
)

Fig. 6.46. Average Miss Rates on Urbana Champaign Proxy Server uc day1 Trace.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 202 -

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1 4 16 64 256

Cache Size (Mbytes)

M
is

s
R

at
e

(F
ra

ct
io

n
)

COMP OPT
RND FIFO
LRU SizeL
LFU PrfctLFU
LFU-DA LRU-MIN

Fig. 6.47. Byte Miss Rates of Simple Cache Replacement Algorithms on Urbana
Champaign Proxy Server uc day1 Trace.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 203 -

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1 4 16 64 256

Cache Size (Mbytes)

M
is

s
R

at
e

(F
ra

ct
io

n
)

COMP OPT
RND LRD
SLRU PLRU
SPCxAGE SPCxAGEtc
LFLRU LFU-DA

Fig. 6.48. Byte Miss Rates of More Complex Cache Replacement Algorithms on
Urbana Champaign Proxy Server uc day1 Trace.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 204 -

cache sizes. LRD places third, while LFLRU is close behind LRD.

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1 4 16 64 256

Cache Size (Mbytes)

B
yt

e
M

is
s

R
at

e
(F

ra
ct

io
n

)
COMP OPT
RND SizeLRD
SizeLFLRU GDS1
GDSPacket GDSHits
LRV LFU-DA
SLRU

Fig. 6.49. Byte Miss Rates of Complex Cache Replacement Algorithms on Urbana
Champaign Proxy Server uc day1 Trace.

Network Proxy Server Traces Summary

For the network domain’s summary, the table of top performing algorithms for

each trace and both measures is presented in Table 6.3. On this table, one can see

that the best algorithms for this domain are consistently GDSHits when optimizing

for miss rate, and LRU-DA when optimizing for byte miss rate. Among the best

algorithms for miss rate, SPACExAGE and SizeLFLRU are consistently the next

best algorithms, while SLRU, LFLRU, and LRD show consistency among the top

contenders for byte miss rate.

For the sake of the comparisons, the average miss rate graphs of Figures 6.30,

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 205 -

0.
91

8

0.
91

2

0.
95

5

0.
91

7

0.
88

3

0.
90

1

0.
90

9

0.
93

8 0.
94

8

0.
90

2

0.
92

9

0.
93

7

0.
93

6

0.
91

1

0.
93

5

0.
95

5

0.
95

5

0.
94

7

0.
93

4

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

F
IF

O

LR
U

S
iz

eL

LF
U

P
rf

ct
LF

U

LF
U

-D
A

LR
D

S
iz

eL
R

D

LR
U

-M
IN

S
LR

U

P
LR

U

S
P

C
xA

G
E

S
P

C
xA

G
E

tc

LF
LR

U

S
iz

eL
F

LR
U

G
D

S
1

G
D

S
P

ac
ke

t

G
D

S
H

its

LR
V

Cache Replacement Algorithm

B
yt

e
M

is
s

R
at

e
(f

ra
ct

io
n

)

Fig. 6.50. Average Byte Miss Rates on Urbana Champaign Proxy Server uc day1
Trace.

Table 6.3
Summary of Top Cache Replacement Algorithms for Network Proxy Server Traces

Trace Boulder1 San Jose Urbana Champaign

Miss GDSHits (1st) GDSHits (1st) GDSHits (1st)

Rate SPACExAGE (2nd-tie) SPACExAGE (2nd-tie) SPACExAGE (2nd-tie)

SPACExAGEtc (2nd-tie) SizeLFLRU (2nd-tie) SizeLFLRU (2nd-tie)

SizeLFLRU (2nd-tie)

Byte LFU-DA (1st) LFU-DA (1st) LFU-DA (1st)

Miss SLRU (2nd) LRD (2nd) SLRU (2nd)

Rate LFLRU (3rd) LFLRU (3rd) LRD (3rd)

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 206 -

6.38, and 6.46 are shrunk and brought together in Figure 6.51. When looking at

these average miss rate graphs, the results of these network proxy cache workload

traces are very similar to each other; they only differ from each other by a relative

shift of miss rate of up to 5%. The cache replacement algorithms that rely heavily on

the access count of the objects like LFU, LFU-DA, and PerfectLFU do not perform

well. Also, LFLRU and LRD, which combine access count with LRU and FIFO,

respectively, do not improve much on the performance of LRU and FIFO. However,

when object size is included in the cache score calculation, performance is improved

significantly. SizeL also performs very well as do all three of the Greedy Dual Size

algorithms which use size as one of their deciding criteria. But when combining object

size, LRU, and access count, the best performance is gleaned as shown in Table 6.3.

GDSHits is consistently the best and SizeLFLRU is consistently tied for second. One

can argue that the access count portion of SizeLFLRU does not significantly factor

into the cache replacement score because it tied with SPACExAGE, but GDSHits,

which uses mostly size and access count along with an aging inflation factor, is the

best performing algorithm. When taking object file types into account as in PLRU,

the miss rate is increased. This finding should be expected when comparing the file

types of first accesses and subsequent access; there is very little difference in these

percentage breakdowns in Tables 5.67 and 5.68, Tables 5.76 and 5.77, and Tables 5.85

and 5.86.

For the average byte miss rates, the average byte miss rate graphs of Figures 6.34,

6.42, and 6.50 are shrunk and brought together in Figure 6.52. As with the miss rate

graphs, the results of these network proxy cache workload traces for the byte miss

rate measure are very similar to each other; they also only differ from each other by a

relative shift which can be up to 15%. The size-based cache replacement algorithms

usually performed poorly. For instance, SizeLRD and SizeLFLRU perform worse than

FIFO and LRU respectively, while LRD and LFLRU do perform slightly better than

FIFO and LRU. Also SizeL, LRU-MIN, SPACExAGE, and SPACExAGEtc perform

rather poorly as do the GreedyDual-Size algorithms which all rely on object sizes for

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 207 -

eviction determination. On the other hand, using access count helps in improving the

performance of the algorithms over LRU. LFU-DA (which was the top performing

algorithm for byte miss rate), SLRU, LRD, and LFLRU all performed as well or

better than LRU on a consistent basis. For byte miss rate, using file type as with

PLRU actually hindered the performance of the LRU algorithm.

6.1.3 Client Proxy Cache Server Traces

Among these client proxy cache server traces, the cache replacement algorithm

performance results will be examined from the largest proxy cache server to the

smallest. This ranking is in terms of a rough estimate of number of clients that the

proxy cache server was serving.

Boeing Proxy Cache Server Trace

Among the simple cache replacement algorithms working on the Boeing proxy

cache server trace, Figure 6.53 shows that the SizeL algorithm performs best, and its

results are forwarded to Figure 6.54.

The SizeL and SPACExAGE results are forwarded from Figure 6.54 to Figure 6.55

for the best two performing algorithms among the more complex algorithms.

In Figures 6.55 and 6.56, the three GreedyDual-Size algorithms perform the best

on the Boeing workload trace with miss rate as the measure. GDSHits performed

best with GDS1 and GDSPacket tied for second.

Looking at the simple cache replacement algorithms using byte miss rate as the

measure in Figure 6.57, LFU-DA performs the best so its results are forwarded to

Figure 6.58.

On Figure 6.58, LFU-DA and SLRU perform best, and their results are forwarded

to Figure 6.59.

From Figures 6.59 and 6.60, the best performing cache replacement algorithms for

the Boeing workload trace when optimizing for byte hit rate are SLRU placing first,

LFU-DA placing second, and LRD placing third. Having just 0.2% higher average

byte miss rate than LRD is LFLRU.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 208 -

0.780

0.800

0.820

0.840

0.860

0.880

0.900

0.920

0.940

Cache Replacement Algorithm

0.84

0.85

0.86

0.87

0.88

0.89

0.9

0.91

0.92

Cache Replacement Algorithm

0
.8

6
6

0
.8

5
9

0
.8

2
9

0
.8

6
5

0
.8

3 0
.8

3
7 0

.8
5

4

0
.8

3 0
.8

3
8

0
.8

3
9

0
.8

6
1

0
.8

2
5

0
.8

2
6

0
.8

5
9

0
.8

2
5

0
.8

2
9

0
.8

2
9

0
.8

1
8

0
.8

9
8

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

F
IF

O

L
R

U

S
iz

e
L

L
F

U

P
rf

c
tL

F
U

L
F

U
-D

A

L
R

D

S
iz

e
L

R
D

L
R

U
-M

IN

S
L

R
U

P
L

R
U

S
P

C
x
A

G
E

S
P

C
x
A

G
E

tc

L
F

L
R

U

S
iz

e
L

F
L

R
U

G
D

S
1

G
D

S
P

a
c
k
e

t

G
D

S
H

it
s

L
R

V

Cache Replacement Algorithm

M
is

s
 R

a
te

 (
fr

a
c

ti
o

n
)

San Jose

Urbana Champaign

Boulder1

Fig. 6.51. Composite of Average Miss Rates for Network Proxy Server Traces.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 209 -

0.750

0.800

0.850

0.900

0.950

1.000

Cache Replacement Algorithm

Urbana Champaign

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

Cache Replacement Algorithm

San Jose

0
.9

5
8

0
.9

5
4

0
.9

7
7

0
.9

5
8

0
.9

4

0
.9

4
6 0

.9
5

3

0
.9

6
8 0
.9

7
3

0
.9

4
7

0
.9

6
7

0
.9

6
7

0
.9

6
7

0
.9

5
4

0
.9

6
7

0
.9

7
7

0
.9

7
7

0
.9

7
3

0
.9

6
8

0.92

0.93

0.94

0.95

0.96

0.97

0.98

F
IF

O

L
R

U

S
iz

e
L

L
F

U

P
rf

c
tL

F
U

L
F

U
-D

A

L
R

D

S
iz

e
L

R
D

L
R

U
-M

IN

S
L

R
U

P
L

R
U

S
P

C
x
A

G
E

S
P

C
x
A

G
E

tc

L
F

L
R

U

S
iz

e
L

F
L

R
U

G
D

S
1

G
D

S
P

a
c
k
e

t

G
D

S
H

it
s

L
R

V

Cache Replacement Algorithm

B
y

te
 M

is
s

 R
a

te
 (

fr
a

c
ti

o
n

)

Boulder1

Fig. 6.52. Composite of Average Byte Miss Rates for Network Proxy Server Traces.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 210 -

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

1 4 16 64 256

Cache Size (Mbytes)

M
is

s
R

at
e

(F
ra

ct
io

n
)

COMP OPT
RND FIFO
LRU SizeL
LFU PrfctLFU
LFU-DA LRU-MIN

Fig. 6.53. Miss Rates of Simple Cache Replacement Algorithms on Boeing Proxy
Cache Server boeing.990301 Trace.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 211 -

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

1 4 16 64 256

Cache Size (Mbytes)

M
is

s
R

at
e

(F
ra

ct
io

n
)

COMP OPT
RND LRD
SLRU PLRU
SPCxAGE SPCxAGEtc
LFLRU SizeL

Fig. 6.54. Miss Rates of More Complex Cache Replacement Algorithms on Boeing
Proxy Cache Server boeing.990301 Trace.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 212 -

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1 4 16 64 256

Cache Size (Mbytes)

M
is

s
R

at
e

(F
ra

ct
io

n
)

COMP OPT
RND SizeLRD
SizeLFLRU GDS1
GDSPacket GDSHits
LRV SizeL
SPCxAGE

Fig. 6.55. Miss Rates of Complex Cache Replacement Algorithms on Boeing Proxy
Cache Server boeing.990301 Trace.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 213 -

0.
76

6

0.
74

7

0.
64

3

0.
76

2

0.
68

0.
70

3 0.
74

1

0.
65

7 0.
68

7

0.
70

3 0.
73

7

0.
64

7

0.
64

9

0.
74

6

0.
64

7

0.
64

3

0.
64

3

0.
63

1

0.
81

1

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

F
IF

O

LR
U

S
iz

eL

LF
U

P
rf

ct
LF

U

LF
U

-D
A

LR
D

S
iz

eL
R

D

LR
U

-M
IN

S
LR

U

P
LR

U

S
P

C
xA

G
E

S
P

C
xA

G
E

tc

LF
LR

U

S
iz

eL
F

LR
U

G
D

S
1

G
D

S
P

ac
ke

t

G
D

S
H

its

LR
V

Cache Replacement Algorithm

M
is

s
R

at
e

(f
ra

ct
io

n
)

Fig. 6.56. Average Miss Rates on Boeing Proxy Cache Server boeing.990301 Trace.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 214 -

0.75

0.8

0.85

0.9

0.95

1

1 4 16 64 256

Cache Size (Mbytes)

M
is

s
R

at
e

(F
ra

ct
io

n
)

COMP OPT
RND FIFO
LRU SizeL
LFU PrfctLFU
LFU-DA LRU-MIN

Fig. 6.57. Byte Miss Rates of Simple Cache Replacement Algorithms on Boeing
Proxy Cache Server boeing.990301 Trace.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 215 -

0.75

0.8

0.85

0.9

0.95

1

1 4 16 64 256

Cache Size (Mbytes)

M
is

s
R

at
e

(F
ra

ct
io

n
)

COMP OPT
RND LRD
SLRU PLRU
SPCxAGE SPCxAGEtc
LFLRU LFU-DA

Fig. 6.58. Byte Miss Rates of More Complex Cache Replacement Algorithms on
Boeing Proxy Cache Server boeing.990301 Trace.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 216 -

0.75

0.8

0.85

0.9

0.95

1

1 4 16 64 256

Cache Size (Mbytes)

B
yt

e
M

is
s

R
at

e
(F

ra
ct

io
n

)

COMP OPT
RND SizeLRD
SizeLFLRU GDS1
GDSPacket GDSHits
LRV LFU-DA
SLRU

Fig. 6.59. Byte Miss Rates of Complex Cache Replacement Algorithms on Boeing
Proxy Cache Server boeing.990301 Trace.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 217 -

0.
95

7

0.
95

4

0.
97

0.
95

7

0.
93

7

0.
94

6 0.
95

2

0.
96

5

0.
96

5

0.
94

5

0.
96

0.
96

4

0.
96

5

0.
95

4

0.
96

4 0.
97

0.
97

0.
96

7

0.
96

4

0.92

0.93

0.94

0.95

0.96

0.97

0.98

F
IF

O

LR
U

S
iz

eL

LF
U

P
rf

ct
LF

U

LF
U

-D
A

LR
D

S
iz

eL
R

D

LR
U

-M
IN

S
LR

U

P
LR

U

S
P

C
xA

G
E

S
P

C
xA

G
E

tc

LF
LR

U

S
iz

eL
F

LR
U

G
D

S
1

G
D

S
P

ac
ke

t

G
D

S
H

its

LR
V

Cache Replacement Algorithm

B
yt

e
M

is
s

R
at

e
(f

ra
ct

io
n

)

Fig. 6.60. Average Byte Miss Rates on Boeing Proxy Cache Server boeing.990301
Trace.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 218 -

Purdue Stack (ECN) Proxy Server Trace

In Figure 6.61, the best performing simple cache replacement algorithm for the

Stack Proxy Server workload trace is LRU-MIN for the miss rate measure. The

LRU-MIN results are then forwarded to Figure 6.62.

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

1 4 16 64 256

Cache Size (Mbytes)

M
is

s
R

at
e

(F
ra

ct
io

n
)

COMP
OPT
RND
FIFO
LRU
SizeL
LFU
PrfctLFU
LFU-DA
LRU-MIN

Fig. 6.61. Miss Rates of Simple Cache Replacement Algorithms on Purdue Stack
Proxy Server stackproxy Trace.

On the more complex miss rate graph of Figure 6.62, the SPACExAGE algorithm

performs best. LRU-DA performs second best for small cache sizes while SPACEx-

AGEtc performs second best for larger cache sizes, and they are tied on the average

miss rate graph in Figure 6.64. Since better performance for smaller caches is more

advantageous, the SPACExAGE and LRU-DA results are forwarded to Figure 6.63.

In Figure 6.63, GDSHits performs best for very the smallest cache size but does

not maintain this superiority for larger cache sizes. GDSHits on the average miss rate

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 219 -

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

1 4 16 64 256

Cache Size (Mbytes)

M
is

s
R

at
e

(F
ra

ct
io

n
)

COMP
OPT
RND
LRD
SLRU
PLRU
SPCxAGE
SPCxAGEtc
LFLRU
LRU-MIN

Fig. 6.62. Miss Rates of More Complex Cache Replacement Algorithms on Purdue
Stack Proxy Server stackproxy Trace.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 220 -

graph still performed well enough for third place, while SPACExAGE and SizeLFLRU

tied for first.

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1 4 16 64 256

Cache Size (Mbytes)

M
is

s
R

at
e

(F
ra

ct
io

n
)

COMP
OPT
RND
SizeLRD
SizeLFLRU
GDS1
GDSPacket
GDSHits
LRV
LRU-MIN
SPCxAGE

Fig. 6.63. Miss Rates of Complex Cache Replacement Algorithms on Purdue Stack
Proxy Server stackproxy Trace.

Among the simple algorithms when optimizing for byte miss rate in Figure 6.65,

LRU performs best, and its results are forwarded to Figure 6.66.

Though it is difficult to see in Figure 6.66, LRD and SPACExAGEtc perform the

best among the more complex cache replacement algorithms which can be seen more

clearly in Figure 6.68. The results of the two algorithms are forwarded to Figure 6.67.

There is more separation among the curves in Figure 6.67, but it is still difficult to

determine the best algorithms. Looking at the average byte miss rates in Figure 6.68,

SPACExAGEtc and LRD tied for first place while SPACExAGE and SizeLFLRU tied

for a close third. Also note that on average, PLRU and LFLRU perform have just

0.2% higher byte miss rate than these.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 221 -

0.
69

7

0.
67

8

0.
63

7

0.
69

7

0.
63

0.
68

4

0.
67

2

0.
62

2

0.
62

6

0.
69

2

0.
67

2

0.
60

8

0.
62

6

0.
67

8

0.
60

8 0.
63

7

0.
63

7

0.
61

5

0.
77

0.5

0.55

0.6

0.65

0.7

0.75

0.8

F
IF

O

LR
U

S
iz

eL

LF
U

P
rf

ct
LF

U

LF
U

-D
A

LR
D

S
iz

eL
R

D

LR
U

-M
IN

S
LR

U

P
LR

U

S
P

C
xA

G
E

S
P

C
xA

G
E

tc

LF
LR

U

S
iz

eL
F

LR
U

G
D

S
1

G
D

S
P

ac
ke

t

G
D

S
H

its

LR
V

Cache Replacement Algorithm

M
is

s
R

at
e

(f
ra

ct
io

n
)

Fig. 6.64. Average Miss Rates on Purdue Stack Proxy Server stackproxy Trace.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 222 -

0.75

0.8

0.85

0.9

0.95

1

1 4 16 64 256

Cache Size (Mbytes)

M
is

s
R

at
e

(F
ra

ct
io

n
)

COMP OPT
RND FIFO
LRU SizeL
LFU PrfctLFU
LFU-DA LRU-MIN

Fig. 6.65. Byte Miss Rates of Simple Cache Replacement Algorithms on Purdue
Stack Proxy Server stackproxy Trace.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 223 -

0.75

0.8

0.85

0.9

0.95

1

1 4 16 64 256

Cache Size (Mbytes)

M
is

s
R

at
e

(F
ra

ct
io

n
)

COMP OPT
RND LRD
SLRU PLRU
SPCxAGE SPCxAGEtc
LFLRU LRU

Fig. 6.66. Byte Miss Rates of More Complex Cache Replacement Algorithms on
Purdue Stack Proxy Server stackproxy Trace.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 224 -

0.75

0.8

0.85

0.9

0.95

1

1 4 16 64 256

Cache Size (Mbytes)

B
yt

e
M

is
s

R
at

e
(F

ra
ct

io
n

)

COMP OPT
RND SizeLRD
SizeLFLRU GDS1
GDSPacket GDSHits
LRV LRD
SPCxAGEtc

Fig. 6.67. Byte Miss Rates of Complex Cache Replacement Algorithms on Purdue
Stack Proxy Server stackproxy Trace.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 225 -

0.
85

3

0.
84

6

0.
89

5

0.
85

3

0.
84

0.
85

8

0.
84

3 0.
85

0.
87

7

0.
85

7

0.
84

6

0.
84

4

0.
84

3

0.
84

6

0.
84

4

0.
89

5

0.
89

5

0.
88

1

0.
88

3

0.81

0.82

0.83

0.84

0.85

0.86

0.87

0.88

0.89

0.9

F
IF

O

LR
U

S
iz

eL

LF
U

P
rf

ct
LF

U

LF
U

-D
A

LR
D

S
iz

eL
R

D

LR
U

-M
IN

S
LR

U

P
LR

U

S
P

C
xA

G
E

S
P

C
xA

G
E

tc

LF
LR

U

S
iz

eL
F

LR
U

G
D

S
1

G
D

S
P

ac
ke

t

G
D

S
H

its

LR
V

Cache Replacement Algorithm

B
yt

e
M

is
s

R
at

e
(f

ra
ct

io
n

)

Fig. 6.68. Average Byte Miss Rates on Purdue Stack Proxy Server stackproxy Trace.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 226 -

Virginia Tech BL Trace

For the Virginia Tech BL workload trace, the SizeL algorithm performs best among

the simple cache replacement algorithms of Figure 6.69. The SizeL results are for-

warded to Figure 6.70.

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1 4 16 64 256

Cache Size (Mbytes)

M
is

s
R

at
e

(F
ra

ct
io

n
)

COMP OPT
RND FIFO
LRU SizeL
LFU PrfctLFU
LFU-DA LRU-MIN

Fig. 6.69. Miss Rates of Simple Cache Replacement Algorithms on Virginia Tech
BL Trace.

On Figure 6.70, the SPACExAGE and SPACExAGEtc algorithms were best, and

their results are forwarded to Figure 6.71.

From Figures 6.71 and 6.72, the GDSHits algorithm performed best with the

Virginia Tech workload trace and the miss rate measure. The SPACExAGE and

SizeLFLRU algorithms tied for second in average miss rate on Figure 6.72. When

examining the graph in Figure 6.71, the two second place algorithms perform equally

throughout the different cache sizes which implies that the access count does not

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 227 -

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1 4 16 64 256

Cache Size (Mbytes)

M
is

s
R

at
e

(F
ra

ct
io

n
)

COMP OPT
RND LRD
SLRU PLRU
SPCxAGE SPCxAGEtc
LFLRU SizeL

Fig. 6.70. Miss Rates of More Complex Cache Replacement Algorithms on Virginia
Tech BL Trace.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 228 -

contribute at all in the SizeLFLRU algorithm for this workload trace. Interest-

ingly, GDSHits performs best for smaller cache sizes (which is most important), but

SPACExAGE and SizeLFLRU perform better than GDSHits for larger cache sizes.

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1 4 16 64 256

Cache Size (Mbytes)

M
is

s
R

at
e

(F
ra

ct
io

n
)

COMP OPT
RND SizeLRD
SizeLFLRU GDS1
GDSPacket GDSHits
LRV SPCxAGE
SPCxAGEtc

Fig. 6.71. Miss Rates of Complex Cache Replacement Algorithms on Virginia Tech
BL Trace.

Among the simple cache replacement algorithms for byte miss rate in Figure 6.73,

the LFU-DA algorithm performs best, and its results forwarded to Figure 6.74.

In Figure 6.74, the LFU-DA and LRD algorithms are the best performers, espe-

cially in the middle cache sizes. Their results are then forwarded to Figure 6.75.

In Figure 6.75, one can see that LFU-DA and LRD perform the best overall.

Figure 6.76 shows that the two algorithms have the same average byte miss rate,

while Figure 6.75 shows that LFU-DA performs best for the smaller and larger cache

sizes while LRD performs best for middle cache sizes. Since their average byte miss

rate are equal, they will be considered tied for first place. LFLRU has the third best

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 229 -

0.
75

4

0.
74

1

0.
68

3

0.
75

3

0.
71

9

0.
72

9

0.
73

6

0.
68

3

0.
69

3

0.
73

1

0.
74

6

0.
67

4

0.
68

1

0.
74

1

0.
67

4

0.
68

3

0.
68

3

0.
66

8

0.
80

4

0.6

0.65

0.7

0.75

0.8

0.85

F
IF

O

LR
U

S
iz

eL

LF
U

P
rf

ct
LF

U

LF
U

-D
A

LR
D

S
iz

eL
R

D

LR
U

-M
IN

S
LR

U

P
LR

U

S
P

C
xA

G
E

S
P

C
xA

G
E

tc

LF
LR

U

S
iz

eL
F

LR
U

G
D

S
1

G
D

S
P

ac
ke

t

G
D

S
H

its

LR
V

Cache Replacement Algorithm

M
is

s
R

at
e

(f
ra

ct
io

n
)

Fig. 6.72. Average Miss Rates on Virginia Tech BL Trace.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 230 -

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1 4 16 64 256

Cache Size (Mbytes)

M
is

s
R

at
e

(F
ra

ct
io

n
)

COMP OPT
RND FIFO
LRU SizeL
LFU PrfctLFU
LFU-DA LRU-MIN

Fig. 6.73. Byte Miss Rates of Simple Cache Replacement Algorithms on Virginia
Tech BL Trace.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 231 -

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1 4 16 64 256

Cache Size (Mbytes)

M
is

s
R

at
e

(F
ra

ct
io

n
)

COMP OPT
RND LRD
SLRU PLRU
SPCxAGE SPCxAGEtc
LFLRU LFU-DA

Fig. 6.74. Byte Miss Rates of More Complex Cache Replacement Algorithms on
Virginia Tech BL Trace.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 232 -

average, while LRU and SLRU are have an average byte miss rate that is only 0.1%

worse than LFLRU.

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1 4 16 64 256

Cache Size (Mbytes)

B
yt

e
M

is
s

R
at

e
(F

ra
ct

io
n

)

COMP OPT
RND SizeLRD
SizeLFLRU GDS1
GDSPacket GDSHits
LRV LFU-DA
LRD

Fig. 6.75. Byte Miss Rates of Complex Cache Replacement Algorithms on Virginia
Tech BL Trace.

Virginia Tech G Trace

In Figure 6.77, the SizeL algorithm performs the best by a sizeable margin. Hence

the SizeL algorithm results are forwarded to Figure 6.78.

The SizeL and SPACExAGE algorithm results from Figure 6.78 are forwarded to

Figure 6.79 because they are the two top performing algorithms on the more com-

plex algorithm miss rate graph. Interestingly, the SPACExAGE and SPACExAGEtc

algorithms have a difference in miss rate of over 1%, so there can be a significant

difference between their performance.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 233 -

0.
80

3

0.
79

6

0.
85

7

0.
80

3

0.
79 0.
79

2

0.
79

2

0.
81

5

0.
84

4

0.
79

6 0.
80

9

0.
81

0.
80

7

0.
79

5 0.
81

0.
85

7

0.
85

7

0.
84

3

0.
83

6

0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

F
IF

O

LR
U

S
iz

eL

LF
U

P
rf

ct
LF

U

LF
U

-D
A

LR
D

S
iz

eL
R

D

LR
U

-M
IN

S
LR

U

P
LR

U

S
P

C
xA

G
E

S
P

C
xA

G
E

tc

LF
LR

U

S
iz

eL
F

LR
U

G
D

S
1

G
D

S
P

ac
ke

t

G
D

S
H

its

LR
V

Cache Replacement Algorithm

B
yt

e
M

is
s

R
at

e
(f

ra
ct

io
n

)

Fig. 6.76. Average Byte Miss Rates on Virginia Tech BL Trace.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 234 -

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

1 4 16 64 256

Cache Size (Mbytes)

M
is

s
R

at
e

(F
ra

ct
io

n
)

COMP OPT
RND FIFO
LRU SizeL
LFU PrfctLFU
LFU-DA LRU-MIN

Fig. 6.77. Miss Rates of Simple Cache Replacement Algorithms on Virginia Tech G
Trace.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 235 -

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

1 4 16 64 256

Cache Size (Mbytes)

M
is

s
R

at
e

(F
ra

ct
io

n
)

COMP OPT
RND LRD
SLRU PLRU
SPCxAGE SPCxAGEtc
LFLRU SizeL

Fig. 6.78. Miss Rates of More Complex Cache Replacement Algorithms on Virginia
Tech G Trace.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 236 -

Figures 6.79 and 6.80 show the GDSHits algorithm performs the best of all of

the algorithms. There is a three way tie for second and they all have the exact

same miss rates for all five cache sizes. These three algorithms are SizeL, GDS1, and

GDSPacket. On all three of these comparison graphs, Figures 6.77, 6.78, and 6.79,

it is interesting to note that due to the small size of the total workload trace (just

under 400 megabytes according to Table 5.27), almost all of the algorithms perform

the best possible for the 256 megabyte cache size. But it is more interesting to note

that some of the cache replacement algorithms manage the cache so well that they

are able to achieve the same miss rate for only a 64 megabyte cache size.

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

1 4 16 64 256

Cache Size (Mbytes)

M
is

s
R

at
e

(F
ra

ct
io

n
)

COMP OPT
RND SizeLRD
SizeLFLRU GDS1
GDSPacket GDSHits
LRV SizeL
SPCxAGE

Fig. 6.79. Miss Rates of Complex Cache Replacement Algorithms on Virginia Tech
G Trace.

For the byte hit rate measure among the simple cache replacement algorithms of

Figure 6.81, the LFU-DA algorithm performs best (after the PerfectLFU algorithm).

So the LFU-DA results are forwarded to Figure 6.82.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 237 -

0.
74

4

0.
73

2

0.
66

7

0.
74

3

0.
69

3

0.
70

6 0.
72

6

0.
67

6

0.
68

5 0.
70

6 0.
72

6

0.
66

9

0.
68

2

0.
73

1

0.
66

9

0.
66

7

0.
66

7

0.
65

8

0.
78

6

0.55

0.6

0.65

0.7

0.75

0.8

F
IF

O

LR
U

S
iz

eL

LF
U

P
rf

ct
LF

U

LF
U

-D
A

LR
D

S
iz

eL
R

D

LR
U

-M
IN

S
LR

U

P
LR

U

S
P

C
xA

G
E

S
P

C
xA

G
E

tc

LF
LR

U

S
iz

eL
F

LR
U

G
D

S
1

G
D

S
P

ac
ke

t

G
D

S
H

its

LR
V

Cache Replacement Algorithm

M
is

s
R

at
e

(f
ra

ct
io

n
)

Fig. 6.80. Average Miss Rates on Virginia Tech G Trace.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 238 -

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1 4 16 64 256

Cache Size (Mbytes)

M
is

s
R

at
e

(F
ra

ct
io

n
)

COMP OPT
RND FIFO
LRU SizeL
LFU PrfctLFU
LFU-DA LRU-MIN

Fig. 6.81. Byte Miss Rates of Simple Cache Replacement Algorithms on Virginia
Tech G Trace.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 239 -

Figure 6.82 shows that LFU-DA performs best for smaller cache sizes while SPACE-

xAGE performs best for larger cache sizes. Those two algorithm results are forwarded

to Figure 6.83.

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

1 4 16 64 256

Cache Size (Mbytes)

M
is

s
R

at
e

(F
ra

ct
io

n
)

COMP OPT
RND LRD
SLRU PLRU
SPCxAGE SPCxAGEtc
LFLRU LFU-DA

Fig. 6.82. Byte Miss Rates of More Complex Cache Replacement Algorithms on
Virginia Tech G Trace.

For the Virginia Tech G workload trace for the byte miss rate measure, the top

performing algorithm is LFU-DA as shown in Figure 6.83. It is especially good at

smaller cache sizes, but it does have an abnormally high byte miss rate at the 64

megabyte cache size. The SizeLFLRU algorithm has an average byte miss rate that

is just 0.1% worse than LFU-DA to take second place, and SPACExAGE has an

average byte miss rate that is just 0.1% worse than SizeLFLRU to take third place.

The SizeLFLRU and SPACExAGE algorithm results are more consistent over all of

the cache sizes than LFU-DA, but LFU-DA still has a lower average byte miss rate. It

is significant to note that the most differentiation between the performances of these

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 240 -

algorithms is in the smaller cache sizes.

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1 4 16 64 256

Cache Size (Mbytes)

B
yt

e
M

is
s

R
at

e
(F

ra
ct

io
n

)
COMP OPT
RND SizeLRD
SizeLFLRU GDS1
GDSPacket GDSHits
LRV LFU-DA
SPCxAGE

Fig. 6.83. Byte Miss Rates of Complex Cache Replacement Algorithms on Virginia
Tech G Trace.

Client Proxy Server Traces Summary

For this domain’s summary, the table of top performing algorithms for each trace

and both measures is presented in Table 6.4. In this table, one can see that the best

algorithms for this domain are GDSHits in most cases when optimizing for miss rate,

and LRU-DA when optimizing for byte miss rate. Among the best algorithms for

miss rate, SPACExAGE and SizeLFLRU are also fairly consistently among the top

algorithms, while LRD and SLRU show some consistency among the top contenders

for byte miss rate. These results are similar, though not as consistent, to the findings

of the origin server workload traces and the network proxy server workload traces.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 241 -

0.
88

8

0.
88

4

0.
89

7

0.
88

7

0.
87

5 0.
87

8 0.
88

3

0.
88

2

0.
89

2

0.
88

2

0.
88

2

0.
88 0.

88
2

0.
88

4

0.
87

9

0.
89

7

0.
89

7

0.
89

2

0.
90

1

0.86

0.865

0.87

0.875

0.88

0.885

0.89

0.895

0.9

0.905

F
IF

O

LR
U

S
iz

eL

LF
U

P
rf

ct
LF

U

LF
U

-D
A

LR
D

S
iz

eL
R

D

LR
U

-M
IN

S
LR

U

P
LR

U

S
P

C
xA

G
E

S
P

C
xA

G
E

tc

LF
LR

U

S
iz

eL
F

LR
U

G
D

S
1

G
D

S
P

ac
ke

t

G
D

S
H

its

LR
V

Cache Replacement Algorithm

B
yt

e
M

is
s

R
at

e
(f

ra
ct

io
n

)

Fig. 6.84. Average Byte Miss Rates on Virginia Tech G Trace.

Table 6.4
Summary of Top Cache Replacement Algorithms for Client Proxy Server Traces

Trace boeing stack VaTech BL VaTech G
Miss GDSHits (1st) SizeLFLRU (1st-tie) GDSHits (1st) GDSHits (1st)

Rate GDS1 (2nd) SPACExAGE (1st-tie) SPACExAGE (2nd-tie) SizeL (2nd-tie)

GDSPacket (3rd) GDSHits (3rd) SizeLFLRU (2nd-tie) GDS1 (2nd-tie)

GDSPacket (2nd-tie)

Byte SLRU (1st) SPACExAGEtc (1st-tie) LFU-DA (1st-tie) LFU-DA (1st)

Miss LFU-DA (2nd) LRD (1st-tie) LRD (1st-tie) SizeLFLRU (2nd)

Rate LRD (3rd) SizeLFLRU (3rd-tie) LFLRU (3rd) SPACExAGE (3rd)

SPACExAGE (3rd-tie)

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 242 -

For these comparisons, the average miss rate graphs of Figures 6.56, 6.64, 6.72,

and 6.80 are shrunk and brought together in Figure 6.85. Comparing all of the

average miss rate graphs shows that there are definitely algorithms that consistently

perform relatively poorly in terms of miss rates. These are FIFO, LRU, LFU, LFU-

DA, LRD, SLRU, PLRU, LFLRU, and LRV. FIFO, LRU, and LFU probably do

not have adequate information about objects to make good replacement decisions.

SLRU and PLRU only perform marginally better than LRU and probably suffer

from the same lack of information; also in the case of PLRU, file type does not

help make many decisions. Since LFU and LFU-DA are on this list, it indicates that

access count isn’t that helpful with making replacement decisions for the client traces.

This indication is reinforced by the fact that LRD and LFLRU are also on the list;

these two algorithms just combine access count with FIFO and LRU, respectively,

and LRD and LFLRU don’t perform much better than FIFO and LRU. Conversely,

the algorithms that take object size into account consistently perform well for the

miss rate measure. This trend starts with SizeL and includes SizeLRD, SizeLFLRU,

SPACExAGE, SPACExAGEtc, GDS1, GDSPacket, and GDSHits.

Switching to the average byte miss rate graphs of Figures 6.60, 6.68, 6.76, and 6.84,

they also show several algorithms that consistently perform poorly. These graphs of

Figures 6.60, 6.68, 6.76, and 6.84 are shrunk and brought together in Figure 6.86.

SizeL, LRU-MIN, GDS1, GDSPacket, GDSHits, and LRV are on this poorly per-

forming list. What they all have in common is a reliance on the object size statistic.

However, those algorithms that combine access count, a time measure, and size do not

perform poorly. For instance, LFLRU performs better than LRU, and SizeLFLRU

improved upon the LFLRU performance. But while LRD improves on the FIFO per-

formance, SizeLRD generally performs worse than LRD (except on the Virginia Tech

G trace). SLRU and PLRU are not consistent in improving the byte miss rate of

LRU; for the Boeing workload trace, SLRU is the top algorithm while for the Stack

workload trace, it does not perform that well. PLRU performs poorly for the Boe-

ing workload trace while it performs respectfully for the Stack and Virginia Tech G

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 243 -

workload traces. For each of the workload traces, there is not a sizeable performance

difference between SPACExAGE and SPACExAGEtc; they are all within a few tenths

of a percent of byte miss rates. So for the client proxy servers the way time is stored

does not matter that much. Finally, LRV is consistently a poor performer for both

miss rate and byte miss rate.

6.1.4 Video Server Traces

OnCommand On-Demand Movie Server Trace

With the OnCommand system, the best performing simple cache replacement

algorithm was LFU as can be seen to some extent in Figure 6.87.

In Figure 6.88, one can see (though it is rather difficult) that LFU and LFLRU

perform the best.

Then in Figure 6.89, LFU, LFLRU, SizeLFLRU, and GDSHits all perform fairly

similarly with LFU, LFU-DA, and GDSHits first, second, and third, respectively,

according to Figure 6.90.

Figures 6.87, 6.88, 6.89, and 6.90 show the three comparative byte miss rate line

graphs and the average byte miss rate graph for the OnCommand trace. Since the

movie sizes were all assumed to be the same (7200 seconds), there is no difference

between these graph results and those for the miss rates above. Therefore, there is

no reason to go through the cascading process for these results; the graphs, however,

are included for completeness.

DVJ2 Educational Multimedia Video Server Trace

On the DVJ2 system, students watch videos of lectures, recitations, and demon-

strations. For the simple cache replacement algorithms, Figure 6.95 shows that LFU

and LRU perform the best with LFU being slightly better. The LFU results are then

forwarded to Figure 6.96.

In Figure 6.96 for the more complex cache replacement algorithms, LFLRU and

and LFU perform the best on average so their results are forwarded to Figure 6.97.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 244 -

Virginia Tech G

0.55

0.6

0.65

0.7

0.75

0.8

Cache Replacement Algorithm

Boeing.990301

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

Cache Replacement Algorithm

StackProxy

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Cache Replacement Algorithm

Virginia Tech BL

0.6

0.65

0.7

0.75

0.8

0.85

Fig. 6.85. Composite of Average Miss Rates for Client Proxy Server Traces.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 245 -

Boeing.990301

0.92

0.93

0.94

0.95

0.96

0.97

0.98

Cache Replacement Algorithm

StackProxy

0.81

0.82

0.83

0.84

0.85

0.86

0.87

0.88

0.89

0.9

Cache Replacement Algorithm

Virginia Tech BL

0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

Cache Replacement Algorithm

Virginia Tech G

0.86

0.865

0.87

0.875

0.88

0.885

0.89

0.895

0.9

0.905

Cache Replacement Algorithm

Fig. 6.86. Composite of Average Byte Miss Rates for Client Proxy Server Traces.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 246 -

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

24 48 72 96 120

Cache Size (Seconds of Video Storage x 1000)

M
is

s
R

at
e

(F
ra

ct
io

n
)

COMP OPT
RND FIFO
LRU SizeL
LFU PrfctLFU
LFU-DA LRU-MIN

Fig. 6.87. Miss Rates of Simple Cache Replacement Algorithms on OnCommand
On-Demand Movie Server daysum1 Trace.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 247 -

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

24 48 72 96 120

Cache Size (Seconds of Video Storage x 1000)

M
is

s
R

at
e

(F
ra

ct
io

n
)

COMP OPT
RND LRD
SLRU PLRU
SPCxAGE SPCxAGEtc
LFLRU LFU

Fig. 6.88. Miss Rates of More Complex Cache Replacement Algorithms on
OnCommand On-Demand Movie Server daysum1 Trace.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 248 -

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

24 48 72 96 120

Cache Size (Seconds of Video Storage x 1000)

M
is

s
R

at
e

(F
ra

ct
io

n
)

COMP OPT
RND SizeLRD
SizeLFLRU GDS1
GDSPacket GDSHits
LRV LFU
LFLRU

Fig. 6.89. Miss Rates of Complex Cache Replacement Algorithms on OnCommand
On-Demand Movie Server daysum1 Trace.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 249 -

0.
4

0.
38

5

0.
4

0.
37

3

0.
37

1

0.
37

7 0.
38

1

0.
38

2

0.
4

0.
38

1 0.
38

5

0.
38

5

0.
38

5

0.
37

8

0.
37

8

0.
4

0.
4

0.
37

7

0.
39

9

0.355

0.36

0.365

0.37

0.375

0.38

0.385

0.39

0.395

0.4

0.405

F
IF

O

LR
U

S
iz

eL

LF
U

P
rf

ct
LF

U

LF
U

-D
A

LR
D

S
iz

eL
R

D

LR
U

-M
IN

S
LR

U

P
LR

U

S
P

C
xA

G
E

S
P

C
xA

G
E

tc

LF
LR

U

S
iz

eL
F

LR
U

G
D

S
1

G
D

S
P

ac
ke

t

G
D

S
H

its

LR
V

Cache Replacement Algorithm

M
is

s
R

at
e

(f
ra

ct
io

n
)

Fig. 6.90. Average Miss Rates on OnCommand On-Demand Movie Server daysum1
Trace.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 250 -

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

24 48 72 96 120

Cache Size (Seconds of Video Storage x 1000)

M
is

s
R

at
e

(F
ra

ct
io

n
)

COMP OPT
RND FIFO
LRU SizeL
LFU PrfctLFU
LFU-DA LRU-MIN

Fig. 6.91. Byte Miss Rates of Simple Cache Replacement Algorithms on
OnCommand On-Demand Movie Server daysum1 Trace.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 251 -

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

24 48 72 96 120

Cache Size (Seconds of Video Storage x 1000)

M
is

s
R

at
e

(F
ra

ct
io

n
)

COMP OPT
RND LRD
SLRU PLRU
SPCxAGE SPCxAGEtc
LFLRU LFU
LFU-DA

Fig. 6.92. Byte Miss Rates of More Complex Cache Replacement Algorithms on
OnCommand On-Demand Movie Server daysum1 Trace.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 252 -

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

24 48 72 96 120

Cache Size (Seconds of Video Storage x 1000)

B
yt

e
M

is
s

R
at

e
(F

ra
ct

io
n

)

COMP OPT
RND SizeLRD
SizeLFLRU GDS1
GDSPacket GDSHits
LRV LFU
LFU-DA LFLRU

Fig. 6.93. Byte Miss Rates of Complex Cache Replacement Algorithms on
OnCommand On-Demand Movie Server daysum1 Trace.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 253 -

0.
4

0.
38

5

0.
4

0.
37

3

0.
37

1

0.
37

7 0.
38

1

0.
38

2

0.
4

0.
38

1 0.
38

5

0.
38

5

0.
38

5

0.
37

8

0.
37

8

0.
4

0.
4

0.
37

7

0.
39

9

0.355

0.36

0.365

0.37

0.375

0.38

0.385

0.39

0.395

0.4

0.405

F
IF

O

LR
U

S
iz

eL

LF
U

P
rf

ct
LF

U

LF
U

-D
A

LR
D

S
iz

eL
R

D

LR
U

-M
IN

S
LR

U

P
LR

U

S
P

C
xA

G
E

S
P

C
xA

G
E

tc

LF
LR

U

S
iz

eL
F

LR
U

G
D

S
1

G
D

S
P

ac
ke

t

G
D

S
H

its

LR
V

Cache Replacement Algorithm

B
yt

e
M

is
s

R
at

e
(f

ra
ct

io
n

)

Fig. 6.94. Average Byte Miss Rates on OnCommand On-Demand Movie Server
daysum1 Trace.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 254 -

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

9.26 13.90 18.53 23.17 27.80

Cache Size (Gbytes)

M
is

s
R

at
e

(F
ra

ct
io

n
)

COMP OPT
RND FIFO
LRU SizeL
LFU PrfctLFU
LFU-DA LRU-MIN

Fig. 6.95. Miss Rates of Simple Cache Replacement Algorithms on DVJ2
Educational Multimedia Video Server dvj2 99f Trace.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 255 -

0

0.05

0.1

0.15

0.2

0.25

0.3

9.26 13.90 18.53 23.17 27.80

Cache Size (Gbytes)

M
is

s
R

at
e

(F
ra

ct
io

n
)

COMP OPT
RND LRD
SLRU PLRU
SPCxAGE SPCxAGEtc
LFLRU LFU

Fig. 6.96. Miss Rates of More Complex Cache Replacement Algorithms on DVJ2
Educational Multimedia Video Server dvj2 99f Trace.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 256 -

SizeLFLRU, LFLRU, and SPACExAGE placed first, second, and third, respec-

tively, for the DVJ2 system with miss rate as the measure as can be seen in Figure 6.97.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

9.26 13.90 18.53 23.17 27.80

Cache Size (Gbytes)

M
is

s
R

at
e

(F
ra

ct
io

n
)

COMP OPT
RND SizeLRD
SizeLFLRU GDS1
GDSPacket GDSHits
LRV LFU
LFLRU

Fig. 6.97. Miss Rates of Complex Cache Replacement Algorithms on DVJ2
Educational Multimedia Video Server dvj2 99f Trace.

Unlike the OnCommand video objects, the DVJ2 video objects have files of dif-

ferent sizes. There is much less variation among the sizes of the files, though, than

among the Web workload traces; generally, there is only about one order of magnitude

of difference between the largest and smallest video object. Nevertheless, there is still

some difference between the miss rate results and the byte miss rate results. Among

the simple cache replacement algorithms in Figure 6.99, LFU is the best performing

algorithm edging out LRU. The LFU results are then forwarded to Figure 6.100.

In Figure 6.100 for the more complex cache replacement algorithms, LFLRU and

and LFU perform the best so their results are forwarded to Figure 6.101.

In Figures 6.101 and 6.102, LFLRU performs best, and its performance is virtually

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 257 -

0.
12

7

0.
10

4

0.
24

0.
10

3

0.
24

2

0.
20

2

0.
10

7

0.
10

4

0.
15

1

0.
18

5

0.
10

4

0.
10

2 0.
12

1

0.
09

6

0.
09

5

0.
24

0.
24

0.
2 0.

21
7

0

0.05

0.1

0.15

0.2

0.25

0.3

F
IF

O

LR
U

S
iz

eL

LF
U

P
rf

ct
LF

U

LF
U

-D
A

LR
D

S
iz

eL
R

D

LR
U

-M
IN

S
LR

U

P
LR

U

S
P

C
xA

G
E

S
P

C
xA

G
E

tc

LF
LR

U

S
iz

eL
F

LR
U

G
D

S
1

G
D

S
P

ac
ke

t

G
D

S
H

its

LR
V

Cache Replacement Algorithm

M
is

s
R

at
e

(f
ra

ct
io

n
)

Fig. 6.98. Average Miss Rates on DVJ2 Educational Multimedia Video Server
dvj2 99f Trace.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 258 -

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

9.26 13.90 18.53 23.17 27.80

Cache Size (Gbytes)

M
is

s
R

at
e

(F
ra

ct
io

n
)

COMP OPT
RND FIFO
LRU SizeL
LFU PrfctLFU
LFU-DA LRU-MIN

Fig. 6.99. Byte Miss Rates of Simple Cache Replacement Algorithms on DVJ2
Educational Multimedia Video Server dvj2 99f Trace.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 259 -

0

0.05

0.1

0.15

0.2

0.25

0.3

9.26 13.90 18.53 23.17 27.80

Cache Size (Gbytes)

M
is

s
R

at
e

(F
ra

ct
io

n
)

COMP OPT

RND LRD

SLRU PLRU

SPCxAGE SPCxAGEtc

LFLRU LFU

Fig. 6.100. Byte Miss Rates of More Complex Cache Replacement Algorithms on
DVJ2 Educational Multimedia Video Server dvj2 99f Trace.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 260 -

indistinguishable from SizeLFLRU which performs second best. Third place goes to

the simple LFU algorithm.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

9.26 13.90 18.53 23.17 27.90

Cache Size (Gbytes)

B
yt

e
M

is
s

R
at

e
(F

ra
ct

io
n

)

COMP OPT
RND SizeLRD
SizeLFLRU GDS1
GDSPacket GDSHits
LRV LFU
LFLRU

Fig. 6.101. Byte Miss Rates of Complex Cache Replacement Algorithms on DVJ2
Educational Multimedia Video Server dvj2 99f Trace.

Video Proxy Server Traces Summary

For this domain’s summary, the table of top performing algorithms for each trace

and both measures is presented in Table 6.5. Though both systems deliver digital

video objects, they are used in very different ways and have different results with

respect to cache replacement algorithms. Therefore, summaries will be drawn for

each system individually.

Table 6.5 shows that LFU, LFU-DA, and GDSHits performed best for the OnCom-

mand system for both miss rate and byte miss rate results. Looking at the average

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 261 -

0.
12

8

0.
10

5

0.
26

6

0.
10

3

0.
23

7

0.
20

2

0.
10

7

0.
10

7

0.
16

4 0.
18

7

0.
10

5

0.
10

5

0.
12

3

0.
09

6

0.
09

7

0.
26

6

0.
26

6

0.
20

6

0.
21

2

0

0.05

0.1

0.15

0.2

0.25

0.3

F
IF

O

LR
U

S
iz

eL

LF
U

P
rf

ct
LF

U

LF
U

-D
A

LR
D

S
iz

eL
R

D

LR
U

-M
IN

S
LR

U

P
LR

U

S
P

C
xA

G
E

S
P

C
xA

G
E

tc

LF
LR

U

S
iz

eL
F

LR
U

G
D

S
1

G
D

S
P

ac
ke

t

G
D

S
H

its

LR
V

Cache Replacement Algorithm

B
yt

e
M

is
s

R
at

e
(f

ra
ct

io
n

)

Fig. 6.102. Average Byte Miss Rates on DVJ2 Educational Multimedia Video
Server dvj2 99f Trace.

Table 6.5
Summary of Top Cache Replacement Algorithms for Video Proxy Server Traces

Trace OnCommand DVJ2

Miss LFU (1st) SizeLFLRU (1st)

Rate LFU-DA (2nd-tie) LFLRU (2nd)

GDSHits (2nd-tie) SPACExAGE (3rd)

Byte LFU (1st) LFLRU (1st)

Miss LFU-DA (2nd-tie) SizeLFLRU (2nd)

Rate GDSHits (2nd-tie) LFU (3rd)

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 262 -

miss rate graph in Figure 6.90, LFU, LFU-DA, LFLRU, SizeLFLRU, and GDSHits all

perform within 0.5% of each other as the top algorithms for the OnCommand work-

load trace. All of these have access count as a component in the computation of the

cache replacement algorithm. It should be noted that these access count algorithms

are better than LRU by as much as 1.2%. This finding strongly suggests that the

access count statistic would be very important in the cache replacement algorithm of

an OnCommand proxy caching server. In contrast with the access count advantage,

the algorithms that rely more heavily on the size of the movies like SizeL, LRU-MIN,

GDS1, and GDSPacket do not perform as well. They have up to 2.5% higher miss

rate on average than the other algorithms. This can be attributed to the fact that

each of the videos is assumed to be of the same size so the size can provide absolutely

no input as to whether it will be accessed again. This is reinforced by SPACExAGE

and SPACExAGEtc which perform exactly the same as LRU. Since there is only one

file type, PLRU is of no advantage over LRU. Finally, SLRU only performs marginally

better than LRU. SLRU counts on a significant percentage of objects being accessed

only once which is not the case according to Table 5.105.

Table 6.5 shows that SizeLFLRU, LFLRU, and SPACExAGE perform the best

for the DVJ2 system with miss rate as the measure while LFLRU, SizeLFLRU, and

LFU perform best when the measure is byte miss rate. As mentioned above, the

sizes of the video objects are within one order of magnitude of each other so the

miss rate results and byte miss rate results are very similar. When looking at the

average miss rate graph in Figure 6.98 and the average byte miss rate graph in

Figure 6.102, several other algorithms also perform well such as LFU, LRU, LRD,

and SizeLRD. Each of these algorithms use time differences and/or access counts as

cache replacement determination statistics. So one of these other algorithms could

be used without incurring horribly worse miss rates. (PLRU could be considered

being part of this group but since there is only one file type, PLRU defaults to

performing equivalently to LRU and is therefore not given the same attention as the

above algorithms.) However, the same figure shows that choosing one of the inflation

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 263 -

parameter algorithms (LFU-DA, GDS1, GDSPacket, and GDSHits), SLRU, or LRV

could produce many more cache misses that could be avoided by using a more efficient

algorithm. Since the students access the videos in a fairly regular, linear pattern as

the semester progresses [RM97], perhaps the inflation parameter algorithms do not

perform as well because the inflation parameter is not able to decay the objects’

cache replacement scores fast enough to evict the objects soon enough. SLRU may

not perform well because the objects are accessed so many times; it is not efficient

to hold the objects in cache on a probationary basis. SizeL does not perform so well

because the sizes are all similar and are not a good basis for evicting videos. Finally,

PerfectLFU performs poorly because the videos are only popular for a certain period

in the semester and should be evicted soon thereafter. PerfectLFU holds on to some

objects far too long after they have been popular in the semester.

6.1.5 Stochastically Generated Video Server Traces

Truncated Discrete Exponential Distribution Model Traces

Using the Truncated Discrete Exponential Distribution Model trace set among

the simple cache replacement algorithms, the LFU algorithm performs best as shown

in Figure 6.103. The results from this algorithm are forwarded to Figure 6.104.

Among the more complex cache replacement algorithms in Figure 6.104, LRD and

LFLRU perform the best, and their results are forwarded to Figure 6.105.

From Figures 6.105 and 6.106, the top performing algorithms for the Truncated

Discrete Exponential Distribution Model trace set are SizeLFLRU (placing first),

LFLRU (placing second) and LRD (placing third).

Examining the byte miss rate results, Figure 6.107 shows that LFU performs best

on average among the simple cache replacement algorithms, and the LFU results are

forwarded to Figure 6.108.

LFLRU and LRD are the top performing algorithms in Figure 6.108, and their

results are forwarded to Figure 6.109.

Similar to the miss rate results for the Truncated Discrete Exponential Distribu-

tion Model trace set, the top performing algorithm was LFLRU, with SizeLFLRU

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 264 -

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 4 16 64 256

Cache Size (Mbytes)

M
is

s
R

at
e

(F
ra

ct
io

n
)

COMP
OPT
RND
FIFO
LRU
SizeL
LFU
PrfctLFU
LFU-DA
LRU-MIN

Fig. 6.103. Miss Rates of Simple Cache Replacement Algorithms on Truncated
Discrete Exponential Distribution Model Traces.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 265 -

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 4 16 64 256

Cache Size (Mbytes)

M
is

s
R

at
e

(F
ra

ct
io

n
)

COMP
OPT
RND
LRD
SLRU
PLRU
SPCxAGE
SPCxAGEtc
LFLRU
LFU

Fig. 6.104. Miss Rates of More Complex Cache Replacement Algorithms on
Truncated Discrete Exponential Distribution Model Traces.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 266 -

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 4 16 64 256

Cache Size (Mbytes)

M
is

s
R

at
e

(F
ra

ct
io

n
)

COMP
OPT
RND
SizeLRD
SizeLFLRU
GDS1
GDSPacket
GDSHits
LRV
LRD
LFLRU

Fig. 6.105. Miss Rates of Complex Cache Replacement Algorithms on Truncated
Discrete Exponential Distribution Model Traces.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 267 -

0.
29

5

0.
26

2

0.
50

5

0.
25

3

0.
72

8

0.
74

3

0.
24

2

0.
25

6 0.
31

2

0.
57

8

0.
26

2

0.
25

9

0.
25

9

0.
23

1

0.
22

8

0.
50

5

0.
50

5

0.
74

2

0.
52

3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

F
IF

O

LR
U

S
iz

eL

LF
U

P
rf

ct
LF

U

LF
U

-D
A

LR
D

S
iz

eL
R

D

LR
U

-M
IN

S
LR

U

P
LR

U

S
P

C
xA

G
E

S
P

C
xA

G
E

tc

LF
LR

U

S
iz

eL
F

LR
U

G
D

S
1

G
D

S
P

ac
ke

t

G
D

S
H

its

LR
V

Cache Replacement Algorithm

M
is

s
R

at
e

(f
ra

ct
io

n
)

Fig. 6.106. Average Miss Rates on Truncated Discrete Exponential Distribution
Model Traces.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 268 -

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 4 16 64 256

Cache Size (Mbytes)

M
is

s
R

at
e

(F
ra

ct
io

n
)

COMP
OPT
RND
FIFO
LRU
SizeL
LFU
PrfctLFU
LFU-DA
LRU-MIN

Fig. 6.107. Byte Miss Rates of Simple Cache Replacement Algorithms on Truncated
Discrete Exponential Distribution Model Traces.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 269 -

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 4 16 64 256

Cache Size (Mbytes)

M
is

s
R

at
e

(F
ra

ct
io

n
)

COMP
OPT
RND
LRD
SLRU
PLRU
SPCxAGE
SPCxAGEtc
LFLRU
LFU

Fig. 6.108. Byte Miss Rates of More Complex Cache Replacement Algorithms on
Truncated Discrete Exponential Distribution Model Traces.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 270 -

placing second and LRD placing third. These results can be see in Figures 6.109

and 6.110.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 4 16 64 256

Cache Size (Mbytes)

B
yt

e
M

is
s

R
at

e
(F

ra
ct

io
n

)

COMP
OPT
RND
SizeLRD
SizeLFLRU
GDS1
GDSPacket
GDSHits
LRV
LRD
LFLRU

Fig. 6.109. Byte Miss Rates of Complex Cache Replacement Algorithms on
Truncated Discrete Exponential Distribution Model Traces.

Binomial Distribution Model Traces

For the simple cache replacement algorithms on the Binomial Distribution Model

trace set in Figure 6.111, the LRU algorithm performs best, and its results are for-

warded to Figure 6.112.

In Figure 6.112, the top performing algorithms are SPACExAGE and LFLRU so

their results are forwarded to Figure 6.113.

It is difficult to determine the top performing algorithms for miss rate from Fig-

ure 6.113 alone, but Figure 6.114 helps clarify that SizeLFLRU performs best followed

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 271 -

0.
29

6

0.
26

4

0.
54

7

0.
25

9

0.
73

1

0.
74

7

0.
24

3

0.
26

1 0.
33

1

0.
58

2

0.
26

4

0.
26

5

0.
26

5

0.
23

3

0.
23

4

0.
54

7

0.
54

7

0.
74

7

0.
54

2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

F
IF

O

LR
U

S
iz

eL

LF
U

P
rf

ct
LF

U

LF
U

-D
A

LR
D

S
iz

eL
R

D

LR
U

-M
IN

S
LR

U

P
LR

U

S
P

C
xA

G
E

S
P

C
xA

G
E

tc

LF
LR

U

S
iz

eL
F

LR
U

G
D

S
1

G
D

S
P

ac
ke

t

G
D

S
H

its

LR
V

Cache Replacement Algorithm

B
yt

e
M

is
s

R
at

e
(f

ra
ct

io
n

)

Fig. 6.110. Average Byte Miss Rates on Truncated Discrete Exponential
Distribution Model Traces.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 272 -

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 4 16 64 256

Cache Size (Mbytes)

M
is

s
R

at
e

(F
ra

ct
io

n
)

COMP
OPT
RND
FIFO
LRU
SizeL
LFU
PrfctLFU
LFU-DA
LRU-MIN

Fig. 6.111. Miss Rates of Simple Cache Replacement Algorithms on Binomial
Distribution Model Traces.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 273 -

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 4 16 64 256

Cache Size (Mbytes)

M
is

s
R

at
e

(F
ra

ct
io

n
)

COMP
OPT
RND
LRD
SLRU
PLRU
SPCxAGE
SPCxAGEtc
LFLRU
LRU

Fig. 6.112. Miss Rates of More Complex Cache Replacement Algorithms on
Binomial Distribution Model Traces.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 274 -

by LFLRU in second place and SPACExAGE and SPACExAGEtc tied for third.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 4 16 64 256

Cache Size (Mbytes)

M
is

s
R

at
e

(F
ra

ct
io

n
)

COMP
OPT
RND
SizeLRD
SizeLFLRU
GDS1
GDSPacket
GDSHits
LRV
SPCxAGE
LFLRU

Fig. 6.113. Miss Rates of Complex Cache Replacement Algorithms on Binomial
Distribution Model Traces.

For the byte miss rate measure on the Binomial Distribution Model trace sets,

Figure 6.115 shows that LRU performs best among the simple cache replacement

algorithm, especially among the smaller cache sizes. Its results are forwarded to

Figure 6.116.

The SPACExAGE and LFLRU algorithms are the top performing algorithms

whose results are depicted in Figure 6.116. Their results are forwarded to Fig-

ure 6.117.

The LFLRU algorithm performed best among all of the algorithms as evidenced in

Figures 6.117 and 6.118. It is followed closely (by 0.1% on average) by SizeLFLRU.

Then there is a four way tie for third for average byte miss rate between LRU,

SPACExAGE, SPACExAGEtc, and PLRU.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 275 -

0.
26

6

0.
24

0.
55

9

0.
25

4

0.
75

2

0.
77

6

0.
24

1

0.
23

5

0.
27

6

0.
61

3

0.
24

0.
23

7

0.
23

7

0.
22

0.
21

7

0.
55

9

0.
55

9

0.
77

4

0.
67

7

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

F
IF

O

LR
U

S
iz

eL

LF
U

P
rf

ct
LF

U

LF
U

-D
A

LR
D

S
iz

eL
R

D

LR
U

-M
IN

S
LR

U

P
LR

U

S
P

C
xA

G
E

S
P

C
xA

G
E

tc

LF
LR

U

S
iz

eL
F

LR
U

G
D

S
1

G
D

S
P

ac
ke

t

G
D

S
H

its

LR
V

Cache Replacement Algorithm

M
is

s
R

at
e

(f
ra

ct
io

n
)

Fig. 6.114. Average Miss Rates on Binomial Distribution Model Traces.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 276 -

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 4 16 64 256

Cache Size (Mbytes)

M
is

s
R

at
e

(F
ra

ct
io

n
)

COMP
OPT
RND
FIFO
LRU
SizeL
LFU
PrfctLFU
LFU-DA
LRU-MIN

Fig. 6.115. Byte Miss Rates of Simple Cache Replacement Algorithms on Binomial
Distribution Model Traces.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 277 -

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 4 16 64 256

Cache Size (Mbytes)

M
is

s
R

at
e

(F
ra

ct
io

n
)

COMP
OPT
RND
LRD
SLRU
PLRU
SPCxAGE
SPCxAGEtc
LFLRU
LRU

Fig. 6.116. Byte Miss Rates of More Complex Cache Replacement Algorithms on
Binomial Distribution Model Traces.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 278 -

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 4 16 64 256

Cache Size (Mbytes)

B
yt

e
M

is
s

R
at

e
(F

ra
ct

io
n

)

COMP
OPT
RND
SizeLRD
SizeLFLRU
GDS1
GDSPacket
GDSHits
LRV
SPCxAGE
LFLRU

Fig. 6.117. Byte Miss Rates of Complex Cache Replacement Algorithms on
Binomial Distribution Model Traces.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 279 -

0.
26

6

0.
24

1

0.
60

3

0.
26

0.
75

3

0.
77

7

0.
24

2

0.
24 0.

29
1

0.
61

5

0.
24

1

0.
24

1

0.
24

1

0.
22

2

0.
22

3

0.
60

3

0.
60

3

0.
77

6

0.
68

6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

F
IF

O

LR
U

S
iz

eL

LF
U

P
rf

ct
LF

U

LF
U

-D
A

LR
D

S
iz

eL
R

D

LR
U

-M
IN

S
LR

U

P
LR

U

S
P

C
xA

G
E

S
P

C
xA

G
E

tc

LF
LR

U

S
iz

eL
F

LR
U

G
D

S
1

G
D

S
P

ac
ke

t

G
D

S
H

its

LR
V

Cache Replacement Algorithm

B
yt

e
M

is
s

R
at

e
(f

ra
ct

io
n

)

Fig. 6.118. Average Byte Miss Rates on Binomial Distribution Model Traces.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 280 -

Triangular Window Distribution Model Traces

For the Triangular Window Distribution Model trace set, Figure 6.119 shows that

the LFU algorithm performs best among the simple cache replacement algorithms.

Its results are forwarded to Figure 6.120.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 4 16 64 256

Cache Size (Mbytes)

M
is

s
R

at
e

(F
ra

ct
io

n
)

COMP
OPT
RND
FIFO
LRU
SizeL
LFU
PrfctLFU
LFU-DA
LRU-MIN

Fig. 6.119. Miss Rates of Simple Cache Replacement Algorithms on Triangular
Window Distribution Model Traces.

LRD and LFLRU are the top performing algorithms from Figure 6.120 so their

results are forwarded to Figure 6.121.

Once again, it is difficult to determine which algorithms performed best from

Figure 6.121, but Figure 6.122 helps clear up the congestion among the top algo-

rithms. SizeLFLRU performed best, and LFLRU placed a close second with LRD

and SizeLRD tying for third.

Using byte miss rate as the measure, Figure 6.123 shows that the LRU algorithm

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 281 -

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 4 16 64 256

Cache Size (Mbytes)

M
is

s
R

at
e

(F
ra

ct
io

n
)

COMP
OPT
RND
LRD
SLRU
PLRU
SPCxAGE
SPCxAGEtc
LFLRU
LFU

Fig. 6.120. Miss Rates of More Complex Cache Replacement Algorithms on
Triangular Window Distribution Model Traces.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 282 -

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 4 16 64 256

Cache Size (Mbytes)

M
is

s
R

at
e

(F
ra

ct
io

n
)

COMP
OPT
RND
SizeLRD
SizeLFLRU
GDS1
GDSPacket
GDSHits
LRV
LRD
LFLRU

Fig. 6.121. Miss Rates of Complex Cache Replacement Algorithms on Triangular
Window Distribution Model Traces.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 283 -

0.
39

1

0.
37

5

0.
58

2

0.
37

3

0.
76

1

0.
81

6

0.
36

8

0.
36

8

0.
38

9

0.
71

5

0.
37

5

0.
37

0.
37

0.
35

5

0.
34

9

0.
58

2

0.
58

2

0.
81

5

0.
67

5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

F
IF

O

LR
U

S
iz

eL

LF
U

P
rf

ct
LF

U

LF
U

-D
A

LR
D

S
iz

eL
R

D

LR
U

-M
IN

S
LR

U

P
LR

U

S
P

C
xA

G
E

S
P

C
xA

G
E

tc

LF
LR

U

S
iz

eL
F

LR
U

G
D

S
1

G
D

S
P

ac
ke

t

G
D

S
H

its

LR
V

Cache Replacement Algorithm

M
is

s
R

at
e

(f
ra

ct
io

n
)

Fig. 6.122. Average Miss Rates on Triangular Window Distribution Model Traces.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 284 -

edged out LFU for the top performing simple algorithm. The LRU results are for-

warded to Figure 6.124.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 4 16 64 256

Cache Size (Mbytes)

M
is

s
R

at
e

(F
ra

ct
io

n
)

COMP
OPT
RND
FIFO
LRU
SizeL
LFU
PrfctLFU
LFU-DA
LRU-MIN

Fig. 6.123. Byte Miss Rates of Simple Cache Replacement Algorithms on Triangular
Window Distribution Model Traces.

In Figure 6.124, LRD and LFLRU performed best, and their results are forwarded

to Figure 6.125.

Finally, the top algorithm for byte miss rate are LFLRU with SizeLFLRU and LRD

taking second and third places respectively. These results are shown in Figures 6.125

and 6.126.

Stochastically Generated Video Server Traces Summary

For these stochastically generated video server trace sets, the table of top per-

forming algorithms for each trace and both measures are presented in Table 6.6.

Though each of these three trace sets are based on very different distributions, the

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 285 -

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 4 16 64 256

Cache Size (Mbytes)

M
is

s
R

at
e

(F
ra

ct
io

n
)

COMP
OPT
RND
LRD
SLRU
PLRU
SPCxAGE
SPCxAGEtc
LFLRU
LRU

Fig. 6.124. Byte Miss Rates of More Complex Cache Replacement Algorithms on
Triangular Window Distribution Model Traces.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 286 -

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 4 16 64 256

Cache Size (Mbytes)

B
yt

e
M

is
s

R
at

e
(F

ra
ct

io
n

)

COMP
OPT
RND
SizeLRD
SizeLFLRU
GDS1
GDSPacket
GDSHits
LRV
LRD
LFLRU

Fig. 6.125. Byte Miss Rates of Complex Cache Replacement Algorithms on
Triangular Window Distribution Model Traces.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 287 -

0.
39

3

0.
37

7

0.
63

1

0.
38

1

0.
76

5

0.
82

0.
36

9

0.
37

5

0.
41

0.
71

9

0.
37

7

0.
37

7

0.
37

7

0.
35

7

0.
35

8

0.
63

1

0.
63

1

0.
81

9

0.
68

8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

F
IF

O

LR
U

S
iz

eL

LF
U

P
rf

ct
LF

U

LF
U

-D
A

LR
D

S
iz

eL
R

D

LR
U

-M
IN

S
LR

U

P
LR

U

S
P

C
xA

G
E

S
P

C
xA

G
E

tc

LF
LR

U

S
iz

eL
F

LR
U

G
D

S
1

G
D

S
P

ac
ke

t

G
D

S
H

its

LR
V

Cache Replacement Algorithm

B
yt

e
M

is
s

R
at

e
(f

ra
ct

io
n

)

Fig. 6.126. Average Byte Miss Rates on Triangular Window Distribution Model
Traces.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 288 -

overall top performing cache replacement algorithms are very consistent. For miss

rates, SizeLFLRU always performed best, and LFLRU was close behind. For byte

miss rates, the two algorithms exchanged positions with LFLRU always performing

best with SizeLFLRU close behind. This consistency can be explained by the fact

that all three models mimic an educational environment in which there is a certain

sequence in which the videos should be viewed. Though clients do view them out of

order, there is an underlying set of video objects that are very popular for a given

time, and then lose their high popularity ranking to other sets as time passes by.

So the popularity-weighted LRU and size- and popularity-weighted LRU algorithms

perform best. Interestingly, but not unexpectedly, for DVJ2 the top two miss rate al-

gorithms were SizeLFLRU and LFLRU, respectively, and the top two byte miss rate

algorithms were LFLRU and SizeLFLRU, respectively. The DVJ2 top performing

algorithms match those of the stochastically generated video server trace sets.

Table 6.6
Summary of Top Cache Replacement Algorithms for Stochastically Generated Video

Server Traces

Trace Exponential Binomial Triangular

Miss SizeLFLRU (1st) SizeLFLRU (1st) SizeLFLRU (1st)

Rate LFLRU (2nd) LFLRU (2nd) LFLRU (2nd)

LRD (3rd) SPACExAGE (3rd) LRD (3rd-tie)

SizeLRD (3rd-tie)

Byte LFLRU (1st) LFLRU (1st) LFLRU (1st)

Miss SizeLFLRU (2nd) SizeLFLRU (2nd) SizeLFLRU (2nd)

Rate LRD (3rd) LRU (3rd-tie) LRD (3rd)

SPACExAGE (3rd-tie)

SPACExAGEtc (3rd-tie)

PLRU (3rd-tie)

Many of the algorithms perform close to the same miss rates and byte miss rates

as the top performers. These algorithms generally do a good job of following the

popularity of the cached objects, and they evict the objects soon after they lose

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 289 -

their popularity. But while there are a number of cache replacement algorithms that

perform well, there are several that do not perform well at all. SizeL, PerfectLFU,

LFU-DA, SLRU, GDS1, GDSPacket, GDSHits, and LRV all perform about equally

poorly. Surprising among those are GDSHits and LFU-DA which are among the best

performers for Web-based proxy servers. PerfectLFU, LFU-DA, SLRU, and GDSHits

all rely too heavily on access counts. Because of this, they do not evict objects that

were popular soon enough after their time of popularity. This causes the currently

popular objects to miss too often early in their popularity. Conversely, SizeL, GDS1,

and GDSPacket rely too heavily on the size of the object which gives no indication

of the current popularity of the objects in the cache. And LRV has a combination of

problems which will be discussed in the next section.

6.1.6 A Summary of the Results

First, a number of general conclusions can be made about the effectiveness of

various statistics in cache replacement algorithms. Augmenting the LRU and FIFO

cache replacement algorithms with access count and size object statistics generally

improve the cache performance. Also, if only one statistic were to be used with a

recency measure like LRU, then for miss rate it should be object size while for byte

miss rate it should be object access count. This can be explained by the fact that when

optimizing for miss rate, many small, less popular objects in the cache will satisfy

many more requests than a few popular, large objects. However, for byte miss rate,

the popularity of the object comes into play more, and those popular large objects

cause a greater byte miss rate if they miss than those many small, less popular objects.

Also, using the object type in the cache replacement algorithm generally did not gain

any performance improvement. This can be explained by looking at the tables that

involved object types in Chapter 5. In these tables there is very little distinction

in percentages between first time accesses and subsequent accesses. In other words,

there is no way of confidently determining whether objects will be reaccessed based

on the object type.

The findings in this study help validate the findings of many studies that have

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 290 -

already been published. [RD90] and [PR94] both found that using reference fre-

quency (access count) along with recency (LRU) was important in improving cache

performance over just using LRU. Also, [Red97], which disclosed the SPACExAGE

algorithm, concluded that object size, when used with LRU, improved cache perfor-

mance. [WAS+96] found that object size algorithms performed best for miss rate while

frequency-based algorithms generally performed better for byte miss rate. [TVDS98]

and [AW97] found that cache replacement algorithms did not improve much when

using file type as a statistic.

All of the above findings from other studies were substantiated by the findings of

this study, but this study went above and beyond these findings. By simulating so

many cache replacement algorithms with so many actual and synthesized workload

traces, a more thorough conclusion can be drawn as to which cache replacement algo-

rithms were best for each domain and performance measure. The results are shown

in Tables 6.2, 6.3, 6.4, 6.5, and 6.6. Generally for the Web workload traces, GDSHits

performed best when optimizing for miss rate while SPACExAGE and SizeLFLRU

also performed well. When byte miss rate was the optimization factor, LFU-DA

performed best on the Web workload traces while SLRU and LRU also performed

well. However, this generalization begins to break down when considering the client

proxy cache server results. For the client proxy cache servers, GDSHits was usu-

ally the best for miss rate while LFU-DA was usually the best for byte miss rate, but

SizeLFLRU also took one first place performance for miss rate while SLRU, LRD, and

SPACExAGEtc had first place performances for byte miss rate. These findings gen-

erally support Dilley, Arlitt, and Perret’s findings (though not entirely). In [DAP99],

they found that when comparing LRU, GDSHits, and LFU-DA, GDSHits performed

best for miss rate while LFU-DA performed best for byte miss rate for a SPECWeb

workload. When the video domain, along with the stochastically generated video

server traces, is considered, the top performing cache replacement algorithms were

different than those of the Web-based workload traces. LFU, LFU-DA, and GDSHits

performed best on the OnCommand hotel movie video-on-demand system for both

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 291 -

miss rate and byte miss rate. Alternately, for the DVJ2 and stochastically generated

video server traces, the SizeLFLRU, LFLRU, and LRD algorithms performed best

for miss rate while LFLRU, SizeLFLRU, and LRD performed best for byte miss rate.

These findings help support and justify the discussion in Section 5.3.

A few more conclusions can be drawn from these findings. The fact that GDSHits

usually performs better than SizeLFLRU in miss rates for Web proxy workload traces

suggests that the inflation parameter does a better job of decaying cache replacement

scores. Conversely, the inflation parameter is not as appropriate as the last access

statistic in measuring recency of access for the video proxy server traces. Also, gen-

erally there is not much difference in the performance of SPACExAGE and SPACEx-

AGEtc. This means that there is not much difference in using the number of accesses

since an object was last accessed versus using the number of seconds since on object

was last accessed. However, in the Virginia Tech G trace, the SPACExAGE and

SPACExAGEtc algorithms have a difference in miss rate of over 1%, so there can be

a significant difference between their performance.

Finally, the LRV algorithm from [LRV97] performs poorly for almost every work-

load trace in this study. In [CI97], Cao and Irani declared that this algorithm

was “prohibitively expensive” in terms of computational cost and found that their

GreedyDual-Size algorithms outperformed the LRV algorithm. One possible reason

for the pitiful performance of the LRV algorithm is that the parameters were not

“tuned” to the given workload traces. However, most proxy cache server installations

are done without having to set such parameters. And if such parameters were to

be set, there is no guarantee that the traffic characteristics will remain static. The

LRV algorithm and the paper that introduced it provide some interesting theoretical

insight, but it has too many issues to be seriously considered for implementation in

a proxy cache server.

6.1.7 What About Computational Efficiency?

Is the extra computation of these more complex cache replacement algorithms

worth it? From the findings of [DAP99], the answer is a resounding yes! In that

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 292 -

article, Dilley, Arlitt, and Perret modified a Squid client proxy to implement LRU,

LFU-DA, and GDSHits. They used SPECWeb simulated input and found that the

CPU demand actually decreased even when the cache replacement algorithms were

more complex. This was due to the decrease in miss rate. They also found that there

was not a significant change is system utilization; that is, the system was not taxed

any more than it was using the LRU replacement algorithm. These findings deserve

some more discussion. So much of the latency within the server is in the I/O system.

By reducing the miss rate, the loading on the I/O system is potentially reduced.

And by reducing the byte miss rate, the bandwidth that the server requires from its

network is decreased, which can lead to better throughput and lower network usage

charges.

In its simplest implementation, LRU involves comparisons because only the time

of each cached object’s most recent request needs to be stored, and the object with the

oldest recent request is evicted. Each of these algorithms (except for LRV) involves

zero or more multiplications along with possibly an add and/or a division operation.

Using the notation from Chapter 4, Cn is the number of objects currently occupying

space in the cache. To simplify the notation, let m = Cn. So there are O(m)

mathematical operations involved in calculating the cache replacement scores of the

objects currently in the cache since each cache replacement score calculation involves a

constant number of addition, subtraction, multiplication, and/or division operations.

And the potentially expensive division operations could be eliminated if the score

calculation is of 1/x form by simply inverting the formula and evicting the highest

scoring objects. The greatest amount of computation done with cache replacement

algorithms is the comparison of all of the cache replacement scores, which is common

to all of the algorithms including LRU. There are Ω(m ln m) comparisons for any

sorting algorithm [CLR90], which overshadows the O(m) mathematical operations.

Only LFU, SLRU, and LRV have a maintenance procedure that occasionally must be

run and do not have any more complexity than a score comparison. And the overhead

of these extra computations, and even the maintenance procedures, are rather small

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 293 -

compared to the series of cache replacement score comparisons.

But do these few extra computations significantly improve the performance of the

proxy cache server? Tables 6.7 and 6.8 show the average miss rates and average byte

miss rates of LRU and the top performing cache replacement policy for each of the

fifteen (including the model generated) workload traces. The right-most column shows

the percentage improvement of the top cache replacement algorithm over LRU. For

most of the workload traces, Table 6.7 shows that the average miss rate improvement

is over 10%, with each of the origin server traces showing around 50% improvements.

For the average byte miss rates in Table 6.8, the improvements are not as dramatic,

though many still have 5% improvements. The exceptions are the network proxy

server traces and the client proxy server traces. For these two domains, LRU performs

quite well in optimizing for the byte miss rate. This can be attributed to the fact that

the percentages of once-only requested object are quite high, and LRU is effective in

determining which objects have not been accessed for a long time so those can be

evicted.

So, in general, the added computational burden is reasonably offset by the im-

provements that are gained by using a more effective cache replacement algorithm.

Yes, these lower miss rates and byte miss rates will mean more stress on the disk sub-

systems and motherboard backplanes of the proxy cache server, but those can usually

be upgraded with more parallelism in the RAID disks, more (and sometimes faster)

FibreChannel, SCSI, or Firewire chains, more PCI buses, and more main memory.

The investment in better hardware will easily be offset by the savings in network

bandwidth and/or the addition of more proxy cache server machines.

6.2 Does an Admission Policy Improve Cache Performance?

The second question built on the first question and asked: Does an admission

policy improve cache replacement policy performance? And if so, which algorithms

benefit from using an admission policy? This question asked whether it is more

beneficial to include the currently requested object in the eviction process if there

is no room to accommodate the currently requested object. Most cache replacement

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 294 -

Table 6.7
Comparison of Improvement of Top Cache Replacement Algorithm over LRU for

Miss Rate (MR)

Trace LRU MR Top Algorithm Top Algorithm MR % Improvement

WorldCup 0.210 GDSHits 0.098 53.3%

dsml 0.269 GDSHits 0.137 49.1%

VaTech BR 0.407 GDSHits 0.197 51.6%

Boulder1 0.888 GDSHits 0.838 5.6%

San Jose 0.859 GDSHits 0.818 4.8%

Urbana Champaign 0.884 GDSHits 0.851 3.7%

Boeing 0.747 GDSHits 0.631 15.5%

Stack 0.678 SizeLFLRU 0.608 10.3%

VaTech BL 0.741 GDSHits 0.668 9.9%

VaTech G 0.732 GDSHits 0.658 10.1%

OnCommand 0.385 LFU 0.373 3.1%

DVJ2 0.104 SizeLFLRU 0.095 8.7%

Exponential 0.262 SizeLFLRU 0.228 13.0%

Binomial 0.240 SizeLFLRU 0.217 9.6%

Triangular 0.375 SizeLFLRU 0.349 6.9%

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 295 -

Table 6.8
Comparison of Improvement of Top Cache Replacement Algorithm over LRU for

Byte Miss Rate (BMR)

Trace LRU BMR Top Algorithm Top Algorithm BMR % Improvement

WorldCup 0.331 LFU-DA 0.292 11.8%

dsml 0.590 LFU-DA 0.580 1.7%

VaTech BR 0.497 LFU-DA 0.475 4.4%

Boulder1 0.840 LFU-DA 0.812 3.3%

San Jose 0.954 LFU-DA 0.946 0.8%

Urbana Champaign 0.912 LFU-DA 0.901 1.2%

Boeing 0.954 SLRU 0.945 0.9%

Stack 0.846 LRD 0.843 0.4%

VaTech BL 0.796 LFU-DA & LRD 0.792 0.5%

VaTech G 0.884 LFU-DA 0.878 0.7%

OnCommand 0.385 LFU 0.373 3.1%

DVJ2 0.105 LFLRU 0.097 7.6%

Exponential 0.264 LFLRU 0.234 11.4%

Binomial 0.241 SizeLFLRU 0.223 7.5%

Triangular 0.377 LFLRU 0.357 5.3%

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 296 -

algorithms in use today do not use an admission policy and assume that the currently

requested object is more valuable than some other objects already in the cache.

The fact that an admission policy will not necessarily affect all of the cache replace-

ment algorithms has already been discussed. But which cache replacement algorithms

specifically are affected has not been discussed. The algorithms that have different

results when an admission policy is implemented are OPT, SizeL, PerfectLFU, LFU-

DA, LRU-MIN, SLRU, GDS1, GDSPacket, and GDSHits; this was shown in the

rightmost column of Table 6.1, labeled “Admission Effect”. For each of these algo-

rithms, the score of an incoming object could be the lowest score, and would then

not be admitted into the cache.

For this comparison, bar graphs were generated for most of the actual workload

traces described in Chapter 5. They are organized in the same order as they were

discussed for cache replacement algorithms earlier in this chapter for each of the

server types: origin, network, client and video. Each of the bar graphs have each of

the cache replacement algorithms mentioned above along the x-axis. For each of the

cache replacement algorithms, there are four bars. The left-most bar is the average

miss rate (mr) for the cache replacement without an admission policy while the bar

immediately to its right is the average miss rate (mr) for the cache replacement with

an admission policy. So these two bars should be compared to determine whether

using an admission policy improves the miss rate of the cache replacement algorithm.

Furthermore, the right-most bar for a given cache replacement policy’s set of bars is

the average byte (or weighted) miss rate (wmr) for the cache replacement with an

admission policy. This bar should be compared to the bar immediately to its left

which is the average byte (or weighted) miss rate (wmr) for the cache replacement

without an admission policy. This comparison determines whether using an admission

policy improves the byte miss rate of a given cache replacement algorithm. These

graphs are useful for comparing how much an admission policy improves (or does

not improve) the miss rate and byte miss rate performance of a cache replacement

algorithm.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 297 -

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

OPT
Size

L

Prfc
tL

FU

LF
U-D

A

LR
U-M

IN
SLR

U
GDS1

GDSPac
ke

t

GDSHits

Cache Replacement Algorithm

M
is

s
R

at
e

&
 B

yt
e

M
is

s
R

at
e

(F
ra

ct
io

n
)

mr - no admission mr - admission wmr - no admission wmr - admission

Fig. 6.127. Admission Policy Comparison of HP World Cup 1998 Web Server Farm
wc week14 Trace.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 298 -

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

OPT
Size

L

Prfc
tL

FU

LF
U-D

A

LR
U-M

IN
SLR

U
GDS1

GDSPac
ke

t

GDSHits

Cache Replacement Algorithm

M
is

s
R

at
e

&
 B

yt
e

M
is

s
R

at
e

(F
ra

ct
io

n
)

mr - no admission mr - admission wmr - no admission wmr - admission

Fig. 6.128. Admission Policy Comparison of dsl log DSML Web Server Trace.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 299 -

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

OPT
Size

L

Prfc
tL

FU

LF
U-D

A

LR
U-M

IN
SLR

U
GDS1

GDSPac
ke

t

GDSHits

Cache Replacement Algorithm

M
is

s
R

at
e

&
 B

yt
e

M
is

s
R

at
e

(F
ra

ct
io

n
)

mr - no admission mr - admission wmr - no admission wmr - admission

Fig. 6.129. Admission Policy Comparison of Virginia Tech BR Trace.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 300 -

0.700

0.750

0.800

0.850

0.900

0.950

1.000

OPT
Size

L

Prfc
tL

FU

LF
U-D

A

LR
U-M

IN
SLR

U
GDS1

GDSPac
ke

t

GDSHits

Cache Replacement Algorithm

M
is

s
R

at
e

&
 B

yt
e

M
is

s
R

at
e

(F
ra

ct
io

n
)

mr - no admission mr - admission wmr - no admission wmr - admission

Fig. 6.130. Admission Policy Comparison of Boulder1 Proxy Server bo1 day1 Trace.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 301 -

0.7

0.75

0.8

0.85

0.9

0.95

1

OPT
Size

L

Prfc
tL

FU

LF
U-D

A

LR
U-M

IN
SLR

U
GDS1

GDSPac
ke

t

GDSHits

Cache Replacement Algorithm

M
is

s
R

at
e

&
 B

yt
e

M
is

s
R

at
e

(F
ra

ct
io

n
)

mr - no admission mr - admission wmr - no admission wmr - admission

Fig. 6.131. Admission Policy Comparison of San Jose Proxy Server sj novwk5 Trace.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 302 -

0.75

0.8

0.85

0.9

0.95

1

1.05

OPT
Size

L

Prfc
tL

FU

LF
U-D

A

LR
U-M

IN
SLR

U
GDS1

GDSPac
ke

t

GDSHits

Cache Replacement Algorithm

M
is

s
R

at
e

&
 B

yt
e

M
is

s
R

at
e

(F
ra

ct
io

n
)

mr - no admission mr - admission wmr - no admission wmr - admission

Fig. 6.132. Admission Policy Comparison of Urbana Champaign Proxy Server
uc day1 Trace.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 303 -

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

OPT
Size

L

Prfc
tL

FU

LF
U-D

A

LR
U-M

IN
SLR

U
GDS1

GDSPac
ke

t

GDSHits

Cache Replacement Algorithm

M
is

s
R

at
e

&
 B

yt
e

M
is

s
R

at
e

(F
ra

ct
io

n
)

mr - no admission mr - admission wmr - no admission wmr - admission

Fig. 6.133. Admission Policy Comparison of Boeing Proxy Cache Server
boeing.990301 Trace.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 304 -

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

OPT
Size

L

Prfc
tL

FU

LF
U-D

A

LR
U-M

IN
SLR

U
GDS1

GDSPac
ke

t

GDSHits

Cache Replacement Algorithm

M
is

s
R

at
e

&
 B

yt
e

M
is

s
R

at
e

(F
ra

ct
io

n
)

mr - no admission mr - admission wmr - no admission wmr - admission

Fig. 6.134. Admission Policy Comparison of Purdue Stack Proxy Server stackproxy
Trace.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 305 -

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

OPT
Size

L

Prfc
tL

FU

LF
U-D

A

LR
U-M

IN
SLR

U
GDS1

GDSPac
ke

t

GDSHits

Cache Replacement Algorithm

M
is

s
R

at
e

&
 B

yt
e

M
is

s
R

at
e

(F
ra

ct
io

n
)

mr - no admission mr - admission wmr - no admission wmr - admission

Fig. 6.135. Admission Policy Comparison of Virginia Tech BL Trace.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 306 -

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

OPT
Size

L

Prfc
tL

FU

LF
U-D

A

LR
U-M

IN
SLR

U
GDS1

GDSPac
ke

t

GDSHits

Cache Replacement Algorithm

M
is

s
R

at
e

&
 B

yt
e

M
is

s
R

at
e

(F
ra

ct
io

n
)

mr - no admission mr - admission wmr - no admission wmr - admission

Fig. 6.136. Admission Policy Comparison of Virginia Tech G Trace.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 307 -

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

OPT
Size

L

Prfc
tL

FU

LF
U-D

A

LR
U-M

IN
SLR

U
GDS1

GDSPac
ke

t

GDSHits

Cache Replacement Algorithm

M
is

s
R

at
e

&
 B

yt
e

M
is

s
R

at
e

(F
ra

ct
io

n
)

mr - no admission mr - admission wmr - no admission wmr - admission

Fig. 6.137. Admission Policy Comparison of OnCommand On-Demand Movie
Server daysum1 Trace.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 308 -

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

OPT
Size

L

Prfc
tL

FU

LF
U-D

A

LR
U-M

IN
SLR

U
GDS1

GDSPac
ke

t

GDSHits

Cache Replacement Algorithm

M
is

s
R

at
e

&
 B

yt
e

M
is

s
R

at
e

(F
ra

ct
io

n
)

mr - no admission mr - admission wmr - no admission wmr - admission

Fig. 6.138. Admission Policy Comparison of DVJ2 Educational Multimedia Video
Server dvj2 99f Trace.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 309 -

The results that are captured in the graphs described in the previous paragraph

are also displayed in Tables 6.9 and 6.10. Table 6.9 presents the difference in miss rates

for using admission policy with the cache replacement algorithms that are affected

by using admission policy, while Table 6.10 shows the difference in byte miss rates

for the same. In the tables, if a number is in parentheses, the corresponding cache

replacement algorithm with admission policy has a lower average miss rate or average

byte miss rate than that same cache replacement algorithm without admission policy.

Table 6.9
Differences in Average Miss Rates of Cache Replacement Policy using Admission

Policy

OPT SizeL PrfctLFU LFU-DA LRU-MIN SLRU GDS1 GDSPkt GDSHits

WorldCup (0.010) 0.073 (0.008) 0.011 0.071 (0.002) 0.073 0.073 (0.002)

dsml (0.021) 0.129 0.005 0.154 0.243 (0.014) 0.129 0.129 0.036

VaTech BR (0.038) 0.038 (0.021) 0.092 0.216 0.014 0.038 0.038 (0.003)

Boulder1 (0.014) 0.049 0.011 0.037 0.106 0.001 0.049 0.049 0.039

San Jose (0.013) 0.063 0.018 0.046 0.120 (0.001) 0.063 0.063 0.043

UrbChamp (0.013) 0.053 0.015 0.056 0.118 0.000 0.053 0.053 0.053

Boeing (0.037) 0.045 0.007 0.038 0.151 0.000 0.045 0.045 0.003

Stack (0.005) 0.042 0.020 0.090 0.290 (0.016) 0.042 0.042 0.048

VaTech BL (0.013) 0.036 0.020 0.074 0.207 (0.007) 0.036 0.036 0.039

VaTech G (0.022) 0.021 0.008 0.027 0.191 (0.002) 0.021 0.021 0.021

OnCmnd (0.132) 0.011 (0.080) (0.053) (0.034) (0.030) 0.011 0.011 (0.053)

DVJ2 (0.005) 0.376 0.288 0.466 0.522 (0.081) 0.376 0.376 0.468

For any of these algorithms, adding the use of an admission policy allows them to

deny admission to objects that don’t score high enough to be brought into the cache.

That is, the objects are denied admission because their cache replacement score is

not competitive enough to be admitted into the cache.

From these tables, for both miss rate and byte miss rate, using a admission policy

with the OPT and SLRU algorithms consistently improve upon the performance of

those algorithms. This improvement is usually around 1% better average miss rate

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 310 -

Table 6.10
Differences in Average Byte Miss Rates of Cache Replacement Policy using

Admission Policy

OPT SizeL PrfctLFU LFU-DA LRU-MIN SLRU GDS1 GDSPkt GDSHits

WorldCup (0.011) 0.111 (0.004) 0.015 (0.046) (0.011) 0.111 0.111 0.021

dsml (0.017) 0.118 0.030 0.144 0.111 (0.018) 0.118 0.118 0.081

VaTech BR (0.031) 0.116 (0.008) 0.027 (0.015) 0.002 0.116 0.116 0.068

Boulder1 (0.026) 0.046 (0.003) 0.016 (0.028) (0.002) 0.046 0.046 0.048

San Jose (0.007) 0.014 0.002 0.014 0.020 (0.000) 0.014 0.014 0.013

UrbChamp (0.016) 0.035 (0.010) 0.013 0.017 (0.001) 0.035 0.035 0.037

Boeing (0.016) 0.020 (0.002) 0.011 0.022 0.000 0.020 0.020 0.019

Stack (0.003) 0.024 0.018 0.040 0.089 (0.004) 0.024 0.024 0.032

VaTech BL (0.008) 0.035 0.020 0.057 0.084 (0.004) 0.035 0.035 0.041

VaTech G (0.012) 0.027 0.007 0.017 0.060 0.000 0.027 0.027 0.027

OnCmnd (0.132) 0.011 (0.080) (0.053) (0.034) (0.030) 0.011 0.011 (0.053)

DVJ2 (0.005) 0.412 0.298 0.487 0.532 (0.082) 0.412 0.412 0.498

and average byte miss rate, but for some of the workload traces, the improvement is

more significant. This finding should be expected for the OPT algorithm, because

it allows the algorithm to deny admission to objects that are never requested again.

(This is an advantage of being an ideal algorithm and being able to see into the

future.) PerfectLFU also gains an advantage for using an admission policy for some

of the workload traces, but it is not as consistent. However, PerfectLFU is similar to

an ideal algorithm because it uses much more storage space for its metadata and does

not have any cache replacement score decaying technique. The OnCommand trace

had many of its cache replacement algorithms improved with an admission policy

especially among the access count based algorithms of PerfectLFU, LFU-DA, SLRU,

and GDSHits.

When the admission policy did not improve the performance of the cache replace-

ment, usually the admission policy did not raise the average miss rate and average

byte miss rate by more than 5%. The cache replacement algorithms for which the

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 311 -

admission policy never improved the average miss rate and average byte miss rate are

those based on object size. Therefore, object size is generally not an effective statistic

for determining the cachability of requested objects with an admission policy. On the

other hand, the access count can sometimes help with determining cachability as is

displayed by SLRU and GDSHits.

These findings indicate that for most cache replacement policies, it is very diffi-

cult to consistently determine the cachability of objects immediately after they are

requested. Therefore, it is not effective to use an admission policy for use with most

cache replacement algorithms. This result supports the findings of Kurcewicz, Syl-

westrzak, and Wierzbicki in [KSW98].

6.3 Should Video Objects Be Cached in Their Entirety?

For Web proxy cache servers, the question of whether to cache the entire object

or just a portion of the object has never come into question; web proxy caches always

cache entire objects. However, the same question should still be debated for video

cache proxy servers. Some of this indecision stems from the fact that video proxy

servers are only in their infancy. Only a few rough systems have been released or will

be released soon (as mentioned in Section 2.2). Another reason for this indecision has

been the extensive work on using buffers, rather than caches, in the video object deliv-

ery stream. Among these studies are [NY94, PRR94, DDM+95, KRT95, NS95, SC98],

as well as several papers from the Fellini project at Bell Labs, including [OBRS95,

ORS96].

As disk drive, networking, and motherboard bus technologies continue to improve,

the possibility of quickly downloading an entire video from the origin video server to

a video proxy cache server is becoming more realistic. When a video is requested,

the origin video server pushes the video object data onto the video proxy cache

server. Once the video proxy cache server has received enough of the video data to

start serving it to the client, the proxy starts the stream to the client’s machine.

Meanwhile, the origin video server continues to push the rest of the video data file to

the proxy. Since the backbone of the Internet has large bandwidth, the entire video

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 312 -

data is done being pushed to the proxy server long before the end of the video is

reached by the client.

The determination of whether to cache entire video objects relies upon whether

the clients are likely to watch a significant enough amount of each video to make it

worthwhile to download the entire video to an intermediate video proxy cache server.

To make this determination, a number of statistics will be investigated about the

OnCommand and DVJ2 workload traces.

First, the viewing sessions of the OnCommand workload trace will be investigated.

As was mentioned in Section 5.6, it was assumed that all videos were two hours long

(7,200 seconds). There is a preview function which allows clients to view a video for

two minutes before being billed. A breakdown of video session duration percentages

is shown in Figure 6.139. From this graph, one can see that only 26% of the video

sessions were of the preview duration; all of the other sessions viewed the preview and

continued viewing the video to its end. This strongly influences the mean and median

video viewing duration which are 5,308 seconds (88 minutes) and 7,200 seconds (120

minutes), respectively, as shown in Table 6.11. The mean equals 73.7% of the total

(assumed) duration of the video objects. These statistics imply that a large percentage

of the videos that are requested are viewed in their entirety. This result should be

expected since the clients are paying to view each of the videos and generally will

watch the whole program to get their money’s worth. Figure 6.140 shows the raw

network traffic bandwidth (in video seconds) used by the three top performing byte

miss rate cache replacement algorithm (LFU, LFU-DA, and GDSHits) and compares

their performance to the bandwidth usage for when clients only view an average of

10, 25, 50, and 75 percent of the total videos. The percentages are the lines with

legend labels of 10% NC, 25% NC, 50% NC, and 75% NC (where NC stands for

no cache). So even for the smallest cache size in this simulation, caching an entire

video object is more efficient than not caching at all or just buffering. These findings

strongly suggest that video objects for the OnCommand system should be cached in

their entirety.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 313 -

Table 6.11
Statistic of OnCommand and DVJ2 Workload Video Session Durations

Statistic OnCommand DVJ2

Mean (sec) 5308.03 1068.60

Median (sec) 7200 289

St. D. (sec) 3162.63 1582.12

Minimum (sec) 1 0

Maximum (sec) 7200 23741

Count 1479 11136

26%

74%

< 140

7200

Fig. 6.139. OnCommand Workload Video Session Duration Percentages.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 314 -

0.E+00

1.E+06

2.E+06

3.E+06

4.E+06

5.E+06

6.E+06

7.E+06

8.E+06

9.E+06

24 48 72 96 120

Cache Size (Seconds of Video Storage x 1000)

S
ec

o
n

d
s

o
f

D
el

iv
er

ed
 V

id
eo

10% NC
25% NC
50% NC
75% NC
LFU
LFU-DA
GDSHits

Fig. 6.140. OnCommand Network Traffic Comparison of Top Cache Replacement
Algorithms and No Cache Bandwidth Usage.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 315 -

The DVJ2 system is far different from the OnCommand system. As was explained

in Section 5.5, the DVJ2 system is used by students in the School of Electrical and

Computer Engineering at Purdue University to view lectures and class support mate-

rial as videos. This implies that the students do a great deal of starting and stopping

the playing of the videos to take notes, complete homework problems, etc. This ex-

pectation is supported by statistics. The mean and median video viewing duration

are 1068 seconds (17.8 minutes) and 289 seconds (4.8 minutes), respectively, as shown

in Table 6.11. If it is assumed that each video session is an average of 45 minutes

(2700 seconds) long (which is a reasonable estimate of an average recorded lecture

object), the mean implies that 39.6% of an entire video is watched on average while

the median implies that only 10.7% of an entire video is watched on average. Fig-

ure 6.141 shows that 57% of all video viewing sessions lasted less than 600 seconds (10

minutes). Assuming again that each video session is an average of 45 minutes (2700

seconds) long, 57% of all video requests result in less than 23% of the requested video

being viewed. Also, Figure 6.141 presents a histogram of video session durations.

As can be seen, the durations for the DVJ2 video sessions are skewed toward short

sessions. Figure 6.142 shows the raw network traffic bandwidth used by the three top

performing byte miss rate cache replacement algorithms (LFLRU, SizeLFLRU, and

LFU) and compares their performance to the bandwidth usage for when clients only

view an average of 5%, 15%, and 25% of the total videos. The percentages are the

lines with legend labels of 5% NC, 15% NC, and 25% NC (where NC stands for no

cache).

For the usage patterns of the DVJ2 system, it is not as easy to definitively say

that the videos should be cached in their entirety. Based on the mean video session

duration of 39.6% of the entire average video and the cumulative percentage graph

in Figure 6.141, it is more bandwidth effective to cache the entire videos. However,

the median video session duration of 10.7% of the entire average video implies that

the videos should not be cached and should just be buffered in the proxy server.

This suggests a solution for the DVJ2 system of having a probationary period

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 316 -

0

1000

2000

3000

4000

5000

6000

7000

0
60

0
12

00
18

00
24

00
30

00
36

00
42

00
48

00
54

00
60

00
66

00
72

00
78

00
84

00
90

00
M

or
e

Video Session Duration (s)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Frequency
Cumulative %

Fig. 6.141. DVJ2 Workload Video Session Duration Histogram.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 317 -

0.00E+00

5.00E+08

1.00E+09

1.50E+09

2.00E+09

2.50E+09

9.26 13.90 18.53 23.17 27.90

Cache Size (Gbytes)

B
an

d
w

id
th

 U
sa

g
e

(K
b

yt
es

)

5% NC

15% NC

25% NC

LFU

LFLRU

SizeLFLRU

Fig. 6.142. DVJ2 OnCommand Network Traffic Comparison of Top Cache
Replacement Algorithms and No Cache Bandwidth Usage.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 318 -

in which a first access is directly streamed from the origin server directly to the

client. As this stream is running, the cache proxy server could be making a copy

of the probationary initial stream as it is passing its router. After the probationary

period has passed and if the client is still viewing the video, then the proxy quickly

downloads the entire video from the origin server. Once the entire video is resident

on the proxy, a service handoff occurs from the origin server to the proxy server and

the proxy cache server delivers the rest of the video to the client. Once it has received

the entire video from the origin server, the proxy cache server can then also deliver

that same video to other clients that it is serving.

In the next chapter, the findings of this dissertation will be brought together, and

the broader implications of this research are discussed.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 319 -

7. Summary and Conclusion

7.1 Summary

This study explored whether higher complexity cache replacement algorithms

could improve the miss rates and weighted miss rates of proxy cache servers for mul-

timedia data, and whether an admission policy improved the performance of cache

replacement algorithms. Also, the question of whether whole video objects should be

cache in the proxy servers was addressed.

The dissertation started with a discussion of caches in distributed multimedia sys-

tems, explained the importance of cache replacement algorithms, discussed how the

cache replacement problem mapped to the 0-1 knapsack problem, and then showed

how cache replacement algorithms could be implemented as cache replacement scoring

algorithms. Chapter 3 discussed the related works from computer hardware memory

caches, operating system virtual memory direct paging algorithms, file migration al-

gorithms, disk caching algorithms, relational database buffer management algorithms,

and World-Wide Web proxy caches. Then the simulator model, simulator function-

ality, and result presentation methods were discussed in Chapter 4.

The simulation data sources were presented in Chapter 5. A number of the statis-

tics for each of the trace workloads were brought together in tables to discuss the

justification of delineating the three cache proxy server domains – origin, network,

and client – as well as a different domain of video cache proxy servers. The repre-

sentative trace workload of each of the simulation data sources were described, and

their statistics were given and discussed.

Then the results of the study were presented in Chapter 6. In terms of which

cache replacement algorithms performed best, a number of general conclusions were

made first. Augmenting the LRU and FIFO cache replacement algorithms with access

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 320 -

count and object size statistics generally improved the cache performance. Also, if

only one statistic were to be used with a recency measure like LRU, then for miss

rate it should be object size while for byte miss rate it should be object access count.

And using the object type in the cache replacement algorithm generally did not gain

any performance improvement.

All of the above general conclusions validate findings from other published stud-

ies as was discussed in Section 6.1.6, but this study goes above and beyond these

findings. By simulating so many cache replacement algorithms with so many actual

and synthesized workload traces, a more thorough conclusion was drawn as to which

cache replacement algorithms were best for each domain and performance measure.

Generally, for the Web workload traces, GDSHits performed best when optimizing

for miss rate while SPACExAGE and SizeLFLRU also performed well. When byte

miss rate was the optimization factor, LFU-DA performed best on the Web workload

traces while SLRU and LRU also performed well. However, this generalization be-

gan to break down when considering the client proxy cache server results. For the

client proxy cache servers, GDSHits was usually the best for miss rate while LFU-DA

was usually the best for byte miss rate, but SizeLFLRU also took one first place

performance for miss rate while SLRU, LRD, and SPACExAGEtc had first place per-

formances for byte miss rate. When the video domain, along with the stochastically

generated video server traces, were considered, the top performing cache replacement

algorithms were different than those of the Web-based workload traces. LFU, LFU-

DA, and GDSHits performed best on the OnCommand hotel movie video-on-demand

system for both miss rate and byte miss rate. Alternately, for the DVJ2 and stochas-

tically generated video server traces, the SizeLFLRU, LFLRU, and LRD algorithms

performed best for miss rate while LFLRU, SizeLFLRU, and LRD performed best

for byte miss rate. All of these findings help support and justify the discussion in

Section 5.3 of dividing the Internet caching server placement into multiple domains

as well as a video proxy server domain.

A few more conclusions were drawn from these findings. The fact that GDSHits

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 321 -

usually performed better than SizeLFLRU in miss rates for Web proxy workload

traces suggested that the inflation parameter did a better job of decaying cache re-

placement scores. Conversely, the inflation parameter was not as appropriate as the

last access statistic in measuring recency of access for the video proxy server traces.

Also, generally there was not much difference in the performance of SPACExAGE and

SPACExAGEtc. This meant that there was not much difference in using the number

of accesses since an object was last accessed versus using the number of seconds since

on object was last accessed.

Finally, the LRV algorithm from [LRV97] performed poorly for almost every work-

load trace in this study. One possible reason for the pitiful performance of the LRV

algorithm was that the parameters were not “tuned” to the given workload traces.

However, most proxy cache server installations are done without having to set such

parameters. And if such parameters were to be set, there is no guarantee that the

traffic characteristics are not going to change. The LRV algorithm and the paper that

introduced it provide some interesting theoretical insight, but it has too many issues

for it to be seriously considered for implementation in a proxy cache server. The

discussion then went on to support the fact that the added computational complexity

of these more complex cache replacement algorithms was worthwhile.

Section 6.2 showed that, in general, an admission policy did not improve the

performance of non-ideal cache replacement algorithms. The findings showed that it

was very difficult to determine the cachability of objects immediately after they were

requested.

Finally in Section 6.3, it was concluded that caching the entire videos should be

done in the OnCommand hotel movie video-on-demand system because most of the

video sessions on this system lasted the entire length of the videos. On the other

hand, it was not entirely clear that video objects should be cached in their entirety

on the DVJ2 educational multimedia system. All but one of the statistics on the

DVJ2 system suggested that the video objects should be cached in their entirety.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 322 -

7.2 Contributions

This research makes several important contributions to what is understood about

implementing distributed multimedia proxy caches.

• It presents the fully-associative, variable block size cache replacement algorithm

problem as a unique model which illuminates a new method of looking at its

issues.

• It explores the performance of the cache replacement algorithms using a wide

variety of traces and situations that are encountered in distributed multimedia

systems, including web server traces and multimedia video system traces.

• Also, the research is the first public study to actually use video server event

traces from an educational multimedia testbed system (the DVJ2 systems) and

from a commercial hotel video server system (the OnCommand OCX [OnC99b]

system).

• This study analyzes the statistics of the workload traces, and justifies the need

to determine which proxy caching domain in which the proxy caching server

will be used by showing the differences in several significant statistics for the

different proxy caching domains.

• Another contribution of this study is the introduction of four new cache replace-

ment policies which are based on observations from other studies and on the

characteristics of various workload access traces.

• Most previous studies have only compared a few cache replacement algorithms

at a time. This research compares most of the cache replacement algorithms

from previous studies using a variety of input workload access traces from vari-

ous regions of the delivery network. One goal of this research was to determine

which of these replacement policies perform best for different types of systems in

different proxy caching domains, thereby determining which cache object statis-

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 323 -

tics are most important for determining the future access patterns for various

typical system traces.

• This study explores the effectiveness of using a cache admission policy in de-

termining whether a document should be cached when it is first accessed. An

admission policy is implemented as part of each cache replacement algorithm

for which an admission policy affects the cache performance.

• Finally, this study examines whether video server traces should be cached in

proxy servers or should merely be buffered.

7.3 Future Research

The next steps for this research involve developing new cache replacement algo-

rithms, exploring much larger workload traces for simulation, and gaining access to

and using other workload traces in the simulations.

In terms of new cache replacement algorithms, it would be very interesting to

explore the more difficult cache object statistics like time-to-live and time-to-retrieve

and how they compare with the cache replacement algorithms of this study. However,

as mentioned in Section 2.5, these two values are very difficult to determine for cache

objects. Until a method for collecting these values in workload traces is developed,

this comparison will not be feasible.

Exploring much larger workload traces is a promising area of further research.

Memory and processing speed limitations in the simulation computer systems kept

the size of most of the workload trace to under 350,000 requests. It would be very

interesting to run simulations on workload traces of over one million requests. This

will involve several improvements. First, the primary simulation machine, an Intel

Pentium3-Zeon based workstation running Linux, will be upgraded to at least 512

megabytes of main memory. Also, the current Perl scripts, which translated the

raw workload logfiles into simulator input files while also statistically analyzing the

requests, allowed for quick code generation, but they did not manage memory as

efficiently as if they had been coded in C. The 350,000 request limit was caused

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 324 -

by the memory allocation inefficiency of Perl. So, some of the Perl scripts will be

rewritten in C to implement more efficient memory management thereby hopefully

allowing much larger traces to be translated. Only three of the collected trace sets

had over 350,000 requests in the entire set of traces, and they are the Boeing traces,

the NLANR traces, and the HP World Cup 1998 traces. So rewriting the translators

will take some effort, but the results these larger consecutive traces will be interesting.

Another possibility for exploring much larger workload traces would be to rewrite

the simulator. The current version of the simulator was written to accommodate the

OPT ideal algorithm. This meant having to load the entire trace being simulated into

memory to be able to find the next request time for the currently requested object.

The simulator could be rewritten to only load in the next 10,000 or 100,000 requests

for OPT to use. With this implementation, the OPT algorithm would no longer truly

be Belady’s Optimal algorithm, but it would still provide a very good indication

of how well a cache replacement algorithm could perform. In writing this revised

simulator, the Perl script translators would no longer be necessary because the parsing

and interpretation of the workload trace files would be migrated into the simulator

software. This would eliminate the possibility of having the Perl scripts run out of

memory as was explained in the previous paragraph. However, the rewritten simulator

would run slower because it would need to translate the object string identifiers – the

Web uniform resource locators, video titles, etc. – into the internal integer identifiers,

and it also needs to maintain the data structure that keeps track of which internal

integer identifier was assigned to which object string identifier. So this rewritten

simulator would probably run slower, but it would be able to handle much larger

workload traces.

Finally, it would be interesting to gain access to other workload traces. The traces

in this study were difficult to retrieve for a variety of reasons. Most organizations

are resolute about not allowing anyone access to the workload traces of their proxy

cache servers because of privacy issues. They usually think that any study using such

traces is a marketing study and that they are divulging private information of their

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 325 -

employees and their company. Even when the technical research intent of the study is

emphasized, they usually continue to be very reluctant. Furthermore, unbeknownst

to most company officials, the workload traces can be “sanitized” with simple Perl

scripts which remove such things as the requesting machines’ network addresses and

the users’ logins if they are recorded in the trace file. Other companies either do

not keep logfile records of the accesses that their proxy servers service, or do not

archive them. But as companies, schools, and other organizations become more Web

savvy, they will hopefully be more willing to share their request traces for the sake of

improving our understanding of Internet performance enhancing techniques. There

have been some inroads toward this already. For instance, ACM SIGCOMM sponsors

a Web site called the Internet Traffic Archive at http://ita.ee.lbl.gov/ at which

links to several Web workload trace archives are stored. So as more appropriate

workload traces are posted to the Internet Traffic Archive and other such sites, they

could be used as input for the simulator once a Perl translator is written for them.

7.4 Research Implications

From these findings, it would be recommended to include several cache replace-

ment algorithms into Squid and other such Web proxy cache server software. In the

configuration file, new parameters could be added which characterize the environment

in which the proxy server would be used. From these characterizing parameters, an

appropriate cache replacement policy could be used. John Dilley, Martin Arlitt, and

Stephane Perret at HP Labs have made some progress in this arena by programming

LFU-DA and GDSHits into a prototype version of Squid 2.0 [DAP99]. Looking fur-

ther ahead, it would be very efficient for the proxy cache server software to analyze

the request stream in real time and then adjust the cache replacement algorithm

that it uses thereby adapting to user access patterns as they are happening. And by

implementing the cache replacement algorithm using the cache replacement scoring

paradigm, it will become much easier to handle different types of objects with dif-

ferent cache replacement algorithms. These object differentiations can be based on

object type (video content, text, etc.), content type (advertisements, articles, images,

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 326 -

etc.), or other object characteristics.

As for video-on-demand systems, there are no hierarchical multimedia systems

currently in use in educational institutions nor in corporations. But once such sys-

tems start being implemented, it would be strongly recommended that the system

architects of those system use the results of this study as a basis for implementing the

cache replacement policies of the video proxy servers. There are a number of Internet

video caching systems being developed and deployed as mentioned in Section 1.2.

Among those are systems by like Apple, Akamai, and Novell with QuickTime TV,

RealNetworks with Broadcast.com, and Microsoft [Gro99]. It would be very inter-

esting to apply the findings from this study to the video caching systems that these

companies are deploying including the findings on caching entire videos versus only

buffering portions of the videos.

Since it has been shown that an admission policy does not improve the perfor-

mance of cache replacement algorithms, it is recommended that proxy cache servers

in any domain should not implement an admission policy. The only exceptions may

be using one with the SLRU cache replacement algorithm. Admission policies could

also be used with video proxy servers in commercial systems similar to the OnCom-

mand system. For this workload trace from the OnCommand system, the GDSHits

and LFU-DA had over 5% lower miss rate using an admission policy giving them the

lowest overall miss rates.

Another way to discuss these findings is to take some of the most popular in-

formation services on the Web and determine which of the workload traces from

this research are closest to them in terms of characteristics. Among these popular

Web services are digital libraries like the IEEE Digital Library, subscription services

like magazines and newspapers, and online stores which use massive databases like

Amazon.com. For each of these services, some of their transactions are conducted

over secure session which are not cachable with any technology. However, many of

their transactions are not secure session transactions, and these transactions can be

broken down into static and dynamic transactions. Static transactions are direct

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 327 -

requests for a certain web object, while dynamic transactions determine what web

objects are needed in a just-in-time manner. Currently, almost all of the caching

being done in the Internet are static transactions. The dynamic transactions can also

involve transferring software code across the transaction connection. These dynamic

transactions are difficult to cache because they usually contain data that is generated

exclusively for the requesting client; no other client is likely to receive the same data.

However, some objects of the requests can be cached. Also, as the technology like

the Active Cache project at the University of Wisconsin’s Computer Science Depart-

ment [CZB98] becomes more mature, the caching of software agents and other code

will be cached more often in proxy cache servers.

So which of the workload traces most resembles the transaction patterns that

would be observed from these digital library, subscription, and online store services?

In the network and client domains, these transaction requests would behave much like

any other request pattern. This is because the service accesses are just another set of

accesses. It is possible that such services would be implemented in a distributed set

of servers much like the 30 servers of the HP World Cup 1998 site were. This brings

up the origin server domain. Within this domain the request patterns for each of

these services would probably most resemble the patterns of the HP World Cup 1998

server farm trace. In these services as well as the World Cup server farm, there are a

few objects that are very popular while there are many more that are only accessed

a few times. In the subscription services, there are certain news articles, images, and

news videos that are the most popular while other objects are accessed relatively few

times. The same is true for a digital library in which the latest articles are probably

the most popular, and with a few exceptions, the older articles are accessed relatively

few times. And with the online store services, there are certain items that are very

popular while others are bought relatively infrequently.

The similarity of these service request patterns to the World Cup trace suggests

that the services could be deployed using distributed server farms. A central set

of servers would host the entire site while the remote servers could cache the most

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 328 -

popular requests of the central servers thereby offloading some of the workload from

the central servers. These remote servers would then use the GDSHits or LFU-DA

cache replacement algorithms to determine what objects they should keep in their

cache. It would be interesting to work with one or more of these service companies

to determine how caching could improve their delivery techniques.

The work from this study will help bring universities, corporations, and individuals

closer to realizing just-in-time distance learning and general video viewing across the

entire Internet. By being able to predict the expected demand for multimedia objects

and caching objects at strategically positioned proxy servers, the bandwidth usage

on the organizations’ networks will be reduced, thereby allowing more bandwidth to

serve more users. Also, findings from this study can also impact the efficiency of

distributed databases and other distributed information systems.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 329 -

LIST OF REFERENCES

[ABCdO96] Virgilio Almeida, Azer Bestavros, Mark Crovella, and Adri-
ana de Oliveira. Characterizing reference locality in the
WWW. In Proceedings of PDIS’96: IEEE International
Conference in Parallel and Distributed Information Sys-
tems, Miami Beach, FL, December 1996. Available at:
http://www.cs.bu.edu/groups/oceans/papers/Home.html.

[ACD+99] Martin Arlitt, Ludmila Cherkasova, John Dilley, Richard Friedrich,
and Tai Jin. Evaluating content management techniques for
Web proxy caches. Technical Report HPL-1999-173, Hewlett
Packard Labs, Palo Alto, CA, April 1999. Available at:
http://www.hpl.hp.com/techreports/98/HPL-98-173.html.

[AFJ99a] Martin Arlitt, Rich Friedrich, and Tai Jin. Workload characteri-
zation of a Web proxy in a cable modem environment. Tech-
nical Report HPL-1999-48, HP Laboratories Palo Alto, Internet
Systems and Applications Laboratory, April 1999. Available at:
http://www.hpl.hp.com/techreports/.

[AFJ99b] Martin Arlitt, Richard Friedrich, and Tai Jin. Performance el-
valuation of Web proxy cache replacement policies. Technical
Report HPL-98-97R1, HP Laboratories Palo Alto, Internet Sys-
tems and Applications Laboratory, November 1999. Available at:
http://www.hpl.hp.com/techreports/.

[AJ99] Martin Arlitt and Tai Jin. Workload characterization of the 1998 World
Cup Web site. Technical Report HPL-1999-35, HP Laboratories Palo
Alto, Internet Systems and Applications Laboratory, February 1999.
Available at: http://www.hpl.hp.com/techreports/.

[AK96] Palmer W. Agnew and Anne S. Kellerman. Distributed Multimedia:
Technologies, Applications, and Opportunities in the Digital Infor-
mation Industry. Addison Wesley, 1996.

[Aka99a] Apple and Akamai create high quality network for Internet stream-
ing. Online press release from Akamai Technologies available at:
http://www.akamai.com/news/press1977.html, 1999. Posted July
21, 1999.

[Aka99b] Akamai teams with RealNetworks for streaming media deliv-
ery. Online press release from Akamai Technologies available
at: http://www.akamai.com/news/press4110.html, 1999. Posted
September 17, 1999.

[AOG92] David P. Anderson, Yoshitomo Osawa, and Ramesh Govindan. A file
system for continuous media. ACM Transactions on Computer Sys-
tems, 10(4):331–337, November 1992.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 330 -

[ASA+95] Marc Abrams, Charles R. Standridge, Ghaleb Abdulla, Stephen
Williams, and Edward A. Fox. Caching proxies: Limitations and
potentials. In Proceedings of the Fourth International World Wide
Web Conference, pages 119–133, Boston, December 1995. O’Reilly.
Available at: http://ei.cs.vt.edu/˜succeed/WWW4/WWW4.html.

[AW96] M. F. Arlitt and C. L. Williamson. Web server workload characteristics:
The search for invariants. In Proceedings of SIGMETRICS 96, pages
126–137, Philadelphia, PA, 1996. ACM.

[AW97] Martin F. Arlitt and Carey L. Williamson. Internet Web servers: Work-
load characterization and performance implications. IEEE/ACM
Transactions on Networking, 5(5):631–645, October 1997.

[Ban95] Mohana Krishna Bandaru. Interactive digital multimedia delivery for
personal learning. Master’s thesis, School of Electrical Engineering,
Purdue University, 1995.

[BCF+99] Lee Breslau, Pei Cao, Li Fan, Graham Phillips, and Scott Shenker. Web
caching and Zipf-like distributions: Evidence and implications. In
Infocom’99 Proceedings. IEEE, IEEE Press, March 1999. Available
at: http://www.cs.wisc.edu/˜cao/papers/zipf-implications.html.

[Bes97] Azer Bestavros. WWW traffic reduction and load balancing through
server-based caching. IEEE Concurrency, 5(1):56–67, January–
March 1997.

[BH96] Jean-Chrysostome Bolot and Philipp Hoschka. Performance engineer-
ing of the World Wide Web: Application to dimensioning and
cache design. In Proceedings of the Fifth International World Wide
Web Conference, Amsterdam, 1996. Elsevier Press. Available at:
http://www5conf.inria.fr/fich html/papers/P44/Overview.html.

[Bho95] Sudeep Bhoja. Interactive multimedia delivery for distance education.
Master’s thesis, School of Electrical Engineering, Purdue University,
1995.

[CD85] Hong-Tai Chou and David J. DeWitt. An evaluation of buffer manage-
ment strategies for relational database systems. In A. Pirotte and
Y. Vassiliou, editors, Proceedings of the 11th Conference on Very
Large Data Bases, pages 127–141, Stockholm, August 1985.

[CDN+96] Anawat Chankhunthod, Peter B. Danzig, Chuck Neerdaels, Michael F.
Schwartz, and Kurt J. Worrell. A hierarchical Internet object cache.
In Proceedings of 1996 Usenix Technical Conference, pages 153–163,
San Diego, CA, January 1996. Usenix.

[CGM97] Edward Chang and Hector Garcia-Molina. Reducing initial latency in
media servers. IEEE Multimedia, 5(3):50–61, July–September 1997.

[CHK+96] Kenneth K. Chan, Cyrus C. Hay, John R. Keller, Gordon P. Kurpanek,
Francis X. Schumacher, and Jason Zheng. Design of the HP PA 7200
CPU. Hewlett-Packard Journal, 47(1):25–33, February 1996.

[CI97] Pei Cao and Sandy Irani. Cost-aware WWW proxy caching algorithms.
In Proceedings of the 1997 USENIX Symposium on Internet Technol-
ogy and Systems, pages 193–206, December 1997.

[CLR90] Thomas H. Cormen, Charles E. Lieserson, and Ronald L. Rivest. Intro-
duction to Algorithms. McGraw Hill, New York, 1990.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 331 -

[CZB98] Pei Cao, Jin Zhang, and Kevin Beach. Active cache: Caching dynamic
contents on the Web. In Proceedings of IFIP International Conference
on Distributed Systems Platforms and Open Distributed Processing
(Middleware ’98), pages 373–388, 1998.

[DAP99] John Dilley, Martin Arlitt, and Stephane Perret. Enhancement and val-
idation of Squid’s cache replacement policy. Technical Report HPL-
1999-69, Hewlett Packard Labs, Palo Alto, CA, May 1999. Available
at: http://www.hpl.hp.com/techreports/1999/HPL-1999-69.html.

[DDM+95] Asit Dan, Daniel M. Dias, Rajat Mukherjee, Dinkar Sitaram, and Renu
Tewari. Buffering and caching in large-scale video servers. In Digest
of Papers of IEEE Compcon Spring 95, pages 217–224, Piscataway,
New Jersey, March 1995. IEEE.

[Den68] P. J. Denning. The working set model for program behavior. Commu-
nications of the ACM, 11(5):323–333, May 1968.

[DFJR96] John A. Dilley, Richard J. Friedrich, Tai Y. Jin, and Jerome Wide
Rolia. Measurement tools and modeling techniques for evaluating
Web server performance. Technical Report HPL-96-161, Hewlett
Packard Labs, Palo Alto, CA, December 1996. Available at:
http://www.hpl.hp.com/techreports/96/HPL-96-161.html.

[DHS93] Peter B. Danzig, Richard S. Hall, and Michael F. Schwartz. A case for
caching file objects inside internetworks. Technical Report CU-CS-
642-93, Dept. of Computer Science, University of Colorado, Boulder,
Colorado, March 1993.

[DS78] Peter J. Denning and Donald R. Slutz. Generalized working sets for
segment reference strings. Communications of the ACM, 21(9):750–
759, September 1978.

[DSK94] Jayanta K. Dey, Chia-Shiang Shih, , and Manoj Kumar. Storage sub-
system design in a large multimedia server for high-speed network
environments. In Proceedings of IS&T/SPIE Symposium on Elec-
tronic Imaging: in Science & Technology, Workshop on High-Speed
Networking and Multimedia Computing, pages 200–211, Bellingham,
Wash, February 1994. SPIE.

[DT94] Yurdaer N. Doǧanata and Asser N. Tantawi. Making a cost-effective
video server. IEEE Multimedia, 1(4):22–30, Winter 1994.

[EH84] Wolfgang Effelsberg and Theo Haerder. Principles of database buffer
management. ACM Transactions on Database Systems, 9(4):560–
595, December 1984.

[GC92] Jim Gemmell and Stavros Christodoulakis. Principles of delay-sensitive
multimedia data storage and retrieval. ACM Transactions on Infor-
mation Systems, 10(1):51–90, January 1992.

[GJ79] Michael R. Garey and David S. Johnson. Computers and Intractability.
Freeman, New York, 1979.

[Gla94] Steven Glassman. A caching relay for the World Wide Web. In Proceed-
ings of the First International World Wide Web Conference, pages
69–76, North-Holland, Amsterdam, 1994.

[Gro99] Niel Gross. The net’s next battle royal – video: The technology isn’t
there, but the competition is. BusinessWeek, pages 108–109, June
28, 1999.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 332 -

[GS95] James S. Gwertzman and Margo Seltzer. The case for geographical push-
caching. In Proceedings of the Fifth Workshop on Hot Topics in
Operating Systems (HotOS-V), pages 51–55. IEEE CS Press, 1995.

[GS96a] James Gwertzman and Margo Seltzer. An analy-
sis of geographical push-caching. Available at:
http://www.eecs.harvard.edu/˜vino/web/icdcs.ps, 1996.

[GS96b] James Gwertzman and Margo Seltzer. World-Wide Web cache consis-
tency. In Proceedings of 1996 Usenix Technical Conference, pages
141–151, San Diego, CA, January 1996. Usenix.

[GVK+95] D. James Gemmell, Harrick M. Vin, Dilip D. Kandlur, P. Venkat Rangan,
and Lawrence A. Rowe. Multimedia storage servers: A tutorial. IEEE
Computer, 28(5):40–49, May 1995.

[Has93] Roger L. Haskin. The Shark continuous-media file server. In Proceedings
of IEEE 1993 Spring COMPCON, pages 12–17, San Francisco, CA,
1993. IEEE.

[Inf99] Infolibria and Avid Technology introduce Internet’s most pow-
erful streaming media system using Microsoft Windows
Media. Online press release from InfoLibria available at
http://www.infolibria.com/news/pressrel1999-1011b.html, 1999.
Posted October 11, 1999.

[Ink99] Inktomi announces Traffic Servertm 3.0: First open network
cache platform enables value-added services through robust
APIs – six new software providers announce support for
platform. Online press release from Inktomi available at
http://www.inktomi.com/new/press/ts3.html, 1999. Posted April
26, 1999.

[Jou90] Norman Jouppi. Improving direct-mapped cache performance by the
addition of a small fully-associative cache and prefetch buffers. In
Proceedings of the 17th Annual International Symposium on Com-
puter Architecture, Seattle, June 1990. ACM.

[KCS94] Dilip D. Kandlur, Mon-Song Chen, and Zon-Yin Shae. Design of a
multimedia storage server. In Proceedings of IS&T/SPIE Sympo-
sium on Electronic Imaging: in Science & Technology, Workshop on
High-Speed Networking and Multimedia Computing, pages 164–178,
Bellingham, Wash., February 1994. SPIE.

[KLW94] Ramakrishna Karedla, J. Spencer Love, and Bradley G. Wherry. Caching
strategies to improve disk system performance. IEEE Computer,
27(3):38–46, March 1994.

[KMR95] Thomas T. Kwan, Robert E. McGrath, and Daniel A. Reed. NCSA’s
World Wide Web server: Design and performance. IEEE Computer,
28(11):68–74, November 1995.

[KRT95] Mohan Kamath, Krithi Ramamritham, and Don Towsley. Continuous
media sharing in multimedia database systems. In Tok Wang Ling
and Yoshifumi Masunaga, editors, Proceedings of the Fourth Inter-
national Conference on Database Systems for Advanced Applications
(DASFAA ’95). World Scientific Publishing Co., April 1995.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 333 -

[KSW98] Michal Kurcewicz, Wojtek Sylwestrzak, and Adam Wierzbicki. A filter-
ing algorithm for Web caches. Computer Networks and ISDN Sys-
tems, 30(22–23):2203–2209, November 1998.

[LA94] Ari Luotonen and Kevin Altis. World-Wide Web proxies. In First Inter-
national Conference on the WWW, Geneva, May 1994. Also appeared
in Computer Networks and ISDN Systems 27, No. 2, 1994. Available
at: http://www1.cern.ch/PapersWWW94/luotonen.ps.

[Lee98] Jack Y.B. Lee. Parallel video servers: A tutorial. IEEE Multimedia,
6(2):20–28, April–June 1998.

[LRB82] D. H. Lawrie, J. M. Randal, and R. R. Barton. Experiments with auto-
matic file migration. IEEE Computer, pages 45–55, July 1982.

[LRV97] Paolo Lorenzetti, Luigi Rizzo, and Lorenzo Vicisano. Replacement
policies for a proxy cache. Technical report, Department of In-
formation Engineering, University of Pisa, 1997. Available at:
http://www.iet.unipi.it/luigi/research.html.

[LS93] Philip Lougher and Doug Shepherd. The design of a storage server for
continuous media. The Computer Journal, 36(1):32–42, 1993.

[LYW91] A. Leff, P. Yu, and J. Wolf. Policies for efficient memory utilization in a
remote caching architecture. In Proceedings of the First International
Conference on Parallel and Distributed Information Systems, pages
198–207, December 1991.

[Mar96] E. Markatos. Main memory caching of Web documents. Computer Net-
works and ISDN Systems, 28(11):893–905, May 1996.

[Mat99] Novell preps QTV caching server. Online news article on Macweek.com
available at http://macweek.zdnet.com/1999/11/07/novell.html,
1999. Posted Tuesday, November 9, 1999.

[MBN96] David G. Meyer, M. Krishna Bandaru, and Christopher C. Niessen. The
*VJ instructional multimedia testbed systems: Recent experiences in
development and utilization. In 1996 Frontiers in Education Confer-
ence Proceedings, Salt Lake City, Utah, November 1996.

[MH92] Dan Muntz and Peter Honeyman. Multi-level caching in distributed file
systems or your cache ain’t nuthing but trash. In Proceedings of
Winter 1992 Usenix, pages 305–313. Usenix Assoc., 1992.

[Mim00] MIME (multi-purpose internet mail extensions). Online document avail-
able at http://www.whatis.com/mime.htm, 2000.

[MK94] David G. Meyer and Richard A. Krzyzkowski. Experience using the
VideoJockey system for instructional multimedia delivery. In Proceed-
ings of the 1994 Frontiers in Education Conference, pages 262–266,
San Jose, California, November 1994.

[MLB95] Radhika Malpani, Jacob Lorch, and David Berger. Making
World Wide Web caching servers cooperate. In Proceed-
ings of the Fourth International World Wide Web Conference,
pages 107–117, Boston, December 1995. O’Reilly. Available at:
http://ei.cs.vt.edu/˜succeed/WWW4/WWW4.html.

[MNR97] David G. Meyer, Christopher C. Niessen, and Albert I. Reuther. Ex-
perimental multimedia-delivered course formats. In Proceedings of

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 334 -

1997 Frontiers in Education Conference, Pittsburgh, Pennsylvania,
November 1997. Paper No. 97-1197 (published on CD-ROM).

[NJT93] Ciro A. Noronha Jr. and Fouad A. Tobagi. The evolution of campus net-
works toward multimedia. In Proceedings of IEEE Compcon Spring
93, pages 49–58, Los Alamitos, California, 1993. IEEE, CS Press.

[NS95] Klara Nahrstedt and Ralf Steinmetz. Resource management in net-
worked multimedia systems. IEEE Computer, 28(5):52–63, May
1995.

[NY94] Raymond T. Ng and Jinhai Yang. An analysis of buffer sharing and
prefetching techniques for multimedia systems. Technical report, De-
partment of Computer Science, University of British Columbia, Van-
couver, B.C., 1994.

[OBRS95] Banu Özden, Alexandros Biliris, Rajeev Rastogi, and Avi Silberschatz.
A disk-based storage architecture for movie on demand servers. Infor-
mation Systems, 20(6):465–482, 1995. Available on the Fellini home
page: http://www.bell-labs.com/project/fellini/papers.html.

[OnC99a] On Command Corporation. Online document available from
http://www.oncommand.com/, 1999.

[OnC99b] On Command announces commercial deployment of breakthrough
OCX[tm] in-room entertainment platform for hotels. Online press
release available at http://www.oncommand.com/ocxplatform.htm,
1999.

[ORS96] Banu Özden, Rajeev Rastogi, and Avi Silberschatz. Buffer replace-
ment algorithms for multimedia databases. In IEEE Interna-
tional Conference on Multimedia Computing and Systems, June
1996. Available on the Fellini home page: http://www.bell-
labs.com/project/fellini/papers.html.

[Pap91] Athanasios Papoulis. Probability, Random Variables, and Stochastic Pro-
cesses. McGraw Hill, Inc., New York, third edition edition, 1991.

[PF76] B. G. Prieve and R. S. Fabry. VMIN—an optimal variable space page-
replacement algorithm. Communications of the ACM, 19(5):295–297,
May 1976.

[PR94] James E. Pitkow and Margaret M. Recker. A simple yet robust caching
algorithm based on dynamic access patterns. In Proceedings of the
Second International WWW Conference, pages 1039–1046, Chicago,
1994.

[PR97] Christos Papadimitriou and P. Venkat Rangan. System and method for
selecting cache server based on transmission and storage factors for
efficient delivery of multimedia information in a hierarchical network
of servers. U.S. Patent number 5,592,626, January 1997.

[PRR94] Christos H. Papadimitriou, Srinivas Ramanathan, and P. Venkat Ran-
gan. Information caching for delivery of personalized video programs
on home entertainment channels. In Proceedings of the International
Conference on Multimedia Computing and Systems, pages 214–223.
IEEE CS Press, 1994.

[Ran96] P. Venkat Rangan. System for efficient delivery of multimedia informa-
tion using hierarchical network of servers selectively caching program

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 335 -

for a selected time period. U.S. Patent number 5,583,994, December
1996.

[RD90] John T. Robinson and Murthy V. Devarakonda. Data cache manage-
ment using frequency-based replacement. In Proceedings of 1990
ACM SIGMETRICS Conference on Measurement and Modeling of
Computer Systems, volume 18, pages 134–142, Boulder, Colorado,
May 1990. Performance Evaluation Review.

[Red97] A. L. Narasimha Reddy. Caching strategies for a multimedia server. In
Proc. IEEE Int. Conf. on Multimedia Computing and Systems, June
1997.

[Reu96] Albert I. Reuther. Analysis of educational multimedia delivery: Cur-
rent and future testbed systems. Master’s thesis, School of Electrical
Engineering, Purdue University, 1996.

[RM97] Albert I. Reuther and David G. Meyer. Analysis of daily student usage of
an educational multimedia system. In Proceedings of 1997 Frontiers
in Education Conference, Pittsburgh, Pennsylvania, November 1997.
Paper No. 97-1203 (published on CD-ROM).

[RR94] Srinivas Ramanathan and P. Venkat Rangan. Architectures for person-
alized multimedia. IEEE Multimedia, 1(1):37–46, January–March
1994.

[RV93] P. Venkat Rangan and Harrick M. Vin. Efficient storage techniques for
digital continuous multimedia. IEEE Transactions on Knowledge and
Data Engineering, 5(4):564–573, August 1993.

[Sat90] Mahadev Satyanarayanan. Scalable, secure, and highly available dis-
tributed file access. IEEE Computer, 23(5):9–21, May 1990.

[SC98] Chutimet Srinilta and Alok Choudhary. Performance enhancement us-
ing intra-server caching in a continuous media server. In Eighth
International Workshop on Research Issues in Data Engineering:
Continuous-Media Databases and Applications, Florida, USA, Febru-
ary 1998.

[Sel88] Timos K. Sellis. Intelligent caching and indexing techniques for relational
database systems. Information Systems, 13(2):175–185, 1988.

[SG98] Abraham Silberschatz and Peter Galvin. Operating System Concepts.
Addison Wesley, Reading, Massachusetts, 5th edition, 1998.

[SKK+90] Mahadev Styanarayanan, James J. Kistler, Puneet Kumar, Maria E.
Okasaki, Ellen H. Siegel, and David C. Streere. Coda: A highly
available file system for distributed workstation environments. IEEE
Transactions on Computers, 39(4), April 1990.

[Smi81] Alan Jay Smith. Long term file migration: Development and evaluation
of algorithms. Communications of the ACM, pages 521–532, August
1981.

[Smi82] Alan Jay Smith. Cache memories. Computing Surveys, 14(3):473–530,
September 1982.

[SS82] G. M. Sacco and M. Schkolnick. A mechanism for managing the buffer
pool in a relational database system using the hot set model. In
Proceedings of the 8th Conference on Very Large Data Bases, pages
257–262, Mexico City, September 1982.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 336 -

[SSV97] Peter Scheuermann, Junho Shim, and Radek Vingralek. A case for delay-
conscious caching of Web documents. Computer Networks and ISDN
Systems, 29:997–1005, 1997. Also in Proceedings of the Sixth Inter-
national World Wide Web Conference.

[SSV99] Junho Shim, Peter Scheuermann, and Radek Vingralek. Proxy cache
algorithms: Design, implementation, and performance. IEEE
Transactions on Knowledge and Data Engineering, 11(4):549–562,
July/August 1999.

[Ste90] Per Stenström. A survey of cache coherence schemes for multiprocessors.
IEEE Computer, 23(6):12–24, June 1990.

[Tob95] Fouad A. Tobagi. Distance learning with digital video. IEEE Multimedia,
2(1):90–93, Spring 1995.

[TP93] Fouad A. Tobagi and Joseph Pang. StarWorks—a video applications
server. In Proceedings of IEEE Compcon Spring 93, pages 4–11, Los
Alamitos, California, 1993. IEEE, CS Press.

[TPBG93] Fouad A. Tobagi, Joseph Pang, Randall Baird, and Mark Gang. Stream-
ing RAID: A disk array management system for video files. In Pro-
ceedings of the First International Conference on Multimedia, pages
393–400, New York, 1993.

[TVDS98] Renu Tewari, Harrick M. Vin, Asit Dan, and Dinkar Sitaram. Resource-
based caching for Web servers. In Proceedings of ACM/SPIE Multi-
media Computing and Networking 1998 (MMCN’98), pages 191–204,
San Jose, January 1998.

[WA97] Roland P. Wooster and Marc Abrams. Proxy caching the estimates page
load delays. Computer Networks and ISDN Systems, 29:977–986,
1997. Also in Proceedings of the Sixth International World Wide
Web Conference.

[WAS+96] Stephen Williams, Marc Abrams, Charles R. Standridge, Ghaleb Ab-
dulla, and Edward A. Fox. Removal policies in network caches for
World-Wide Web documents. In Proceedings of Sigcomm96 Confer-
ence. ACM, August 1996.

[Wes96] Duane Wessels. Squid Internet object cache. Online document available
from http://squid.nlanr.net/Squid, May 1996.

[Wil65] Maurice Wilkes. Slave memories and dynamic storage allocation. IEEE
Transactions on Electronic Computers, EC-14(2):270–271, April
1965.

[You94] N. Young. The k-server dual and loose competitiveness for paging. Al-
gorithmica, 11(6):525–541, June 1994.

[Zip49] George K. Zipf. Human Behaviour and the principles of Least Effort.
Addison-Wesley, Reading MA, 1949.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 337 -

VITA

ALBERT I. REUTHER

EDUCATION

Purdue University, West Lafayette, Indiana, 1989-2000

Ph.D. in Electrical and Computer Engineering, July 2000, Area of Specializa-

tion: Computer Architectures.

M.S. in Electrical Engineering, 1996.

B.S. in Computer and Electrical Engineering, 1994, with Highest Distinction

and Co-op Certificate in Engineering.

AWARDS AND HONORS

Intel Foundation Fellowship, 1999-2000.

Purdue Andrews Graduate Fellowship, 1994-1996.

US Air Force Graduate Fellowship (US D.O.D.), 1994. (Funding canceled in US

Congress.)

National Science Foundation Graduate Fellowship Honorable Mention, 1995.

Eta Kappa Nu, inducted 1993.

Golden Key National Honor Society, inducted 1993.

Tau Beta Pi, inducted 1992.

RESEARCH

Doctoral Research: School of Electrical and Computer Engineering, Purdue

University, 1995-2000 (research advisor: Prof. David G. Meyer).

• Investigation of higher complexity cache replacement algorithms for use

in Web-based and video cache proxy servers.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 338 -

• Development of storage recycling data replacement algorithms for data

forwarding problem in networked systems of computers.

• Analysis of student usage patterns of educational multimedia testbed de-

livery systems.

• Exploration of the effect of personality types on the usage of a multimedia

engineering education system.

• Study on task mapping algorithms in heterogeneous computing environ-

ments (with Prof. Howard J. Siegel).

Corporate Research: Research Engineering in the Internet/Applications Sys-

tems Lab, Hewlett-Packard Corporation, Roseville, California, 1999.

• Researched distributed system management techniques for a next genera-

tion web server system.

• Analyzed performance characteristics of high-performance web server ap-

plications and their interactions.

Corporate Research: Engineering Research and Development Department, Del-

co Chassis Division, General Motors Corporation, Dayton, Ohio, 1992-1993.

• Created and developed user-friendly graphical application software that

interfaced with experimental microprocessor-based antilock brake system

controller and tire inflation monitor system.

• Researched and developed helium leak test station and torque-controlled

screw driver station for experimental motor actuator assembly. First use

of helium leak detection at plant.

EXPERIENCE

Engineering Intern: Research Engineering, Internet/Applications Systems Lab,

Hewlett- Packard, Corporation, Roseville, California, May 1999 to August

1999.

Researched remote management software and analyzed performance

of next generation web servers.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 339 -

Engineering Intern: Firmware Group, General Systems Lab, Hewlett-Packard,

Corporation, Roseville, California, May 1997 to July 1997.

Co-developed firmware simulator design for highly parallel computer

server and implemented reusable I/O modules for firmware simulator.

Research Assistant: Digital Systems Laboratory/Multimedia Learning Labora-

tory, School of Electrical and Computer Engineering, Purdue University, West

Lafayette, Indiana, August 1995 to July 2000.

Analysis of student usage patterns of educational multimedia testbed

delivery systems to aid in developing and improving educational mul-

timedia delivery systems.

Teaching Assistant: Undergraduate Counseling Office, School of Electrical and

Computer Engineering, Purdue University, West Lafayette, Indiana, August

1994 to July 2000.

Provide undergraduate electrical engineering students with course,

schedule, and career counseling. Lead tours of School of Electrical

and Computer Engineering for prospective students.

Engineering Co-op Student: Delco Chassis Division, General Motors Corpo-

ration, Dayton, Ohio, May 1990 to May 1993.

Various positions in product research and development, manufactur-

ing research, plant engineering, project management, and laboratory

validation engineering.

PUBLICATIONS AND PRESENTATIONS

Publications

Tracy D. Braun, Howard Jay Siegel, Noah Beck, Ladislau L. Bölöni, Muthucumaru

Maheswaran, Albert I. Reuther, James P. Robertson, Mitchell D. Theys, Bin

Yao, Debra Hensgen, and Richard F. Freund, A Comparison Study of Eleven

Static Heuristics for Mapping a Class of Independent Tasks onto Heteroge-

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 340 -

neous Distributed Computing Systems, Technical Report, School of Electrical

and Computer Engineering, Purdue University, March 2000, TR-ECE 00-4, 57

pp.

Tracy D. Braun, Howard Jay Siegel, Noah Beck, Ladislau L. Bölöni, Muthucumaru

Maheswaran, Albert I. Reuther, James P. Robertson, Mitchell D. Theys ,

Bin Yao, Debra Hensgen, and Richard F. Freund, “A comparison study of

static mapping heuristics for a class of meta-tasks on heterogeneous computing

systems,” 8th IEEE Workshop on Heterogeneous Computing Systems (HCW

’99), San Juan, Puerto Rico, April 1999, pp. 15–29.

Tracy D. Braun, Howard Jay Siegel, Noah Beck, Ladislau Bölöni, Muthucumaru

Maheswaran, Albert I. Reuther, James P. Robertson, Mitchell D. Theys, and

Bin Yao, “A Taxonomy for Describing Matching and Scheduling Heuristics

for Mixed-Machine Heterogeneous Computing Systems,” IEEE Workshop on

Advances in Parallel and Distributed Systems, West Lafayette, IN, October

1998, pp. 330–335, (included in the Proceedings of the 17th IEEE Symposium

on Reliable Distributed Systems, 1998).

Albert I. Reuther and David G. Meyer, “Analysis of Daily Student Usage of

an Educational Multimedia System,” 1997 Frontiers in Education Conference

Proceedings, Pittsburgh, Pennsylvania, November 1997, Paper No. 97-1203

(published on CD-ROM).

David G. Meyer, Christopher C. Niessen, and Albert I. Reuther, “Experimental

Multimedia-Delivered Course Formats,” 1997 Frontiers in Education Confer-

ence Proceedings, Pittsburgh, Pennsylvania, November 1997, Paper No. 97-

1197 (published on CD-ROM).

Albert I. Reuther and David G. Meyer, “The AVJ Instructional Multimedia

Testbed System: Analysis of Student Usage Patterns,” 1997 ASEE Illinois/In-

diana Sectional Conference Proceedings, Indianapolis, Indiana, March 1997,

pp. 165-168.

Albert I. Reuther, Analysis of Educational Multimedia Delivery: Current and

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 341 -

Future Testbed Systems, Master’s Thesis, School of Electrical Engineering,

Purdue University, 1996.

Manuscripts in Preparation

Tracy D. Braun, Howard Jay Siegel, Noah Beck, Ladislau L. Bölöni, Muthucumaru

Maheswaran, Albert I. Reuther, James P. Robertson, Mitchell D. Theys, Bin

Yao, Debra Hensgen, and Richard F. Freund, “A Comparison of Eleven Static

Heuristics for Mapping a Class of Independent Tasks onto Heterogeneous Dis-

tributed Computing Systems,” submitted to the Journal of Parallel and Dis-

tributed Computing for a Special Issue on Software Support for Distributed

Computing.

Albert I. Reuther and David G. Meyer, “Cache Replacement Algorithms and

Admission Policies for Internet Cache Proxy Servers”, work in progress for

refereed journal submission.

Albert I. Reuther and David G. Meyer, “Cache Replacement Algorithms for Digi-

tal Video Cache Proxy Servers”, work in progress for refereed journal submis-

sion.

Albert I. Reuther and David G. Meyer, “Analysis of Student Usage of an Educa-

tional Multimedia System”, work in progress for refereed journal submission.

Albert I. Reuther and David G. Meyer, “The Effect of Personality Type on the

Usage of a Multimedia Engineering Education System”, work in progress for

refereed journal submission.

Stacey Engel, Jeanine Friedrich, Albert I. Reuther, and David G. Meyer, “Analysis

of Student Response to Asynchronous Learning with Technology,” work in

progress for refereed journal submission.

David G. Meyer, Ku Jei King, Christopher C. Niessen, and Albert I. Reuther,

“The DVJ2 Educational Multimedia Delivery System”, work in progress for

refereed conference proceedings submission.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 342 -

Posters and Presentations

Albert Reuther and David G. Meyer, Proxy Cache Servers in the Wireless Market,

Poster for Purdue Electrical and Computer Engineering Industry Workshop,

Purdue University, West Lafayette, Indiana, April 2000. Won second place in

poster competition.

Albert Reuther, V830R/AV: Embedded Multimedia Superscalar RISC Processor,

paper by Kazumasa Suzuki, Tomohisa Arai, Kouhei Nadehara, and Ichiro

Kuroda, presentation given for Computer Architecture Seminar at Purdue,

February 17, 2000.

Tracy Braun, Noah Beck, Ladislau Boloni, Albert Reuther, James Robertson,

Mitchell Theys, Bin Yao, H. J. Siegel, Richard Freund, Debra Hensgen, and

Muthucumaru Maheswaran, Static Mapping Heuristics for Meta-Tasks in Dis-

tributed Heterogeneous Computing Systems, Poster for Purdue Electrical and

Computer Engineering Industry Institute, Purdue University, West Lafayette,

Indiana, March 1999.

Albert Reuther, Memory-System Design Considerations for Dynamically-Sche-

duled Processors, paper by Keith I. Farkas, Paul Chow, Norman P. Jouppi,

and Zvonko Vranesic, presentation given for Computer Architecture Seminar

at Purdue, November 12, 1998.

Albert Reuther, Christopher Niessen, Ku-Jei King, and David G. Meyer, The *VJ

Instructional Research Multimedia Testbed, Poster for Purdue Electrical and

Computer Engineering Industry Institute, Purdue University, West Lafayette,

Indiana, April 1998.

David G. Meyer, Christopher Niessen, Albert Reuther, and Ku-Jei King, Tech-

nology- Delivered Education: Some Questions and Answers, Workshop given

at Teaching, Learning, and Technology Showcase, Purdue University, West

Lafayette, Indiana, March 1998.

Albert Reuther, Christopher Niessen, Ku-Jei King, and David G. Meyer, The

*VJ Educational Multimedia Delivery Systems, Poster for Purdue Electrical

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

- 343 -

Engineering Industry Institute, Purdue University, West Lafayette, Indiana,

April 1997.

PROFESSIONAL SOCIETIES

Institute of Electrical and Electronics Engineers (I.E.E.E.) and I.E.E.E. Computer

Society, , the Association of Computing Machinery (A.C.M.), Eta Kappa Nu

Electrical and Computer Engineering Honor Society, and Tau Beta Pi Engineering

Honor Society.

OTHER ACTIVITIES

Eta Kappa Nu: Workshop Chairman, Fall 1995 Fall 1997 and Fall 1998; Alumni

Relations Committee Chairman, Fall 1997 Summer 2000.

Purdue University Marching Band: Fall 1989 Fall 1993; Rank Leader, Fall 1992;

Assistant Section Leader, Fall 1993.

Purdue University Jazz Band: Fall 1994 Summer 2000.

Purdue Triathlon Club: Spring 1999 Summer 2000.

Worldwide Discipleship Association: Treasurer, Fall 1999 Spring 2000; Publicity

Committee Fall 1994 Spring 2000.

Purdue Christian Campus House: Worship Band member, bass guitar.

Albert Reuther
© 2000 Albert I. Reuther & Purdue University

