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We study the classical capacitated multi-item lot-sizing problem with hard capacities. There are N items, each of
which has specified sequence of demands over a finite planning horizon of T discrete periods; the demands are
known in advance but can vary from period to period. All demands must be satisfied on time. Each order incurs
a time-dependent fixed ordering cost regardless of the combination of items or the number of units ordered, but
the total number of units ordered cannot exceed a given capacity C. On the other hand, carrying inventory from
period to period incurs holding costs. The goal is to find a feasible solution with minimum overall ordering and
holding costs.

We show that the problem is strongly NP-hard, and then propose a novel facility location type LP relaxation that
is based on an exponentially large subset of the well-known flow-cover inequalities; the proposed LP can be solved
to optimality in polynomial time via an efficient separation procedure for this subset of inequalities. Moreover,
the optimal solution of the LP can be rounded to a feasible integer solution with cost that is at most twice the
optimal cost; this provides a 2-approximation algorithm which is the first constant approximation algorithm for
the problem. We also describe an interesting on-the-fly variant of the algorithm that does not require solving the
LP a-priori with all the flow-cover inequalities. As a by-product we obtain the first theoretical proof regarding
the strength of flow-cover inequalities in capacitated inventory models.
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1. Introduction The issue of capacity constraints arises in many practical and theoretical inventory
management problems as well as in problems in other application domains, such as facility location
problems. In most practical inventory systems there exist capacity constraints that limit the quantities
that one can order, ship or produce. Unfortunately, it is often the case that models with capacity
constraints are computationally far more challenging than their counterpart models with no capacity
constraints. In particular, in many problems with capacity constraints computing optimal policies and
sometimes even feasible policies is a very challenging task.

In recent years there has been an immense amount of work to develop integer programming methods
for solving hard, large-scale deterministic inventory management problems. (We refer the reader to the
recent book of Pochet and Wolsey [20].) A major part of this work has been focused on constructing
strong formulations for the corresponding inventory models. In fact, it is essential to have an integer pro-
gramming formulation with a strong linear programming relaxation. Stronger formulations are achieved
by identifying valid inequalities that are satisfied by all feasible integral solutions and cut off fractional
solutions. Another key aspect within an integer programming framework is the ability to construct good
feasible integer solutions to the corresponding model. This has been known to have a huge impact on
decreasing the computational effort involved. In models with capacity constraints, finding good feasible
solutions can be very challenging.

In this paper, we study the classical capacitated multi-item lot-sizing problem, which is an extension
of the single-item economic lot-sizing problem [20]. Next, we propose a novel facility location type linear
program (LP), and show how to round its optimal solution to a feasible integral solution with cost that
is guaranteed to be at most twice the optimal cost. This is called a 2-approximation algorithm, that is,
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the cost of the solution constructed by the algorithm is guaranteed to be at most twice the optimal cost.
This is the first constant approximation algorithm for this problem. The LP relaxation is based on a
variant of a well-known class of valid inequalities called flow-cover inequalities. These inequalities have
been introduced over two decades ago [18] and have been shown empirically to be very effective in solving
several inventory and facility location problems with capacity constraints [1, 20]. (In Section 3 below,
we discuss the relevant literature on flow-cover inequalities in more detail.) Our results have several
significant contributions: (i) To the best of our knowledge, this is the first theoretical evidence for the
strength of flow-cover inequalities applied to capacitated inventory models. All the previous theoretical
results have been obtained for fixed-charge single-node problems (see Section 3 below for details.); (ii)
Our approach provides a conceptually simple way to generate provably good feasible solutions, and can
be easily implemented within an integer programming framework; (iii) Several of the newly proposed
algorithmic ideas in this paper have a promising potential of applicability in other inventory models with
capacity constraints. Moreover, we believe that they can be used to develop strong LP relaxations and
LP-based approximation algorithms for the capacitated facility location problem.

The model. The details of the inventory model discussed in this paper are as follows. There are N
items indexed by i = 1, . . . , N , each of which has a specified sequence of demands over a finite planning
horizon of T discrete periods indexed by t = 1, . . . , T . The demand of item i in period t is denoted
by dit. The demands are known in advance but can vary from period to period. Moreover, all of the
demands must be fully satisfied on time, that is, dit must be fully ordered by time period t. At the
beginning of each period s = 1, . . . , T , it is possible to place an order for any subsets of items, and this
incurs a fixed ordering cost Ks regardless of the subsets of items or the (possibly fractional) number of
units ordered from each item. However, the overall quantity of units ordered in period s cannot exceed
a certain capacity limit Cs ≥ 0. These are usually called hard capacity constraints in contrast to soft
capacity constraints, where in each period s, the order is placed in batches, each of which has capacity
Cs and incurs an additional fixed ordering cost Ks. We consider the special case with uniform capacities,
i.e., Cs = C, for each s = 1, . . . , T .

The units ordered in period s are assumed to arrive instantaneously, and can be used to satisfy
demands in that period and subsequent periods. The fixed ordering cost is balanced with a cost to
maintain physical inventory that is called the holding cost. In most of the existing literature the holding
costs are linear and additive. Specifically, for each item i and period t, there is a holding cost parameter
hit ≥ 0 that denotes the per-unit cost to carry one unit of item i in inventory from period t to period
t + 1. Following Levi, Roundy and Shmoys [14], we model the holding cost in a more general way. For
each demand point (i, t) and a potential order s ≤ t, let hi

st ≥ 0 be the per-unit cost of holding one
unit of item i in inventory from period s to period t. The only assumption is that, for a fixed (i, t), the
parameters hi

st are non-increasing in s. (This implies that if dit is ordered from a closer period to t the
resulting holding cost is not bigger.) The way we model the holding cost is more general, and can capture
several important phenomena such as perishable goods. We also note that we can incorporate a per-unit
ordering cost into the holding cost parameters. The goal is to find a feasible policy that satisfies all of
the demands on time and has minimum overall ordering and holding cost.

Literature review. As we already mentioned, this is a classical model in inventory theory that has
been studied by several researchers throughout the years. The special case with a single item (N = 1) and
uniform capacities is polynomially solvable both with hard capacities [12] and soft capacities [19]. This
is usually called single-item capacitated economic lot-sizing problem. Moreover, there are known extended
LPs, that is, LPs with integrality property that provide an exact description of the set of feasible solutions.
The single item problem with non-uniform capacities is known to be weakly NP-hard [12], but there is a
fully polynomial time approximation scheme (FPTAS) [21]. For results on other variants of single-item
models, we refer the reader to [6, 20].

Federgruen, Meisner and Tzur [11] have studied the model discussed in this paper with traditional (i.e.,
linear and additive) holding costs, but with additional fixed item ordering costs that are incurred in each
period, in which item i is ordered. Under the assumption that all of the demands and the cost parameters
are uniformly bounded by constants, they have proposed a dynamic-programming-based algorithm, and
shown that it is asymptotically optimal as the number of periods increases to infinity. In a subsequent
paper [10], they provide a probabilistic analysis of the algorithm. Another dynamic-programming-based
algorithm for a special case of the model discussed in this paper has been proposed by Anily and Tzur [3].
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They have studied a model with traditional holding costs and stationary cost parameters, i.e., hit = h
and Kt = K, for each i and t. However, the running time of their algorithm grows exponentially fast in
the number of items, and thus, it is not practical unless there are few items. In a recent paper Anily,
Tzur and Wolsey [4] have considered the same model with time-dependent cost parameters, but with the
additional monotonicity assumption on the holding costs. In particular, the assumption is that the items
are indexed, such that each item has higher holding costs than all items of smaller index, uniformly for
all periods. Specifically, h1t ≤ h2t ≤ · · · ≤ hNt, for all periods t = 1, . . . , T . For this problem, they have
proposed an extended linear programming formulation with O(N × T 2) constraints and variables that
solves the problem to optimality. This implies that this special case is polynomially solvable. In another
recent result, Even at al. [9] have considered a model with multiple items, unit demands, nonuniform
capacities and holding cost structure that is a special case of the one considered by Anily, Tzur and Wolsey
[4]. Specifically, the holding cost of each demand point is zero until some point when it jumps to infinity.
Thus, demand points can be viewed as intervals that one needs to stab by opening capacitated stabbing
points, where opening a stabbing point incurs a fixed cost. Even et al. [9] have given a polynomial time
optimization algorithm for this model based on dynamic programming. They then extend their approach
to capture holding cost structure that is similar to the one considered by Anily, Tzur and Wolsey. We
note that the assumption of unit demands is crucial as otherwise the problem is known to be NP-hard
[12].

Our results and techniques. Our first result shows that the capacitated multi-item lot-sizing problem
with hard or soft capacities is strongly NP-hard. This implies that the monotonicity assumption of Anily,
Tzur and Wolsey [4] is somewhat essential to get a polynomial time optimization algorithm.

Next, we propose a novel facility location type LP relaxation for the problem that is different than
the one used by Anily, Tzur and Wolsey [4]. Our LP is based on the family of flow-cover inequalities in
the same spirit as the LP proposed by Aardal, Pochet and Wolsey for the capacitated facility location
problem [2]. However, it incorporates only a subset of the class of flow-cover inequalities: there are
exponentially many inequalities in this subset, but we show that they can be separated in polynomial
time. Thus, the LP can be solved optimally in polynomial time, using the Ellipsoid method. We then
use an extremely simple rounding algorithm. The optimal solution of the LP relaxation is scaled by
a suitably chosen factor, and the scaled solution is used to execute a randomized rounding procedure
that outputs the sequence of periods in which orders are placed. Given the output of the first phase,
demands are assigned to orders by solving the induced transportation problem, and this minimizes the
resulting holding costs. The main challenge in the worst-case analysis is to show that the first phase
of the algorithm opens enough capacity to serve all of the demands, and that the resulting solution is
of low cost. This is done by exploiting the structure of the flow-cover inequalities. In particular, we
show that together with the scaling in the first phase of the algorithm, they guarantee that the resulting
transportation problem has a low cost feasible solution. This provides a randomized 2-approximation
algorithm. The randomized procedure can be derandomized to provide a deterministic 2-approximation
algorithm. As a by-product, we obtain the first theoretical proof of the strength of flow-cover inequalities
in capacitated inventory models. As already mentioned, all previous results are restricted to fixed-charge
single-node problems, see Section 3 below.

Finally, the insights from the worst-case analysis are used to construct an on-the-fly variant of the
algorithm. Instead of solving the LP a-priori with all the corresponding flow-cover inequalities, we propose
an iterative procedure. In each iteration, a well designed rounding procedure is applied to the optimal
fractional solution of the LP relaxation. If this procedure comes to an end successfully, it can be shown
that the resulting integral solution is feasible and has cost that is at most twice the optimal cost. On the
other hand, if the procedure is terminated in the middle, it is guaranteed to identify a violated flow-cover
inequality. The corresponding inequality is added to the LP, which is then solved again. The on-the-fly
algorithm can be viewed as running the Ellipsoid method until termination or until the first time the
rounding procedure is ‘stuck’, whereas then we are guaranteed to have a good feasible integral solution.
We believe that the on-the-fly algorithm might be computationally more efficient, since it does not require
solving the LP a-priori with all the flow-cover inequalities. This algorithmic approach is similar in spirit
to what is discussed in Carr at al. [8] in the context of a single-node fixed charge problem.

The rest of the paper is organized as follows. In Section 2 we discuss the complexity of the multi-item
capacitated lot-sizing problem. In Section 3, we describe the LP relaxation and discuss the flow-cover
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inequalities. In Section 4, we describe the rounding algorithms and the worst-case analysis.

2. Complexity

Theorem 2.1 The capacitated multi-item lot-sizing problem with hard capacity constraints is strongly
NP-hard even in the special case of unit demand, i.e. dit = 1 for all items i and time periods t.

Proof. We define a reduction from the classical 3-PARTITION problem, in which we are given a
set of 3m jobs with sizes p1, . . . , p3m such that B/4 < pi < B/2 for each i = 1, . . . , 3m and some integer
B. The goal is to partition the set of jobs into m groups S1, . . . , Sm, such that, for each j = 1, . . . , m,
|Sj | = 3 and

∑
i∈Sj

pi = B. It is well-known that this problem is strongly NP-hard [13].

Given an instance of the 3-PARTITION problem we define the following instance of the capacitated
multi-item lot-sizing problem with hard capacities. Each job in the 3-PARTITION problem will corre-
spond to an item in the inventory problem with exactly one unit demand point. All demands will arrive
in the period T , that is, at the end of the planning horizon.

Let S be the set of all subsets S of jobs, such that |S| = 3 and
∑

i∈S pi = B. That is, S contains all
the sets S which are feasible for the 3-PARTITION problem. We arbitrarily number the elements in S
by t = 1, . . . , |S|. Let T = |S|+1 be the number of time periods and C = 3 be the capacity of each order
in the inventory instance. Each time period t = 1, . . . , T − 1 in the inventory instance, corresponds to
the respective set in S with the same index. That is, set t ∈ S corresponds to time period t.

Next we define the holding and ordering costs. Let Kt = 6t for t = 1, . . . , T − 1 and KT = 6|T |2. In
particular, we define the cost of ordering in the last period to be high enough to forbid such an order
in any optimal solution. For each i = 1, . . . , 3m and s = 1, . . . , T − 1, let hi

sT = 2(T − s) + λis where
λis = 0 if the job i belongs to the 3-element set s ∈ S and λis = 1, otherwise. (Recall that period s
corresponds to the 3-element set in S with the same index.) Observe that all the holding cost parameters
are nonnegative, and that hi

sT < hi
s′T , for each item i and time periods s > s′.

Consider any feasible solution to the 3-PARTITION problem. This solution consists of the sets
t1, . . . , tm ∈ S. We consider the corresponding solution to the inventory problem. The orders are placed
in the corresponding m time periods t1, . . . , tm. The demand (i, T ) is satisfied by the order placed in the
time period tk that corresponds to the unique subset tk ∈ S, to which job i belongs. The total cost of
this solution is

m∑

k=1

(
Ktk

+
∑

i∈tk

hi
tk,T

)
=

m∑

k=1

(6tk + 6(T − tk)) = 6mT.

Consider now an optimal solution for the instance of the multi-item inventory problem with hard
capacities defined above. We claim that this solution must have exactly m orders. Assume otherwise,
i.e., that there exists an optimal solution that has more than m orders. Consider the earliest of these
orders. Note that all the demands arrive in period T , and that m orders would provide enough capacity
to satisfy all demands. Therefore, we can cancel this order and satisfy all the demand points currently
being served by this order from orders placed later in time. Since we canceled one order we decreased the
ordering cost and because the monotonicity of the holding costs we also decreased the holding costs. This
is a contradiction. Furthermore, since the above instance has only single unit demands, each demand
point will be served from a single order.

Next we consider a feasible solution to the inventory model with exactly m orders placed in periods
τ1, . . . , τm. For each job i = 1, . . . , 3m, let s(i) ∈ {τ1, . . . , τm} be the period of the order, from which this
demand point is served. By the definition of the cost parameters the total cost incurred by the above
solution is 6mT +

∑3m
i=1 λi,s(i). This implies that, each feasible solution, has cost which is at least 6mT .

Moreover, the value of
∑3m

i=1 λi,s(i) is equal to the number of demand points assigned to orders in periods
that correspond to “wrong” sets of cardinality 3, i.e., sets that do not include that demand point. Thus,
any optimal solution of the inventory model with value 6mT corresponds to a feasible solution to the
3-PARTITION problem.

Therefore, solving the 3-PARTITION problem can be reduced to solving a special case of the capaci-
tated multi-item lot-sizing problem with hard capacities. The theorem then follows. ¤
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The next corollary implies that the variant of the capacitated multi-item lot-sizing problem with soft
capacity constraints is also NP-hard.

Corollary 2.1 The capacitated multi-item lot-sizing problem with soft capacity constraints is strongly
NP-hard even in the special case of unit demand, i.e. dit = 1 for all items i and time periods t.

Proof. The proof is identical to that of Theorem 2.1 above. Consider the instance of the inventory
model that we have constructed but now with soft capacities. That is, we are allowed to order several
batches in each period t, where each additional batch ordered has additional capacity of 3 units, and incurs
additional ordering cost of 6t. Using similar arguments, one can show that each feasible solution to the 3-
PARTITION problem induces a solution to the inventory problem of cost 6mT , and each optimal solution
to the inventory model has cost 6mT only if it corresponds to a feasible solution to the 3-PARTITION
problem. ¤

The reduction in Theorem 2.1 above is originally written for a model with non-additive holding cost
parameters hi

st for each (i, t) and s ≤ t that preserve nonnegativity and monotonicity in s. Next we show
how to reduce any such problem to a modified capacitated multi-item lot-sizing problem with traditional
additive holding cost parameters. This implies that the latter problem is also NP-hard. In the modified
problem, we have an item j for each demand point (i, t) in the original problem (overall we have NT
items in the modified problem). For each item j = (i, t), we define djt = dit and djt′ = 0, for each t′ 6= t.
Also define hjs = 0, for each s ≥ t and hjs = hi

st − hi
s+1,t, for each s < t. Observe that because of

the monotonicity of hi
rt, it follows that hjs ≥ 0. The fixed ordering costs are kept the same. It can be

verified that the modified problem is equivalent to the original problem. We have obtained the following
theorem.

Theorem 2.2 The capacitated multi-item lot-sizing problem with hard or soft capacity constraints and
additive holding costs is strongly NP-hard even in the special case of unit demand, i.e. dit = 1 for all
items i and time periods t.

3. A Flow-Cover-Inequality-Based LP Relaxation A natural Mixed Integer linear Program-
ming (MIP) formulation of the capacitated multi-item lot-sizing problem can be obtained by using two
sets of variables:

• For each s = 1, . . . , T , let ys be a binary variable that is equal to 1 if an order is placed in period
s and 0 otherwise.

• For each i = 1, . . . , N , t = 1, . . . , T and s = 1, . . . , t, let xi
st be the fraction of the demand dit

satisfied by an order placed in period s.

Moreover, for each i = 1, . . . , N , t = 1, . . . , T and s = 1, . . . , t, let Hi
st = hi

stdit be the cost of holding the
demand dit if ordered in period s. The corresponding MIP formulation is as follows:

min
T∑

s=1

Ksys +
N∑

i=1

T∑
s=1

T∑
t=s

Hi
stx

i
st (1)

subject to

∑

s≤t

xi
st = 1 i = 1, 2, . . . , N ; t = 1, 2, . . . , T ; dit > 0, (2)

xi
st ≤ ys i = 1, 2, . . . , N ; s = 1, 2, . . . , T ; t ≥ s, (3)

N∑

i=1

∑

t≥s

ditx
i
st ≤ Cys s = 1, 2, . . . , T, (4)

xi
st ≥ 0 i = 1, 2, . . . , N, (5)
ys ∈ {0, 1} s = 1, 2, . . . , T. (6)

Constraints (2) guarantee that any positive demand is fully satisfied on time, while Constraints (3) state
that an order cannot be used to satisfy a demand if it is not placed. Finally, Constraints (4) guarantee



6 :
Mathematics of Operations Research xx(x), pp. xxx–xxx, c©200x INFORMS

that the capacity C of every order is not exceeded. In the objective function (1) the first part is associated
with the ordering cost while the second measures the holding costs.

If we relax the integrality constraints to 0 ≤ ys ≤ 1, we get an LP relaxation that provides a lower
bound on the cost of the optimal solution. However, this LP relaxation is weak in that the gap between
its optimal value and the value of the optimal integral solution can be arbitrarily high. For example,
consider an instance with a single item and 2 periods, no holding costs, fixed ordering costs K1 = 0 and
K2 = 1, and demands d1 = 0 and d2 = C + 1. The optimal policy must open two orders incurring
a cost of 1. The optimal fractional solution can achieve a cost of 1/C by setting y1 = 1, y2 = 1/C,
x1,2 = C/(C + 1) and x2,2 = 1/(C + 1). Thus, there is no hope of using this LP to construct constant
factor approximation algorithms.

3.1 Flow-cover inequalities In this section, we introduce the class of flow-cover inequalities that
we use to strengthen the LP induced by (1)-(6). Flow-cover inequalities were introduced by Padberg,
Van Roy and Wolsey [18] over two decades ago in the context of the fixed charge single-node problem. In
this problem there is a single-node of demand D and a collection of T capacitated arcs. The goal is to
open arcs and send a flow of D units to the demand node. Opening arc s incurs a fixed cost Ks, and
sending flow over arc s incurs a cost hs for each unit of flow. Padberg, Van Roy and Wolsey [18] have used
flow-cover inequalities to construct an extended LP for this problem with uniform arc capacities. They
have also shown that these flow-cover inequalities can be separated in polynomial time. Carr et al. [8]
have shown that another variant of flow-cover inequalities can be used to construct an LP relaxation for
the fixed-charge single-node problem with nonuniform capacities, whose optimal solution can be rounded
to a feasible solution with cost that is at most twice the optimal cost. Carnes and Shmoys [7] have
used the same LP to construct a primal-dual algorithm with the same worst-case performance guarantee.
Aardal, Pochet and Wolsey [2] have used aggregation of constraints to apply the flow-cover inequalities
to multi-location problems, specifically, hard capacitated facility location problems. They have reported
that flow-cover inequalities seem to be effective in narrowing the integrality gap and enhance integer
programming solution procedures. However, to the best of our knowledge there has been no theoretical
analysis regarding the strength of flow-cover inequalities in facility location or inventory models with
multiple items.

In the spirit of [2], we next introduce flow-cover inequalities for the capacitated multi-item lot-sizing
problem. Given a subset A of demand points, i.e., a collections of pairs (i, t), i = 1, . . . , N, t = 1, . . . , T ,
let D(A) =

∑
(i,t)∈A dit denote the cumulative demand of the set A; `A =

⌈
D(A)

C

⌉
be the cover number

of A, i.e., the minimum number of orders required to satisfy the demands in A; λA = `AC − D(A);
RA = C − λA be the residual capacity of A, i.e., the capacity required to satisfy the demands in A
after `A − 1 orders are fully used; and rA = RA/C(= 1 − `A + D(A)/C) be the fraction of the residual
capacity. Observe that by definition 0 < RA ≤ C and 0 < rA ≤ 1. Moreover, a subset F of orders (i.e.,
F ⊆ {1, . . . , T}) is called a cover of A if |F | ≥ `A.

We claim that the following inequalities are valid when F is a cover of A:

∑

(i,t)∈A

∑

s∈F

ditx
i
st −RA

∑

s∈F

ys ≤ D(A)− `ARA. (7)

(Note that by summing over (i, t) ∈ A and s ∈ F , we actually refer only to combinations for which
s ≤ t.) The validity of Inequalities (7) in the multi-item capacitated lot-sizing problem can be obtained
as a special case of the general mixed integer rounding inequalities, or in short MIR inequalities (see, e.g.,
Nemhauser and Wolsey [17]). An MIR inequality is defined with respect to the simple mixed-integer set
Q = {x ∈ R, y ∈ Z : x + y ≥ b, x ≥ 0}, for which it is easy to prove the validity of the inequality
x+ b̂y ≥ b̂dbe, where dbe is equal to b rounded up to the next integer, and b̂ = b−bbc. Of course, the MIR
inequality turns out to be useful if and only if b̂ > 0, otherwise it trivially becomes x ≥ 0. Moreover,
the y values of points in the convex hull of Q (i.e., the continuous relaxation of Q) that violate the MIR
inequality above fall within (bbc, dbe). (It can be verified that the point (b̂, bbc) is in Q and satisfies
the MIR inequality, see Figure 1.) This can be generalized to more complicated sets that involve more
variables, as long as the variables can be split into an integral part and a continuous nonnegative part.
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In particular, we apply an MIR derivation to the mixed-integer set whose defining inequality is:

1
C

∑

(i,t)∈A

∑

s 6∈F

ditx
i
st +

∑

s∈F

ys ≥ D(A)
C

. (8)

It is easy to see that Inequality (8) is valid for the system (1)–(6). Specifically, Constraint (2) implies
that D(A) =

∑
(i,t)∈A

∑
s∈F ditx

i
st +

∑
(i,t)∈A

∑
s 6∈F ditx

i
st; then replace the first term in the right hand

side of the equality by an upper bound C
∑

s∈F ys (see Constraint (4)) and divide by C to get the desired
Inequality (8).

y

x

b

Figure 1: MIR derivation on the mixed-integer set Q = {x ∈ R, y ∈ Z : x + y ≥ b, x ≥ 0}.

Thus, by applying an MIR derivation to (8) one obtains:

1
C

∑

(i,t)∈A

∑

s 6∈F

ditx
i
st + rA

∑

s∈F

ys ≥ rA`A, (9)

which coincides with (7). (Multiply by C and add
∑

(i,t)∈A

∑
s∈F ditx

i
st.)

Separation To the best of our knowledge the complexity of separating flow-cover inequalities is
unknown. Aardal [1] has shown that flow-cover inequalities can be separated in polynomial time for a
fixed set of demand points via a simple greedy procedure.

Next we consider a fixed subset of orders F̄ ⊆ {1, . . . , T}, and describe a polynomial time algorithm
to separate flow-cover inequalities that correspond to the subset of orders F̄ . For the description of the
algorithm, it will be useful to rewrite flow-cover inequalities that correspond to the set F̄ as

∑

(i,t)∈A

dit

C


1−

∑

s∈F̄

xi
st


 ≥ rA


`A −

∑

s∈F̄

ys


 . (10)

Observe that (10) above may still contain exponentially many constraints, one for each subset A of demand
points that can be covered by F̄ . However, this is similar to the residual capacity inequalities introduced
by Magnanti, Marchandani and Vachani [16] for another mixed-integer set called the splittable flow arc
set X = {x ∈ Rn, y ∈ Z :

∑n
i=1 aixi ≤ a0 +y, xi ≥ 0, xi ≤ 1, i = 1, . . . , n, y ∈ {0, 1}}. It has been shown

that residual capacity inequalities are sufficient to characterize conv(X) [16, 5]. Moreover, Atamtürk and
Rajan [5] have described an O(n) time separation algorithm for residual capacity inequalities.

Building on the results of Atamtürk and Rajan [5], we can state and prove the following theorem.

Theorem 3.1 Consider a subset of orders F̄ . Then there exists a polynomial time separation algorithm
for the inequalities in (10). The algorithm runs in O(NT 2) time.
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Proof. Consider a fractional solution (x̂, ŷ) of the LP relaxation defined by (1)-(6) and (10). Then
the separation problem for (10) can be formulated as a nonlinear mixed-integer program:

min
N∑

i=1

T∑
t=1

dit

C


1−

∑

s∈F̄

x̂i
st


 zi

t − rA


`A −

∑

s∈F̄

ŷs


 (11)

subject to

N∑

i=1

T∑
t=1

dit

C
zi
t = (`A − 1) + rA, (12)

zi
t ∈ {0, 1} i = 1, 2, . . . , N ; t = 1, 2, . . . , T, (13)

rA ∈ (0, 1), (14)
`A integer. (15)

By definition rA > 0. Also observe that for an Inequality (10) to be violated, it must be that rA < 1.
Indeed, in the case rA = 1 Inequalities (10) are implied by Inequalities (4) of the model. Since Inequality
(9) is an MIR inequality applied to (8) it follows that it can be violated only if `A − 1 <

∑
s∈F̄ ŷs < `A.

(Note that `A is equivalent to dbe used in the definition of MIR inequalities above.) Using the observation
that `A = d∑s∈F̄ ŷse and Equation (12) to substitute out `A and rA, the mixed-integer nonlinear program
can be reformulated as a binary MIP. Now use the identity 1 − ⌈∑

s∈F̄ ŷs

⌉
= − ⌊∑

s∈F̄ ŷs

⌋
to get the

following separation MIP:

min
N∑

i=1

T∑
t=1

dit

C
zi
t


−

∑

s∈F̄

x̂i
st −

∑

s∈F̄

ŷs

 +
∑

s∈F̄

ŷs


 +







∑

s∈F̄

ŷs



−

∑

s∈F̄

ŷs




∑

s∈F̄

ŷs

 (16)

subject to

N∑

i=1

T∑
t=1

dit

C
zi
t <




∑

s∈F̄

ŷs




, (17)

N∑

i=1

T∑
t=1

dit

C
zi
t >

∑

s∈F̄

ŷs

 , (18)

zi
t ∈ {0, 1} i = 1, 2, . . . , N ; t = 1, 2, . . . , T. (19)

Note that (17) and (18) are equivalent to (12) above. Also observe that the second part of the objective
function of the above MIP is a nonnegative constant. Moreover an inequality in (10) is violated if and
only if the optimal value of the above MIP is strictly negative.

The following simple algorithm solves the separation MIP to optimality in O(NT 2) time:

(i) Construct the set Ã =
{
(i, t) :

∑
s∈F̄ x̂i

st >
∑

s∈F̄ ŷs −
⌊∑

s∈F̄ ŷs

⌋
, i = 1, . . . , N, t = 1, . . . , T

}
;

(ii) Set zi
t = 1, ∀(i, t) ∈ Ã and 0 otherwise;

(iii) If the objective function (16) is negative and Constraints (17)–(18) are satisfied for z above, then
set Ã defines a violated Inequality (10), otherwise no violated inequality exists.

Next we prove the correctness of the above algorithm. Observe that the solution corresponding to the
set Ã provides a lower bound on the optimal value of the separation MIP above. Thus, if Ã is feasible
with respect to (17) and (18) there is nothing to prove. It is then sufficient to show that if Ã is not
feasible, there is no violated constraint in (10).

First consider the case
∑

(i,t)∈Ã
dit

C ≤ ⌊∑
s∈F̄ ŷs

⌋
. We bound the objective value of the solution
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corresponding to Ã (in all the inequalities below when we write
∑

s∈F̄ x̂i
st, we refer only to s ≤ t),

∑

(i,t)∈Ã

dit/C


−

∑

s∈F̄

x̂i
st −

∑

s∈F̄

ŷs

 +
∑

s∈F̄

ŷs


 +







∑

s∈F̄

ŷs



−

∑

s∈F̄

ŷs




∑

s∈F̄

ŷs



≥
∑

(i,t)∈Ã

dit/C


−

∑

s∈F̄

x̂i
st −

∑

s∈F̄

ŷs

 +
∑

s∈F̄

ŷs


 +







∑

s∈F̄

ŷs



−

∑

s∈F̄

ŷs


 ∑

(i,t)∈Ã

dit/C

=
∑

(i,t)∈Ã

dit/C


−

∑

s∈F̄

x̂i
st +




∑

s∈F̄

ŷs



−

∑

s∈F̄

ŷs



 =

∑

(i,t)∈Ã

dit/C


1−

∑

s∈F̄

x̂i
st


 ≥ 0.

The first inequality follows from the assumption that
∑

(i,t)∈Ã
dit

C ≤ ⌊∑
s∈F̄ ŷs

⌋
, and the last inequality

follows from the Constraint (2).

Consider now the case
∑

(i,t)∈Ã
dit

C ≥ ⌈∑
s∈F̄ ŷs

⌉
. We again bound the objective of the solution

corresponding to the set Ã,

∑

(i,t)∈Ã

dit/C


−

∑

s∈F̄

x̂i
st −

∑

s∈F̄

ŷs

 +
∑

s∈F̄

ŷs


 +







∑

s∈F̄

ŷs



−

∑

s∈F̄

ŷs




∑

s∈F̄

ŷs



≥ −
∑

(i,t)∈Ã

dit/C
∑

s∈F̄

x̂i
st +




∑

s∈F̄

ŷs





−

∑

s∈F̄

ŷs

 +
∑

s∈F̄

ŷs


 +







∑

s∈F̄

ŷs



−

∑

s∈F̄

ŷs




∑

s∈F̄

ŷs



= −
∑

(i,t)∈Ã

dit/C
∑

s∈F̄

x̂i
st +

∑

s∈F̄

ŷs ≥ 0.

The first inequality follows from the assumption that
∑

(i,t)∈Ã
dit

C ≥ ⌈∑
s∈F̄ ŷs

⌉
, the first equality follows

from the identity b∑s∈F̄ ŷsc = d∑s∈F̄ ŷse− 1, and the last inequality follows from Constraints (4). This
concludes the proof of the theorem. ¤

An LP Next we describe an LP based on (1)-(5), relaxation of the integrality constraint of (6) and
a subset of the flow-cover inequalities defined in (7) above.

Let F := {[s, t] : 1 ≤ s ≤ t ≤ T} be the collection of all subsets of orders defined by intervals [s, t].
Consider the LP defined by (1)-(5), the relaxation of (6) and only the inequalities in (7) that correspond
to subsets of orders F ∈ F . Recall that in Theorem 3.1 we have shown that flow-cover inequalities that
correspond to a fixed subset of orders can be separated in polynomial time. Since the cardinality of the
set F is O(T 2), it follows that the above LP can be solved to optimality in polynomial time by using
the Ellipsoid method. Let (x̂, ŷ) be the optimal solution of that LP and VLP be the respective optimal
value. Since the LP is a relaxation of the problem, it follows that VLP is a lower bound on the optimal
cost denoted by VOPT .

4. The Random-Shift Algorithm with Median Demand Assignment In this section, we de-
scribe an approximation algorithm for the capacitated multi-item lot-sizing problem with hard capacities
that is based on the linear programming relaxation defined above by (1)-(5), the relaxation of the inte-
grality constraint of (6) and the flow-cover inequalities in (7) that correspond to the collection of subsets
F defined above.

We shall first show how to round the optimal fractional solution (x̂, ŷ) of this LP to a feasible integer
solution with cost that is at most twice VLP . Since VLP is a lower bound on the optimal cost, this
implies that the algorithm is a 2-approximation. In addition, we shall describe an on-the-fly variant of
the algorithm that does not require adding all the respective flow-cover inequalities a-priori, but instead
adds violated constraints on-the-fly until a (good) integer solution is obtained.

First, we present a randomized rounding procedure that we call Random-Shift with Median Assignment.
This procedure rounds the fractional optimal solution (x̂, ŷ) to a feasible integer solution (x̃, ỹ) with
expected cost that is at most twice the optimal cost VOPT . We then discuss how to derandomize the
algorithm, and get a deterministic 2-approximation algorithm.
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The rounding algorithm runs in two phases. In the first phase of the algorithm, we determine in which
periods to place orders. Based on the outcome of the first phase of the algorithm, we decide how to assign
demand points to orders.

4.1 Phase I: The Random-Shift Procedure We first describe Phase I of the algorithm which
we call the Random-Shift procedure. This is similar in spirit to the work of Levi, Roundy, Shmoys and
Sviridenko [15] on the single-warehouse and multi-retailer problem. In this phase we decide in which
periods to place orders. This simple randomized procedure is based on the values ŷ1, . . . , ŷT . For each
s = 1, . . . , T , let ȳs = min{2ŷs, 1}, i.e., we double the original value of each variable ŷs ≤ 0.5 and make
it equal to 1 if ŷs > 0.5. We call ŷs and ȳs the fractional order and scaled fractional order in period
s = 1, . . . , T , respectively. Next we shall use the values ȳ1, . . . , ȳT to determine the periods in which
orders are placed.

For the description of the Random-Shift procedure, consider the interval (0,
∑T

s=1 ȳs], which corre-
sponds to the total weight of scaled fractional orders. Each period r = 1, . . . , T is then associated with
the corresponding interval (

∑r−1
s=1 ȳs,

∑r
s=1 ȳs], which is of length ȳr. In particular, some periods can cor-

respond to empty intervals of length 0 (if ŷt = ȳt = 0). The input for this procedure is a shift-parameter α
that is chosen uniformly at random in (0, 1]. Let W be the smallest integer that is greater than or equal to∑T

s=1 ȳs. Specifically, W is the upper ceiling of the total cumulative weight of the scaled fractional orders;
that is, W = d∑T

s=1 ȳse. Note that the interval (0,
∑T

s=1 ȳs] is contained in the interval [0,W ]. Within the
interval [0,W ] focus on the sequence of points 0, 1, . . . , W − 1. The shift-parameter α induces a sequence
of what we call shift-points. Specifically, the set of shift-points is defined as {α + w : w = 0, . . . , W − 1}.
This set is constructed through a shift of random length α to the right of the points 0, 1, . . . , W − 1.
Thus, there are W shift-points that are all located within the interval [0,W ]. Observe that the sequence
of shift-points is a-priori random and is realized with the shift-parameter α.

The shift-points determine the periods in which orders are placed. For each period r = 1, . . . , T ,
we place an order in that period if there is a shift-point within the interval (

∑r−1
s=1 ȳs,

∑r
s=1 ȳs] that is

associated with period r. That is, we place an order in period r if for some integer 0 ≤ w ≤ W − 1 there
exists a shift- point α+w that falls within the interval (

∑r−1
s=1 ȳs,

∑r
s=1 ȳs]. Let T := {r1 < r2 < ... < rQ}

be the set of periods of the orders as determined in the first phase of the algorithm using the random-shift
procedure. We set ỹrm = 1 for each m = 1, . . . , Q, and call r1, . . . , rQ the opened orders.

Next we bound the expected ordering cost incurred by the random shift procedure.

Lemma 4.1 Consider the Random-Shift procedure described above. Then, for each period r = 1, . . . , T ,
the probability of placing an order in period r is at most ȳr ≤ 2ŷr. Thus, the total expected ordering cost
of the Random-Shift procedure, denoted by K, is at most twice the total ordering costs in the optimal LP
solution. That is, K ≤ ∑T

s=1 ȳsKs ≤ 2
∑T

s=1 ŷsKs.

Proof. The shift-points {α + w : w = 0, . . . , W − 1} are located over the interval [0,W ], and the
distance between each two consecutive shift-points is 1. Thus, for each period r with ŷr ≥ 0.5, there is
one shift-point within the interval (

∑r−1
s=1 ȳs,

∑r
s=1 ȳs], with probability 1, since it is of length ȳr = 1.

This implies that, with probability 1, there will be an order placed in period r. Since indeed ȳr = 1 ≤ 2ŷr,
the claim for this case follows.

Consider now a period r with ŷr < 0.5. There are exactly two possible subcases:

Case 1: The interval (
∑r−1

s=1 ȳs,
∑r

s=1 ȳs] is contained in an interval (w, (w+1)], for some integer 0 ≤ w ≤
W −1. Moreover, since the distance between consecutive shift-points is 1, there is exactly one shift-point
within the interval (w, (w +1)]; specifically, the shift-point α +w. Moreover, this shift-point is uniformly
distributed over the interval (w, (w + 1)]. It follows that the probability that this shift-point falls within
the interval (

∑r−1
s=1 ȳs,

∑r
s=1 ȳs] is ȳr = 2ŷr. The claim for this case then follows.

Case 2: If Case 1 above does not apply, it must be the case that some point w (where again 0 ≤ w ≤ W−1)
falls within the interval (

∑r−1
s=1 ȳs,

∑r
s=1 ȳs]. (Note that since ȳr = 2ŷr < 1 there can be at most one such

point.) Thus, the interval (
∑r−1

s=1 ȳs,
∑r

s=1 ȳs] is split between the two intervals (w− 1, w] and (w,w + 1].
Consider now the two intervals (

∑r−1
s=1 ȳs, w] and (w,

∑r
s=1 ȳs]. Since the respective shift-points α+(w−1)

and α + w are at distance 1 of each other, it follows that at most one of the intervals (
∑r−1

s=1 ȳs, w] and
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(w,
∑r

s=1 ȳs] above can contain a shift- point. Thus, the probability that there is a shift-point within the
interval (

∑r−1
s=1 ȳs,

∑r
s=1 ȳs] can be expressed as the sum of the probability of having a shift-point within

the interval (
∑r−1

s=1 ȳs, w] plus the probability of having a shift-point within the interval (w,
∑r

s=1 ŷs]
(since these are two disjoint events). Finally, by applying the arguments of Case 1 to each of the intervals
(
∑r−1

s=1 ȳs, w] and (w,
∑r

s=1 ȳs], respectively, the claim for this case follows. This concludes the proof of
the lemma. ¤

Given the opened orders r1, . . . , rQ, we can compute the cheapest assignments of demand points to
opened orders by solving the corresponding transportation problem. The solution of the transportation
problem will determine the values of x̃i

st, for each (i, t) and s ≤ t. However, it is not clear a-priori that the
induced transportation problem has a feasible solution, and even if it has one, there is a question regarding
the cost of this solution. Next we shall show that the induced transportation problem indeed has a feasible
solution with cost denoted by H that is at most twice the holding cost incurred by the optimal fractional
solution (x̂, ŷ). That is, the holding cost incurred by the algorithm is H ≤ 2

∑N
i=1

∑T
t=1

∑t
s=1 Hi

stx̂
i
st.

4.2 Phase II: The Median Assignment Next we describe a constructive procedure, called the
Median Assignment, that assigns all the demand points to the opened orders r1, . . . , rQ, and incurs a
holding cost that is at most twice the holding cost incurred by the optimal fractional solution (x̂, ŷ).
Observe that the optimal solution to the transportation problem induced by the opened orders r1, . . . , rQ

incurs no greater holding cost. To describe the procedure we introduce the notion of flow-requirements
of demand point (i, t). Focus on a specific demand point (i, t), and let s1 < s2 < · · · < sG be the
fractional orders that fractionally serve this demand point in the optimal LP solution (x̂, ŷ). In particular,
x̂i

sg,t > 0, for each g = 1 . . . , G, and
∑G

g=1 x̂i
sg,t = 1. Let sM be the median order of (i, t), i.e., the latest

point in time such that at least half of the demand dit is satisfied from orders within [sM , t]. That is,
M = max{m :

∑G
g=m x̂i

sg,t ≥ 0.5}. For each g = 1, . . . , G, let zi
sg,t be the flow-requirement of (i, t)

that is due to sg. Specifically, for each g = 1, .., M − 1, we define zi
sg,t = 2x̂i

sg,tdit; for g = M we define

zi
sM ,t = 2(0.5−∑M−1

q=1 x̂i
sq,t)dit; and for each g = M + 1, . . . , G, we define zi

sg,t = 0.

Note that the flow-requirements defined above do not necessarily provide a feasible assignment of
demands to orders. Intuitively, we consider the median order that splits the assignment of demand point
(i, t) in the optimal fractional solution (x̂, ŷ) into two equal halves. We then ignore the upper (later)
half and scale the lower (earlier) half by 2. However, we shall use the flow-requirements zi

s1,t, . . . , z
i
sG,t

to construct a feasible assignment of demands with relatively low holding costs. First, observe that∑G
g=1 zi

sg,t = dit. We wish to construct a feasible assignment that, for each demand point (i, t) and order
sg, satisfies at least zi

sg,t units of dit from orders within the interval [sg, t]. That is, the flow-requirement
zi
sg,t is satisfied either from sg or from orders later in time. We will say that such an assignment satisfies

all the flow-requirements. (Recall that sg and zi
sg,t are specific to demand point (i, t) based on the optimal

fractional solution (x̂, ŷ).)

Consider any assignment of demands that satisfies all the flow-requirements of all demands. Since the
assignment satisfies zi

sg,t units of dit either from sg or from orders even later in time, we conclude that the

holding cost incurred by each demand point (i, t) is at most
∑G

g=1 zi
sg,th

i
sg,t. However, by the definition

of the flow-requirements, we have
G∑

g=1

zi
sg,th

i
sg,t ≤ 2

G∑
g=1

x̂i
sg,tdith

i
sg,t = 2

G∑
g=1

x̂i
sg,tH

i
sg,t.

That is, the holding cost incurred is at most twice the holding costs incurred by (i, t) in (x̂, ŷ). In light
of Lemma 4.1 above, if such an assignment exists, the resulting feasible solution (x̃, ỹ) has cost that is
at most twice the optimal value of the LP VLP . Since VLP is a lower bound on the optimal cost, it
follows that the cost of the solution is at most twice the optimal cost. It is then left to show that such
an assignment does exist. Next we shall describe the details of the Median Assignment procedure. (A
summary of the Median Assignment algorithm can be found below.)

We construct the Median Assignment in stages indexed by τ = T, . . . , 1. In each stage τ , we consider
the set of positive flow-requirements due within τ , i.e., the set Bτ = {zi

τt > 0 : i = 1, . . . , N, t = τ, . . . , T}.
These are the flow-requirements that need to be satisfied from orders within [τ, T ]. Partition the set Bτ

into sets Bτt, for t = τ, . . . , T , where Bτt = {zi
τt > 0 : i = 1, . . . , N}. We then consider the sets Bτt
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in decreasing order t = T, . . . , τ . For each flow-requirement zi
τt ∈ Bτt, we consider the opened orders

(decided upon in Phase I) within [τ, t] in decreasing order from latest to earliest. The flow-requirement
zi
τt is then assigned to these orders greedily according to the current available capacity. More rigorously,

consider a specific flow-requirement zi
τt and let T[τ,t] = T ∩ [τ, t] = {e1 < e2 < · · · < eV } be the set

of opened orders within the interval [τ, t]. Let δV = min{zi
τt, (C − ∑N

j=1

∑T
u=eV

x̃j
eV ,udju)+}, and for

each v = V − 1, . . . , 1, let δv = min{(zi
τt −

∑V
q=v+1 δq)+, (C − ∑N

j=1

∑T
u=ev

x̃j
ev,udju)+}. (Recall that

(x)+ = max{x, 0}.) We then update x̃i
ev,t = x̃i

ev,t + δv/dit, for each v = 1, . . . , V .

The Median Assignment Algorithm - Summary:

(i) Initialization: τ = T ; for each i, s ≤ t, set x̃i
st = 0; for each s ∈ T set ỹs = 1, otherwise

set ỹ = 0; set the capacity of order s to be Cs = ỹsC

(ii) Assignment:

(i) If τ = 0 terminate and declare ‘success’, otherwise set k = T and go to (iii)
(ii) If k < τ , set τ = τ − 1 and go to (i)
(iii) If all the positive flow-requirements in Bτk are satisfied, set k = k − 1 and go to

(ii), otherwise choose a positive flow-requirement zi
τk ∈ Bτk not yet satisfied, set

v = zi
τk, s = k and go to (iv)

(iv) While v > 0
• if s < τ terminate and declare ‘failure’
• Set x̃i

sk = x̃i
sk + min{v, Cs}/dik; v = v − x̃i

skdik; Cs = Cs − x̃i
skdik

• Set s = s− 1
(v) Go to (iii)

By construction it follows that if completed successfully, the Median Assignment described above sat-
isfies the flow-requirements of all demand points. Thus, to establish a bound on the holding cost incurred
by the algorithm, it is sufficient to show that the Median Assignment can be completed successfully.

Before we prove that, we would like to state a technical lemma that draws a connection between the
cumulative fractional orders opened by the fractional solution (x̂, ŷ), and the corresponding number of
integral orders opened in Phase I of the algorithm.

Lemma 4.2 Consider the interval [s, t] for some s ≤ t, and suppose that the cumulative fractional orders
opened in [s, t] by the LP optimal solution (x̂, ŷ) is equal L + β, where L is a non-negative integer and β
is between 0 and 1. That is ,

∑t
u=s ŷu = L + β. Then if β ≥ 0.5, the number of orders placed in Phase I

of the algorithm over the interval [s, t] is at least L + 1. That is,
∑t

u=s ỹu ≥ L + 1.

Proof. First, observe that by the construction of the Random-Shift procedure there will be at least
L opened orders over the interval [s, t], regardless of what the value of β is. Moreover, the number of
orders opened over the interval [s, t] is at least b∑t

u=s ȳuc, which is the floor of the cumulative weight
of scaled fractional orders over the interval. Thus, it is sufficient to show that if

∑t
u=s ŷu = L + β and

β ≥ 0.5, then
∑t

u=s ȳu ≥ L + 1.

Let O be set of periods u in [s, t] for which ŷu ≥ 0.5. If |O| ≥ L + 1, then there is nothing to prove
since, for each u ∈ O, we have ȳu = 1. Assume now that |O| ≤ L. By the construction of the scaled
fractional orders we have

t∑
u=s

ȳu = |O|+ 2
∑

u∈[s,t]\O
ŷu

= |O|+ 2

(
L + β −

∑

u∈O
ŷu

)
≥ 2L− |O|+ 2β

≥ L + 2β ≥ L + 1.

The second equality follows from the fact that
∑t

u=s ŷu = L + β. The first inequality follows from the
fact that

∑
u∈O ŷu ≤ |O|. The second inequality follows from the assumption that |O| ≤ L. Finally, the

last inequality follows from the assumption that β ≥ 0.5. The proof of the lemma then follows. ¤
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Lemma 4.3 The Median Assignment can be completed successfully.

Proof. Assume by contradiction that the Median Assignment cannot be completed at some stage
τ due lack of capacity to satisfy the flow-requirement zi

τ,t̄ of some demand point (i, t̄). It follows that all
the opened orders within the interval [τ, t̄] are currently fully used by the integer partial solution (x̃, ỹ).
That is, for each r ∈ T ∩ [τ, t̄], we have

∑N
i=1

∑T
u=r x̃i

r,udiu = C. Now let r̄ be the earliest opened order
within (t̄, T ] ∩ T that still has free capacity or T + 1 if no such order exists. That is,

r̄ = min

{
arg min

{
r ∈ T ∩ (t̄, T ] :

N∑

i=1

T∑
u=r

x̃i
r,udiu < C

}
, T + 1

}
.

Let F = [τ, r̄) be the corresponding interval of orders.

Next we focus on the set of demand points (i, u) with positive flow-requirements that are due within
[τ, r̄), i.e., the set of demand points A = {(i, t) : t ∈ [τ, r̄) and

∑t
s=τ zi

st > 0}. Using the notation in
Section 3 we write D(A) =

∑
(i,t)∈A dit = (`A − 1)C + RA, where `A ≥ 1 is an integer and 0 < RA ≤ C.

Consider again the integer partial solution (x̃, ỹ) at the moment the Median Assignment terminated due
to lack of capacity. Recall that r̄ = T + 1 or r̄ ∈ T is an opened order with free capacity. By the
construction of the Median Assignment it follows that no demand point outside the interval [τ, r̄) is being
served by the partial solution (x̃, ỹ) from orders within the interval. That is, x̃i

st = 0 for each (i, t)
with t ≥ r̄ and s ∈ [τ, r̄). This implies that all the available capacity of the opened orders within the
interval [τ, r̄) is fully used by the integer partial solution (x̃, ỹ) to serve only demand points in A. (It
can be verified that any demand point (i, t) with t ∈ [τ, r̄) but not in A, is not being served in (x̃, ỹ)
from within the interval [τ, r̄) since it does not have any positive flow-requirements that are due within
this interval.) Moreover, since the Median Assignment could have not been completed, it follows that
the flow-requirements of demand points in A that are due within the interval F exceed the total opened
capacity over F . That is, ∑

(i,t)∈A

∑

u∈F

zi
ut >

∑

u∈F

ỹuC. (20)

Now consider the set of fractional orders in the optimal LP solution (x̂, ŷ) over F . Let
∑

u∈F ŷuC =
(L − 1)C + R, where L ≥ 1 is a nonnegative integer and 0 < R ≤ C. The rest of the proof is based on
comparing `A and RA to L and R, respectively, and deriving a contradiction.

We first claim that L ≤ `A. This follows from the fact that

C · (L− 1) ≤
∑

u∈F

ỹuC <
∑

(i,t)∈A

∑

u∈F

zi
ut ≤ D(A) ≤ `A · C.

We have already seen in the proof of Lemma 4.2 that since
∑

u∈F ŷu ≥ L−1 the Random-Shift procedure
will open at least L− 1 orders over the interval F , i.e.,

∑
u∈F ỹuC ≥ (L− 1)C. However, Inequality (20)

implies that
∑

(i,t)∈A

∑
u∈F zi

ut > ỹuC ≥ (L− 1)C. Finally, observe that the overall flow-requirements of
demand points in A cannot exceed D(A), which is at most `A · C. The proof of the claim then follows.

Next we claim that R/C < 0.5. Assume otherwise. It follows that
∑

u∈F ŷu ≥ (L − 1) + 0.5, and
by Lemma 4.2 we conclude that there are at least L opened orders over F . That is,

∑
u∈F ỹuC ≥ LC.

However, the flow-requirements of a demand point (i, t) over any interval [τ, t] are always bounded by
the flow in the fractional optimal solution (x̂, ŷ), sent to (i, t) from orders within the interval. That is,∑

u∈F

∑

(i,t)∈A

zi
ut ≤

∑

u∈F

∑

(i,t)∈A

x̂i
u,tdit ≤

∑

u∈F

ŷuC = (L− 1)C + R.

The first inequality follows from the fact that F = [τ, r̄) and the definition of the flow requirements.
The last inequality follows from (4). It follows that a capacity of LC units is sufficient to satisfy all the
flow-requirements that are due within F of all demand points in A, which leads to contradiction.

Next we claim that L = `A. Assume otherwise, i.e., `A > L. Since each demand point (i, t) ∈ A has
positive flow-requirements over F , it follows that

∑
u∈F x̂i

u,t > 0.5. However, by the construction of the
flow-requirements this implies that its total flow-requirements over F can be expressed as

∑

u∈F

zi
ut = 2dit

(∑

u∈F

x̂i
u,t − 0.5

)
.
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Thus, the total flow-requirements of demand points in A over F can be expressed as

∑

(i,t)∈A

∑

u∈F

zi
ut = 2


 ∑

(i,t)∈A

∑

u∈F

x̂i
u,tdit − 0.5D(A)




≤ 2

(∑

u∈F

ŷuC − 0.5D(A)

)
= 2(L− 1)C + 2R− (`A − 1)C −RA

≤ (2L− 2 + 1− L + 0)C ≤ (L− 1)C.

The last inequality follows from the assumptions that `A − 1 ≥ L and that 2R < C. Moreover, this
implies that capacity of (L−1)C units is sufficient to satisfy all the flow-requirements that are due within
F of the demand points (i, t) ∈ A. However, we have already seen that there are at least L − 1 opened
orders over F , i.e.,

∑
u∈F ỹu ≥ L − 1. Since all of them are fully used to satisfy flow-requirements of

demand points in A, this again leads to contradiction.

Suppose now that R/C < 0.5 and `A = L. This implies that the set of orders F is a cover of the set of
demands A. Moreover, F ∈ F (recall that F is the collection of all subsets of orders defined by intervals
[s, t]) which implies that the solution (x̂, ŷ) satisfies the flow-cover inequality that corresponds to F and
A. It follows that

D(A)−
∑

(i,t)∈A

∑

u∈F

x̂i
u,tdit ≥ RA(`A −

∑

u∈F

ŷu) = RA (`A − (L− 1)−R/C)

= RA(1−R/C) ≥ 0.5RA.

The first inequality follows from the flow-cover inequality with respect to F and A. The first equality
follows from the fact that

∑
u∈F ŷu = L−1+R/C. The last inequality follows from the fact that R/C <

0.5. We conclude that 2(D(A)−∑
(i,t)∈A

∑
u∈F x̂i

u,tdit) ≥ RA. However, D(A)−∑
(i,t)∈A

∑
u∈F x̂i

u,tdit

is exactly the portion of D(A) that is being served in the optimal fractional solution (x̂, ŷ) from outside
F . Moreover, we have already seen that, for each demand point (i, t) ∈ A, more than half of the demand
dit is served by (x̂, ŷ) from within F , i.e.,

∑
u∈F x̂i

u,t > 0.5. By the construction of the flow-requirements
this implies that the total flow-requirements of demand points (i, t) ∈ A that are due outside F is exactly
2(D(A)−∑

(i,t)∈A

∑
u∈F x̂i

u,tdit) ≥ RA. In turn, this implies that the total flow-requirements that are due
within F is at most (`A− 1)C = (L− 1)C. However, as we have already seen, this leads to contradiction
since there are at least (L− 1) opened orders over F . We conclude that the Median Assignment can be
completed successfully. ¤

Corollary 4.1 The overall holding cost incurred by the algorithm is at most
2

∑N
i=1

∑T
t=1

∑t
s=1 x̂i

stH
i
st.

Lemma 4.1 and Corollary 4.1 imply the following theorem.

Theorem 4.1 The Random-Shift algorithm is a randomized 2-approximation algorithm for the capaci-
tated multi-item lot-sizing problem with hard capacities.

We note that the same analysis holds in the presence of soft capacities, where we think on each batch as
a separate potential order. It can be verified that all the arguments in the analysis presented above still
go through.

Finally, we describe how to derandomize the algorithm and get deterministic approximation algorithm
with the same worst-case performance guarantee. We have already mentioned that once the periods in
which orders are placed are determined, the problem is reduced to solving a transportation problem that
minimizes the holding costs. The analysis in Section 4.2 implies that for any outcome of the Random-
Shift procedure the induced transportation problem is feasible, and its optimal solution incurs holding
costs that are at most twice the holding costs incurred by the optimal fractional solution (x̂, ŷ). That
is, this happens with probability 1. It is now sufficient to show how to derandomize Phase I of the
algorithm. However, it is readily verified that in the Random-Shift procedure described above, there is
only a polynomial number of values of α that yield distinct sets of orders. Specifically, there are O (T )
such points. Moreover, these values can be easily enumerated. Thus, the cost of the solution obtained
by taking the best (cheapest) among the different solutions is at most the expected cost over all choices.
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Theorem 4.2 There exists a deterministic 2-approximation algorithm for the capacitated multi-item lot-
sizing problem with hard capacity constraints.

4.3 On-The-Fly Algorithm In this section, we shall describe an on-the-fly variant of the algorithm
described above. The underlying idea is similar to what discussed by Carr et al. [8] in the context of the
fixed-charge single-node problem.

This variant does not require solving the LP a-priori with all the flow-cover inequalities defined by the
collection of subsets F in Section 3. Instead, we shall have an iterative procedure that is based on an
oracle that, in each iteration, either finds a violated flow-cover inequality or generates a feasible solution
with cost that is at most twice the optimal cost. In particular, in each iteration, we attempt to apply
the rounding algorithm described in Sections 4.1 and 4.2 using the Median Assignment procedure. If the
Median Assignment procedure is terminated successfully we are guaranteed to have an integer solution
with cost at most twice the optimal cost. Otherwise, we have identified a violated inequality that can be
added to the LP, which is then being resolved. We note that in practice the on-the-fly algorithm can be
implemented using the Simplex method. Since in each iteration we add a constraint to the primal LP,
the Dual-Simplex method might be very attractive to find the new optimal solution of the LP. However,
note that this algorithm is not guaranteed to terminate after polynomial number of iterations.

Alternatively, we can run the Ellipsoid method using the Median Assignment procedure as a separation
oracle instead of the separation algorithm described in Section 3. Having an efficient oracle that can
separate the respective flow-cover inequalities enables us to run the Ellipsoid method to solve an implicit
LP, that contains only a subset of the flow-cover inequalities that define the LP described in Section 3.
Moreover, this implicit LP provides a lower bound on the optimal cost, and its optimal fractional solution
can be rounded to an integer solution with cost at most twice the optimal cost.

5. Conclusions In this paper, we study the classical capacitated multi-item lot-sizing problem with
hard capacities, and propose a novel LP-based 2-approximation algorithm for the problem. The LP
relaxation being used for the construction of the algorithm and in the worst-case analysis is based on the
well-known flow-cover inequalities.

Beyond the algorithmic results, this paper is the first to establish a theoretical analysis of the strength
of flow-cover inequalities in capacitated inventory models. Furthermore, we believe that some of the
novel algorithmic ideas proposed in this paper have a promising potential in constructing strong LP
relaxations and LP-based approximation algorithms for other inventory models, and for the capacitated
facility location problem.

In addition, the on-the-fly variant of the algorithm might be computationally attractive, and can be
easily incorporated into existing integer programming solution procedures, such as Branch and Bound
and Branch and Cut. It will be very interesting to explore this direction. It will also be very interesting
to use the LP proposed in this paper to construct combinatorial algorithms via a primal-dual approach.

We note that other variants of flow-cover inequalities can be used to construct LP relaxations for the
model with nonuniform capacities. However, rounding the fractional solution in this setting seems to be
more challenging. Finally, we note that in the presence of fixed item ordering cost, the LP relaxation
proposed in this paper has an unbounded integrality gap. Constructing strong LP relaxations and
approximation algorithms for this model seems to require fundamentally new ideas.
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