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Abstract. We consider important generalizations of a wide class of traditional
deterministic inventory and facility location models that we callinventory/facility
location models with market selection. Instead of the traditional setting, we are
given a set ofmarkets, each specified by a sequence of demands and associated
with a revenue. Decisions are made in two stages. We first make a decision of
what markets to select, where all other markets are rejected. Next we have to
construct a minimum-cost production plan (facility layout) to satisfy all of the
demands of all the selected markets. The goal is to minimize the overall lost rev-
enues of rejected markets and the production (facility openings and connection)
costs. We show how to leverage existing approximation results for the traditional
models to corresponding results for the counterpart models with market selection.
More specifically, any LP basedα−approximation for the traditional model can
be leveraged to a 1

1−e
− 1

α
−approximation algorithm for the counterpart model

with market selection. Our techniques are also applicable to an important class of
covering problems.

1 Introduction

Traditional deterministic inventory theory provides streamlined optimization models
where the goal is to satisfy a sequence of specified demands over a given planning
horizon with minimum overall cost, optimally balancing different costs in the supply
chain. Recent trends in supply chain research and practice have led to a broadened
perspective that considers not only decisions on the supply side but on the demand
side as well. More specifically, the demands to which the supply chain must respond
and commit to are not completely exogenous parameters, but may be influenced by
endogenous decisions such as pricing, promotions, and other strategic marketing-based
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factors. In particular, a supplier should strive to optimally fit theshapeof the demand to
the supply chain’s production capabilities. A fundamental aspect of these issues is the
choice of markets (or customers) to which the supplier commits to sell commodities.
That is, given products and a set of potential markets, which markets should the supplier
target for sales? Clearly, this decision is impacted by the potential profitability of each
market. While marketing models can be used to predict the potentialrevenueavailable
in a market, economies of scale in production make it difficult to isolate thecost of
serving a market, in particular, because this cost depends on the collective set of markets
being served. Aiming to address suchmarket selectiondecisions in the planning phase,
we propose the following integrated market selection and production planning problem.

We consider generalizations to a wide class of traditional deterministic inventory
models that capture the above mentioned issues. In these more general models, the
input consists of a set ofmarkets(or customers), where each is specified by a sequence
of demands over the given planning horizon and is associated with a potential revenue.
The decisions are made in two stages. First we decide which markets we are going to
selectand which ones will berejected. By selecting a market we commit to satisfyall
of its demands over the horizon. Rejecting a market implies that we can ignore all of
its demands, but we lose its potential revenue. Once a subset of markets is selected,
we need to construct a minimum cost production plan to satisfy all of the demands of
the selected markets on time. As in the traditional inventory models the production cost
usually consists of afixed ordering costthat is incurred in each period an order is placed,
and ofholding costfor carrying excess inventory from period to period. Our goal is to
minimize the overall cost, namely thelost revenueincurred by market rejection and
theproduction costof satisfying the demands of the selected markets. We call this new
class of extended modelsinventory models with market selection.

All of the inventory models we consider in this paper can be formulated as fa-
cility location type integer programs that admit strong LP relaxations. We show how
to modify these LP’s to capture the more general models with market selection. We
then describe general LP-rounding and primal-dual frameworks that leverage any LP-
based approximation algorithm for the traditional inventory models to a corresponding
algorithm for its counterpart with market selection. This results in a stream of approx-
imation algorithms for these more general market selection models that have constant
worst-case performance guarantees. That is, for any instance of the specific market se-
lection problem, the algorithm provides a solution with cost at most constant multiple
of the optimal cost.

The models.Following are the details of some of the models to which our LP-rounding
and primal-dual frameworks are applicable. In thejoint replenishment problem with
market selection, we consider a set ofm markets, denoted byM. Each marketj ∈ M
is specified by a sequence of demands forN commodities over a finite planning horizon
of T periods and is associated with a potential revenue,rj . The demands required by
marketj for item i are denoted bydj

i1, . . . , d
j
iT (for i = 1, . . . , N ). The production cost

structure is identical to the traditional joint replenishment problem (JRP). Each order
incurs afixed joint ordering cost, K0, regardless of the combination of items being
ordered. In addition, for each item included in the order, we incur afixed item ordering
cost, Ki, regardless of the number of units being ordered. The fixed ordering cost is



balanced by theholding costfor carrying excess inventory over periods. The holding
cost structure follows [13], i.e., for eachi = 1, . . . , N , t = 1, . . . , T ands ≤ t, we
have a parameterhi

st that denotes the per unit cost of providing itemi in periodt from
periods ≤ t. The parametershist are assumed to be non-negative and non-increasing
in s. Per unit ordering cost can be incorporated into theh parameters. This generalizes
the traditional holding cost structure, where we have a parameterhit ≥ 0 for eachi and
t, which denotes the per unit cost to hold inventory from periodt to t + 1.

Thesingle item lot-sizing problem with market selectionis a special case of the JRP
problem above, where we have only one commodity, i.e.,N = 1. As a result there is
no point to consider separate joint and item ordering cost, and instead we have just time
dependent fixed ordering costKs (for eachs = 1, . . . , T ).

Theone-warehouse multi-retailer (OWMR) problem with market selectionis a gen-
eralization of the JRP problem, where we assume that each item corresponds to a differ-
ent retailer, and the retailers are supplied by a central warehouse that can hold inventory.
We follow the general holding cost structure described in [18, 19].

In the assembly problem with market selection, each market is again specified by
a sequence ofT demands for a single commodity (end-product). However, the end-
product is assembled fromN components (see [13, 14] for details).

We will also consider some of these models with the additional constraints that
orders are placed inbatches, each with a given capacity. For each additional batch
ordered, we incur an additional fixed ordering cost. These constraints are usually called
soft capacity constraints.

In addition, our techniques are applicable to several market selection variants of
facility location problems. This includes the classical uncapacitated metric facility lo-
cation problem and its variants with soft capacities, and with service installation costs
(see [22] for details).

The goal in all of these models is to first select a subset of the markets, and then
construct a minimum cost production plan (or facility layout) for all of the demands
of the selected markets, such that the overall cost incurred by market rejection and the
production (facility layout and connection) plan is minimized.

Related literature.The traditional inventory models mentioned above, have attracted
the attention of many researchers throughout the years. The single item lot-sizing prob-
lem can be solved to optimality using dynamic programming [23], including the case
with soft capacity constraints [17]. The JRP and the OWMR problems are known to
be NP-hard [1]. The assembly problem with general holding cost structure as in [13,
14] is also known to be NP-hard, and it is a long standing open problem whether or
not it is NP-hard in the case of traditional holding cost. In several recent papers [13,
14, 18, 19], Levi, Roundy and Shmoys have developed LP-based approximation algo-
rithms for these inventory models. In particular, they have provided a primal-dual 2-
approximation algorithm for the JRP and the assembly problem, and an LP-rounding
2.398-approximation algorithm for the OWMR problem.

The facility location problem is known to be NP-hard, and there is a huge body of
literature on approximation algorithms for this problem. Mahdian, Ye and Zhang have
the currently best known result, an LP-based 1.52-approximation algorithm [15] (we
refer the reader to [20] for a survey on approximation results on this problem).



There are several other models, such as theprize-collecting travelling salesman
problem[2, 6], prize-collecting Steiner tree[10, 9] andmulti-processor scheduling with
rejection [4], where classical combinatorial optimization problems were extended to
considerrejection/selectiondecisions. However, in all of these models the rejection
/selection decisions are made independently for each element (node or a job). Our mar-
ket selection models are different in that the rejection/selection is made with respect
to a collection of elements as a set. We note that in their full generality our techniques
and results are applicable to the market selection variants of the prize-collecting prob-
lems mentioned above, as well as to market selection variants of additional covering
problems.

In [8], Geunes, Romeijn and Taaffe have considered a single item, single location
order selection modelwhere each market is specified by a single demand in a single
period; they have provided an optimization algorithm based on dynamic programming.
In this paper, we consider multi-item, multi-stage and capacitated inventory models
with more complex selection decisions that are made with respect to markets specified
over the time horizon rather than in a single period.

Our approach, when applied to the metric facility location problem, generalizes the
model of facility location with penaltiesdiscussed by Charikar, Khuller, Mount and
Narasimhan in [7]. They have also considered a model where the rejection/selection
decision is made per demand point independently rather than with respect to subsets
of demands. They have provided a 3-approximation algorithm for this model, extend-
ing the novel primal-dual algorithm of Jain and Vazirani [11] for the facility location
problem. For the more general model considered in this paper, we provide a signif-
icantly better approximation factor of 2.075 using LP-rounding. We also provide a
2.542-approximation algorithm for the market selection variant of the facility location
problem with soft capacities. However, our LP-rounding framework is not applicable to
some of the facility location models they have considered.

Our techniques and results.Our LP-rounding framework builds on known facility lo-
cation type LP relaxations for the traditional models. We modify the LP’s to capture
the corresponding market selection problems by adding a variable for each market that
indicates whether it is rejected or not. If we think about this variable as representing a
special ‘order’ (or facility), then we either serve all of the demands of the corresponding
market by this special ‘order’ and lose the revenue of the market, or we have to assign
each one of its demands to a regular order (facility). We solve themarket selection LP
relaxation and consider its optimal solution. The rounding algorithm is conceptually
very simple. For some threshold1β (for someβ ≥ 1), we reject all the markets that

the LP fractional solution rejects by more than1
β . Clearly, this gives a bound on the

rejection cost that our solution incurs. The main observation is that once we decide on
the selected markets, then the market selection LP is reduced to thetraditional LP for
the inventory (facility location) model, for an instance defined by the selected markets
aggregated. We now construct the production plan (facility openings) for these markets
using existing LP-basedα-approximation algorithm for the traditional inventory (facil-
ity location) model. It is clear that the cost incurred is at mostα times the optimal value
of the (reduced) traditional LP. Finally, observe that if a certain market is fractionally
rejected to an amount less than1

β , then the fractional production plan satisfies at least



1− 1
β of each of its demands. Therefore, we can scale the fractional solution that corre-

sponds to the selected markets by no more than1− 1
β to get a feasible fractional solution

to the reduced traditional LP. This bounds our production cost to be at mostα/(1− 1
β )

times the optimal fractional production cost of the market selection LP. Optimizing
deterministically overβ we can now leverage any existing LP-basedα-approximation
algorithm for the traditional inventory problem to an(α + 1)-approximation algorithm
for the corresponding market selection counterpart. However, drawing1

β at random
from the appropriate distribution, as described by Goemans in [9], provides a random-
ized algorithm with improved expected guarantees. Using derandomization we can now
leverage anyα-approximation into a deterministic 1

1−e−
1
α

guarantee. As a by product

we also show that if the traditional model admits a strong LP relaxation so does its mar-
ket selection counterpart. We note that somewhat similar ideas were used independently
in [21] in the context of 2-stage stochastic models.

In addition, we show how to extend the primal-dual framework described in [13,
14] to provide combinatorial approximation algorithms for the market selection vari-
ants of the single item lot-sizing problem, the JRP problem and the assembly problem.
We provide worst-case guarantees of 2, 3 and 3, respectively.

The rest of the paper is organized as follows. In Section 2, we start with the il-
lustrative simple example of the single item lot-sizing problem. Then in Section 3, we
describe the general LP-rounding framework and the approximation results it implies.
Finally, in Section 4, we briefly discuss how to extend the primal-dual framework of
[13, 14].

2 The Single Item Lot-Sizing Problem - An Illustrative Example

In this section, we will use the illustrative simple example of the single item lot-sizing
problem with market selection to demonstrate the underlying techniques of our LP-
rounding framework.

Next we describe a facility location type LP-relaxation of this selection problem
that is based on the LP relaxation of its traditional counterpart. We then show how to
round the optimal solution of this LP into a feasible solution to the market selection
variant with cost at most 1.582 times the optimal cost.



The LP. The LP is as follows:

minimize
m∑

j=1

zjrj +
T∑

s=1

ysKs +
m∑

j=1

T∑
t=1

t∑
s=1

xj
stH

j
st (P)

subject to
t∑

s=1

xj
st + zj = 1, j = 1, . . . ,m, t = 1, . . . , T, (1)

xj
st ≤ ys, j = 1, . . . ,m, t = 1, . . . , T, (2)

s = 1, . . . , t,

xj
st, ys ≥ 0, j = 1, . . . ,m, s = 1, . . . , T, (3)

t = s, . . . , T.

The selection variablezj is equal to 1 if we decided to reject marketj and 0 other-
wise. Theassignment variablexj

st indicates whether the demand of marketj in period
t, dj

t , was provided from periods. Correspondingly, we letHj
st be the overall cost of

providing the demanddj
t from periods, i.e.,Hj

st = hstd
j
t . Theorder variableys indi-

cates whether an order was placed in periods. Theassignment constraint(1) ensures
that each demand in periodt of a selected market is satisfied from some time period
s ≤ t. Note that if we have selected marketj and setzj = 0, then for each periodt,
constraint (1) implies that

∑
s≤t xj

st = 1. Hence, all of the demands of marketj must
be satisfied on time. Conversely, ifzj = 1, then we do not have to satisfy any of the
demands of marketj, and in turn we incur a cost ofrj . Theorder constraint(2) ensures
that no demand can be provided from periods without placing an order in periods. It is
straightforward to verify that the induced integer programm provides a correct formu-
lation for the single item lot-sizing problem with market selection, and therefore, the
optimal solution of the LP-relaxation provides a lower bound on the cost of any feasible
solution to the problem.

Observe that once we decide on the selected markets (i.e., assign zero/one value to
each variablezj), then the above LP is reduced to an LP of a traditional single item lot-
sizing problem defined by the selected markets. The demand in periodt is equal to the
aggregated demandsdj

t over all marketsj ∈ M that were selected (i.e., the demand in
periodt is equal to

∑
j∈M dj

t ). Moreover, it is well known that this LP always provides
an integer solution i.e., it has an integrality property (for different proofs see [12, 3,
5, 13]). However, we note that the market selection LP,(P ) above, does not have an
integrality property (i.e., for some instances the optimal solution is fractional).

A Rounding AlgorithmLet (ẑ, x̂, ŷ) be the optimal solution of(P ) above. We next
describe an extremely simple procedure to round this optimal fractional solution into a
feasible solution for the single item lot-sizing problem with market selection, denoted
by (z̄, x̄, ȳ), and then show that its cost is always at most twice the optimal cost.

Let Z 1
2

:= {j ∈ M : ẑj ≥ frac12}, be the set of all markets that are rejected by

‘amount’ of at least12 in the fractional optimal solution. LetZS := M\ Z 1
2
. We now

reject all the marketsj ∈ Z 1
2

and select all other markets, i.e., we setz̄j = 1 if and
only if ẑj ≥ frac12. Next consider the single item lot-sizing problem defined by the
selected markets, i.e., by the marketsj ∈ ZS , where again the demand in periodt is



equal to
∑

j∈ZS
dj

t . This problem can be efficiently solved to optimality using dynamic
programming (see [23] for details). We take this solution as our production plan. This
concludes the description of the algorithm.

Analysis. We start with a lemma that bounds the rejection cost incurred in(z̄, x̄, ȳ).
The proof is rather straightforward and follows from the construction of the algorithm.

Lemma 1. The rejection cost of the solution(z̄, x̄, ȳ) is at most twice the rejection cost
of the optimal fractional solution(ẑ, x̂, ŷ), i.e.,

∑m
j=1 z̄j ≤ 2

∑m
j=1 ẑj .

To complete the analysis, it is enough to show that the production cost of the solu-
tion (z̄, x̄, ȳ) is at most twice the production cost of the solution(ẑ, x̂, ŷ).

Lemma 2. The production cost of the solution(z̄, x̄, ȳ) is at most twice the production
cost of(ẑ, x̂, ŷ), i.e.,

∑T
s=1 ȳsKs +

∑m
j=1

∑T
t=1

∑t
s=1 x̄j

stHst ≤ 2(
∑T

s=1 ŷsKs +∑m
j=1

∑T
t=1

∑t
s=1 x̂j

stHst).

Proof. Recall that once we decide on the selected markets, then the problem and the
LP are reduced to a traditional lot-sizing problem defined by the markets inZS . More-
over, since the facility location LP of the lot-sizing problem has an integrality property,
we know that the optimal value of that LP is equal to the value of the optimal solution
achieved by applying dynamic programming to this problem. It is then enough to ob-
serve a feasible solution to this reduced LP that has cost at most twice the production
cost in(ẑ, x̂, ŷ). We next describe how to construct such a solution, denoted by(x, y).

For eachj ∈ Z 1
2

we setxj
st = 0 for eachs ≤ t. Now for eachj ∈ ZS we set

xj
st := x̂j

st

1−ẑj
. Finally, for eachs = 1, . . . , T we setys := max{minj∈ZS ( ŷs

1−ẑj
), 1}. It

is readily verified that(x, y) constructed above is a feasible fractional solution for the
LP of the lot-sizing problem defined by the markets inZS .

Observe that for everyj ∈ ZS we have1− ẑj > frac12. Hence, for eachj ∈ ZS

ands ≤ t we havexj
st ≤ 2x̂j

st and for eachs = 1, . . . , T we haveys ≤ 2ŷs. Now
by construction of the algorithm(x̄, ȳ) provides an optimal solution to the LP of the
lot-sizing problem defined by the markets inZS . We get that,

T∑
s=1

ȳsKs +
m∑

j=1

T∑
t=1

t∑
s=1

x̄j
stHst ≤

T∑
s=1

ysKs +
m∑

j=1

T∑
t=1

t∑
s=1

xj
stHst ≤

2(
T∑

s=1

ŷsKs +
m∑

j=1

T∑
t=1

t∑
s=1

x̂j
stHst).

This concludes the proof of the lemma.

As a corollary of Lemmas 1 and 2 we get the following theorem.

Theorem 1. The algorithm provides a 2-approximation algorithm for the lot-sizing
problem with market selection, i.e., the cost(z̄, x̄, ȳ) is at most twice the optimal cost.



2.1 Randomized Algorithm

Next we briefly discuss how randomized rounding yields an improved approximation
algorithm. Instead of using the threshold1

2 , we follow the ideas in [9], and choose a
threshold1

β uniformly at random from(0, δ], where0 < δ ≤ 1 (the value ofδ will be

specified later). Once1β is chosen we proceed in the same way described above, i.e., we

reject all marketsj ∈ M with ẑj ≥ 1
β , and construct a minimum-cost production plan

for the selected markets (using dynamic programming).
Following are several lemmas that establish the expected performance guarantee of

the randomized algorithm described above.

Lemma 3. For each marketj ∈M, the probability that marketj is rejected is at most
ẑj

δ , i.e., the expected rejection cost of the solution is at most
P

j ẑjrj

δ .

Proof. For each marketj with ẑj ≤ δ the claim follows trivially. For each marketj
with ẑj > δ, we reject the market with probability 1, however,ẑj

δ > 1. This concludes
the proof.

Lemma 4. The expected production cost of the solution is at most
ln( 1

1−δ )

δ (
∑T

s=1 ŷsKs+∑m
j=1

∑T
t=1

∑t
s=1 x̂j

stHst).

Proof. By similar arguments to Lemma 2 above, it is readily verified that, for each value
of 1

β , the production cost is at most1
1− 1

β

times the production cost of the optimal LP

solution,(ẑ, ẑ, ŷ). Taking the integral1δ
∫ δ

0
1

1− 1
β

d( 1
β ) gives the required result.

Settingδ equal to1 − e−1 provides and a solution with expected cost at most
1.582 times the optimal cost. Observe that the solution constructed by the algorithm is
uniquely determined by the set of rejected markets. Hence, there are at mostm relevant
values of 1

β that will yield distinct solutions. We can then derandomize the algorithm

by enumerating only them relevant values of1β and get the following theorem.

Theorem 2. There exists a 1.582-approximation algorithm for the market selection
variant of the lot-sizing problem.

3 General LP-Rounding Framework

In this section, we will generalize the example discussed in Section 2 above, and pro-
pose a general LP-rounding framework that can be applied to market selection variants
of a wide class of classical deterministic inventory and facility location models. The
ingredients for our LP-rounding framework are a facility location type LP relaxation
and an LP-basedα-approximation algorithm for the traditional model without market
selection. We show how, given these ingredients, one can leverage theα-approximation
algorithm into an 1

1−e−
1
α

-approximation algorithm for the corresponding counterpart

model with market selection.



Our algorithms can use any facility location type LP withassignment variables,
x, andorder variables, y, and withassignment constraints(e.g., constraint (1) above),
ordering constraints(e.g., constraint (2) above) and possiblysoft capacity constraints.
Here the order variablesy indicate how many batches were ordered in each order, where
each batch incurs an additional fixed ordering cost. The number of batches installed
dictates the capacity of the order, or in other words, how many units of demand can be
satisfied by this order. For the lot-sizing example discussed in Section 2, but with soft
capacity constraints, we would have the constraint,

∑
t≥s

∑m
j=1 xj

std
j
t ≤ ysUs, for each

periods = 1, . . . , T , whereUs is the batch capacity associated with the order in period
s. By an LP-basedα-approximation algorithm we mean an algorithm that constructs a
solution with cost guaranteed to be at mostα times the optimal LP value.

We now state and prove a general theorem that relates the approximation results
for traditional deterministic inventory (and facility location models) to approximation
results for their corresponding counterparts with market selection.

Theorem 3. Consider a deterministic inventory or a facility location model that can
be formulated as a facility location type integer program with assignment and order
variables, and with assignment constraints, order constraints and possibly soft capacity
constraints. Also assume that the model has an LP-basedα-approximation. Then there
exists an(α+1)-approximation algorithm for the counterpart of this model with market
selection.

Proof. We first adjust the LP relaxation for the traditional model to capture the coun-
terpart model with market selection. LetM be again the set ofm markets. As before
we let the selection variablezj be equal 1 if we reject marketj and 0 otherwise. For
each demand of marketj, we have a separate set of assignment variables (for each
facilty/order that can serve it). Similarly there is an assignment constraint for each of
its demands that includes thezj variable. The order constraints and possibly the soft
capacity constraints are adapted accordingly. Finally, we modify the objective function
and add the market rejection part

∑m
j=1 zjrj . We now solve this LP and let(ẑ, x̂, ŷ) be

the respective optimal solution.
Now for some parameterβ > 1 that will be determined later, letZ 1

β
:= {j : ẑj ≥

1
β }, i.e., the set of markets that are rejected in the market selection LP optimal solution

by ‘amount’ at least1β . Let ZS be the set of all other markets (i.e.,ZS = M \ Z 1
β

).
We now reject all the markets inZ 1

β
and select all marketsj ∈ ZS . Next consider the

instance for the traditional variant of the model defined by the markets inZS , where
again, for each period (location) and each commodity, we aggregate the corresponding
demands of all the selected markets. We then apply theα-approximation algorithm to
the instance defined byZS , and get a production plan (facility location solution).

It is straightforward to see that the rejection cost incurred by the solution is at most
β

∑m
j=1 ẑjrj . Also observe that by a similar scaling to the one described in Lemma 2,

we can observe a feasible solution to the traditional LP defined by the markets inZS of
cost at most β

β−1 times the cost of the (fractional) production plan in(ẑ, x̂, ŷ). However,
by our assumption, the cost of the production plan constructed by the algorithm, is at
mostα times the cost of the optimal solution to the above traditional LP defined by the
markets inZS . Therefore, it is at mostα( β

β−1 ) times the cost of the production plan in



(ẑ, x̂, ŷ). Settingβ = α + 1, we get that the cost of the solution is at mostα + 1 times
the cost of(ẑ, x̂, ŷ). This concludes the proof.

Similar to the lot-sizing case, if we choose1β at random uniformly from(0, δ]
(where again0 < δ ≤ 1), then the expected rejection cost is at most1

δ the rejec-

tion cost in the optimal LP solution,(ẑ, x̂, ŷ) (i.e., at most
P

j ẑjrj

δ ), and the expected

production cost is at most
α ln( 1

1−δ )

δ times the production cost in(ẑ, x̂, ŷ) (i.e., at most
α ln( 1

1−δ )

δ (
∑T

s=1 ŷsKs +
∑m

j=1

∑T
t=1

∑t
s=1 x̂j

stHst)). Settingδ equal to1−e−
1
α guar-

antees that expected cost of the algorithm is at most1
1−e−

1
α

times the optimal cost. By

the same derandomization techniques, we achieve the same guarantee deterministically.

Approximation results.Thesingle item lot-sizing problem with soft capacity constraints
can be solved optimally [17]. In [18], Levi, Roundy and Shmoys have showed that the
integrality gap of the facility location type LP of this model is at most 2. We get the
following theorem.

Theorem 4. There exists a 2.542-approximation algorithm for the market selection sin-
gle item lot-sizing problem with soft capacity constraints.

We consider a sequence of LP-based approximation algorithms described in [13,
14, 18, 19], namely, a 2-approximation algorithms for the JRP and assembly problems,
a 4-approximation algorithm for the JRP with soft capacities, a 2.398-approximation
algorithm for the OWMR and a 4.769-approximation algorithm for the OWMR with
soft capacities. We then conclude the following theorems.

Theorem 5. There exist a 2.54-approximation algorithms for the market selection vari-
ants of the joint replenishment and the assembly problems, and a 4.521-approximation
algorithm for market selection variant of the JRP with soft capacities.

Theorem 6. There exist a 2.993-approximation algorithm and a 5.287-approximation
algorithm for the market selection variants of the OWMR and the OWMR with soft
capacities, respectively.

Finally, in [15, 16], Mahdian, Ye and Zhang have provided a 1.52-approximation
algorithm and 2-approximation algorithm for the facility location problem and its vari-
ant with soft capacities, respectively. Both algorithms are LP-based. In [22], Shmoys,
Swamy and Levi have provided a 6-approximation algorithm for the facility location
problem with service installation costs. We again conclude a corresponding theorem.

Theorem 7. There exist a 2.075, 2.542 and 6.514 approximation algorithms for the
market selection variants of the uncapacitated facility location problem, the facility lo-
cation problem with soft capacities and facility location with service installation costs.



4 Extended Primal-Dual Framework

In [13, 14], Levi, Roundy and Shmoys have described a general primal-dual framework
that solves the lot-sizing problem to optimality, and provides a 2-approximation for the
JRP and assembly problem. In this section, we will briefly discuss how to modify their
algorithms to provide combinatorial approximation algorithms (i.e., algorithms that do
not require solving the LP) for the counterpart models with market selection. Using
these modified algorithms, we provide performance guarantees of 2, 3 and 3 for these
models, respectively. For simplicity and due lack of space, we next focus on the single
item lot-sizing problem. Similar extensions exist for the JRP and assembly problem.

The following is the dual of(P ) from Section 2.

maximize
m∑

j=1

T∑
t=1

bj
t (D)

subject to bj
t ≤ Hj

st + ljst, j = 1, . . . ,m, t = 1, . . . , T. (4)

s = 1, . . . , t.

m∑

j=1

T∑
t=s

ljst ≤ Ks, s = 1, . . . , T, (5)

T∑
t=1

bj
t ≤ rj , j = 1, . . . ,m, (6)

lst ≥ 0, t = 1, . . . , T, s = 1, . . . , t. (7)

The above dual program is very similar to the dual used in [13, 14], and the main dif-
ference is the additional constraint (6). As in [13, 14], the primal-dual algorithm works
in two stages. We first construct a feasible dual solution, and then use this solution to
construct a cheap feasible integer solution for the primal LP.

Constructing a dual solution.We associate a budgetbj
t with each demand point(j, t)

(i.e., the required demand of marketj in periodt, dj
t ). We now start to increase the bud-

get using a mechanism that is calledwave form. Think of a wave the moves backward
in time, and letτ be the indicator of thewavefrontlocation. We initialize the wavefront
variableτ to T . The algorithm consists of a series of iterations as the value ofτ is
(continuously) decreased through the interval[T, 1]. This parameter controls the values
of the budgetsbj

t of each unfrozen demand point(j, t). The budgetbj
t is kept equal

zero as long asτ > t. Onceτ ≤ t and until it is frozen,bj
it is always equalHj

τt. As
the wave moves backward in time, we willtemporarily open ordersandfreezebudgets
(i.e., stop increasing then) of demand points; as the budgets are increased we identify
the following events:
Event 1 Whenτ = s (for s = T, T − 1, . . . , 1), we consider all unfrozen demand
points(j, t) with t ≥ s, and start increasing the variableljst at the same rate asbj

t , i.e.,
we keepbj

t = Hj
τt = Hj

st + ljst; (Note that as the wavefront reachess and the budget
bj
t increases toHj

st the constraint (4) becomes tight).



Event 2 Suppose that for somes, we have that
∑m

j=1

∑
t≥s ljst = Ks. (Note that this

means that we can no longer increase any variablesljst without violating the constraint
(5)). We then temporarily open an order in periods, and freeze all unfrozen budgets of
demand points(j, t) with t ≥ s.
Event 3 Suppose that for some marketj we have

∑T
t=1 bj

t = rj (i.e., constraint (6)
becomes tight). We thenmarkmarketj and freezeall the budgets of its demand points.
This includes also budgets of demand points witht < τ that will be kept at zero even
afterτ will advance and cross timet.

We continue this procedure until all the budgets are frozen. Let(b̄, l̄) be the dual
solution at the end of the first phase of the algorithm. It is straightforward to verify
that this solution is feasible with respect to(D) above. Next we show how to use this
solution to construct a feasible solution for the market selection problem.

Constructing an integer primal solution.We reject all markets that were marked by
event 3 above. We then construct a production plan for the rest of the markets following
a similar procedure to the one described in [13, 14]. LetR = {s1 = 1 < s2 < · · · < sp}
be the set of the time periods of all temporarily opened orders. For eachs ∈ R, let
open(s) be the location of the wavefront when the order ats was temporarily opened.
We say that the interval[open(s), s] is theshadow intervalof s. Furthermore,r ands in
R are said to bedependentif and only if their shadow intervals intersect. We consider
the periodssi, i = 1, . . . , p, in increasing order ofsi, and permanently open an order
sq whenever its associated shadow interval does not intersect the shadow interval of
any earliersi, i = 1, . . . , q − 1, that has already been permanently opened. The set
of permanently opened orders provides a feasible production plan, where each demand
point of a selected market is satisfied from the latest possible opened order.

Analysis. The analysis follows along the lines of [13, 14]. By similar arguments to the
ones used there, we can show that it is possible to ‘pay’ for the cost of the production
plan of the solution, using every budgetb̄j

t at most once. In addition, it is clear that the
rejection cost can be ‘paid’ with the budgets associated with the demands of the rejected
markets. Therefore, the total cost of the solution can be ‘paid’ using each budgetb̄j

t

at most twice. For the JRP and assembly problem the modification in the algorithm is
similar. Here it can be shown that the production cost can be ‘paid’ using each budget at
most twice, and the rejection cost is again ‘paid’ by the budgets of the rejected markets.
We then conclude the following theorem.

Theorem 8. The modified primal-dual framework provides approximation algorithms
with worst-case performance guarantees of 2, 3 and 3, respectively, for the market
selection variants of the lot-sizing, the JRP and the assembly problem.
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3. I. Báŕany, T. J. Van Roy, and L. A. Wolsey. Uncapacitated lot-sizing: the convex hull of
solutions.Mathematical Programming Study, 22:32–43, 1984.

4. Y. Bartal, S. Leonardi, A. M. Spaccamela, J. Sgall, and L. Stougie. Multiprocessor schedul-
ing with rejection.SIAM Journal on Discrete Mathematics, 13:64–78, 2000.

5. D. Bertsimas, C. Teo, and R. Vohra. On dependent randomized rounding algorithms.Oper-
ations Research Letters, 25:105–114, 1999.

6. D. Bienstock, M. X. Goemans, D. Simchi-Levi, and D. Williamson. A note on the prize
collecting traveling salesman problem.Mathematical Programming, 59:413–420, 1993.

7. M. Charikar, S. Khuller, D. M. Mount, and G. Narasimhan. Algorithms for facility loca-
tion problems with outliers. InProceedings of the 12th Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 642–651, 2001.

8. J. Geunes, H. E., Romeijn, and K. Taaffe. Requirements planning with pricing and order
selection flexibility. To appear in Operations Research, 2004.

9. M. X. Goemans. Approximate solutions of hard combinatorial problems, 1996. Lecture
notes in the schoolof ASHCOMP.

10. M. X. Goemans and D. P. Williamson. A general approximation technique for constrained
forest problems.SIAM Journal on Computing, 24:296–317, 1995.

11. K. Jain and V. V. Vazirani. Approximation algorithms for metric facility location andk-
median problems using the primal-dual schema and Lagrangian relaxation.Journal of the
ACM 48, pages 274–296, 2001.

12. J. Krarup and O. Bilde. Plant location, set covering and economic lot sizing: an O(mn)
algorithm for structural problems. InNumerische Methoden Bei Optimierungsaufgaben,
volume 3, pages 155–180, 1977.

13. R. Levi, R. O. Roundy, and D. B. Shmoys. Primal-dual algorithms for deterministic in-
ventory problems. Technical Report TR1042, ORIE Department, Cornell University, 2004.
Submitted.

14. R. Levi, R. O. Roundy, and D. B. Shmoys. Primal-dual algorithms for deterministic inventory
problems. InProceedings of the 36th Annual ACM Symposium on Theory of Computing,
pages 353–362, 2004.

15. M. Mahdian, Y. Ye, and J. Zhang. Improved approximation algorithms for metric facility
location. InProceedings of 6th APPROX, pages 229–242, 2002.

16. M. Mahdian, Y. Ye, and J. Zhang. A 2-approximation algorithm for the soft-capacitated
facility location problem. InProceedings of 7th APPROX, pages 129–140, 2003.

17. Y. Pochet and L. A. Wolsey. Lot-sizing with constant batches:Formulationand valid in-
equalities.Mathematics of Operations Research, 18:767–785, 1993.

18. R.Levi, R. Roundy, and D. Shmoys. A constant approximation algorithm for the one-
warehouse multi-retailer problem. Technical Report TR1408, ORIE Department, Cornell
University, 2004. Submitted, extended abstract will appear in SODA 2005.

19. R.Levi, R. Roundy, and D. Shmoys. A constant approximation algorithm for the one-
warehouse multi-retailer problem (Extended Abstract). InProceedings of the 16th Annual
SIAM-ACM Symposium on Discrete Algorithms, 2005.

20. D. B. Shmoys. The design and analysis of approximation algorithms: facility location as
a case study. In S. Hosten, J. Lee, and R. Thomas, editors,Trends in Optimization. AMS
Proceedings of Symposia in Applied Mathematics, 2004. To appear.

21. D. B. Shmoys and C. Swamy. Stochastic optimization is (almost) as easy as deterministic
optimization. InProceedings of the 45th Annual IEEE Symposium on the Foundations of
Computer Science, 2004., pages 228–237, 2004.

22. D. B. Shmoys, C. Swamy, and R. Levi. Facility location with service installation costs.
In Proceedings of the 15th Annual SIAM-ACM Symposium on Discrete Algorithms, pages
1081–1090, 2004.



23. H. M. Wagner and T. M. Whitin. Dynamic version of the economic lot sizing model.Man-
agement Science, 5:89–96, 1958.


