Transfer Learning from typical Alzheimer’s disease to rare dementias using Disease Knowledge Transfer

Razvan Marinescu
Alzheimer’s disease is a devastating disease

- Currently no treatment available that can stop, or at least slow down, cognitive decline
Neurodegenerative diseases other than Alzheimer’s also affect many worldwide

- **Posterior Cortical Atrophy > 1 million**
- Frontotemporal dementia > 6 million
 - All tauopathies …
- Dementia with Lewy bodies > 1.6 million
- Vascular dementia > 8 million
- Creutzfeld-Jacobs disease > 7000/year
- Parkinson’s disease
- Huntington’s disease
Progression of Alzheimer’s disease is known.
Progression of Alzheimer’s disease is known

Lack of datasets that are:
- Large
- Longitudinal
- Multimodal

Progression of less common neurodegenerative diseases is not known
Progression of Alzheimer’s disease is known

Progression of less common neurodegenerative diseases is not known

Lack of datasets that are:
• Large
• Longitudinal
• Multimodal
Progression of Alzheimer’s disease is known

Lack of datasets that are:
- Large
- Longitudinal
- Multimodal

Transfer learning provides a key solution towards characterizing rare diseases
Previous literature on Transfer Learning for neurodegenerative diseases

- Hon and Khan 2017, Nanni et. al. 2020 - transfer from computer vision datasets to medical datasets
- Cheng, Zhang and Shen 2012, Wachinger and Reuter, 2017, Guerrero et. al. 2014, Hofer et. al. 2017 - transfer learning across Alzheimer’s disease diagnoses (e.g. CN vs MCI -> MCI vs AD)

<table>
<thead>
<tr>
<th>Reference</th>
<th>Topic</th>
<th>Task</th>
<th>Domain</th>
<th>Transfer type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brain</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zhang and Shen (2012)</td>
<td>MCI conversion prediction</td>
<td>different</td>
<td>same</td>
<td>feature, multi-task</td>
</tr>
<tr>
<td>Guerrero et. al. (2014)</td>
<td>AD classification</td>
<td>same</td>
<td>different</td>
<td>instance, align</td>
</tr>
<tr>
<td>Wachinger and Reuter (2016)</td>
<td>AD classification</td>
<td>same</td>
<td>different</td>
<td>instance, weight</td>
</tr>
<tr>
<td>Hofer et. al. (2017)</td>
<td>AD classification</td>
<td>same</td>
<td>different</td>
<td>instance, align</td>
</tr>
<tr>
<td>Hon and Khan (2017)</td>
<td>AD classification</td>
<td>different</td>
<td>different</td>
<td>feature, pretraining</td>
</tr>
</tbody>
</table>

Methods are supervised on clinical diagnosis, which is **unreliable without post-mortem neuropathology**

- No work tried to use transfer learning to improve predictions on **rarer** neurodegenerative diseases

Survey of transfer learning in Alzheimer’s research (Cheplygina et. al., 2019)
Transfer Learning intuition: sharing the disease progression template but not the extent of damage

- Two diseases such as typical AD and Posterior Cortical Atrophy (PCA) affect the brain at different spatial locations.
Transfer Learning intuition: sharing the disease progression template but not the extent of damage

- Two diseases such as typical AD and Posterior Cortical Atrophy (PCA) affect the brain at different spatial locations.

- Each region, e.g. occipital lobe, is believed to follow a certain cascade of events.
Transfer Learning intuition: sharing the disease progression template but not the extent of damage

- Two diseases such as typical AD and Posterior Cortical Atrophy (PCA) affect the brain at different spatial locations.

- Each region, e.g. occipital lobe, is believed to follow a certain cascade of events.

- We propose that each region follows the same multimodal trajectories for both typical AD and PCA.

- Difference between typical AD vs PCA is the extent of pathology along the trajectory.

Marinescu et al., MICCAI, 2019
Transfer Learning intuition: sharing the disease progression template but not the extent of damage

- Two diseases such as typical AD and Posterior Cortical Atrophy (PCA) affect the brain at different spatial locations.

- Each region, e.g. occipital lobe, is believed to follow a certain cascade of events.

- We propose that each region follows the same multimodal trajectories for both typical AD and PCA.

- Difference between typical AD vs PCA is the extent of pathology along the trajectory.

- Current understanding: PCA, as a different syndrome, is modeled separately from tAD.

Marinescu et al., MICCAI, 2019
The Disease Knowledge Transfer (DKT) framework
The Disease Knowledge Transfer (DKT) framework

- Model disease as progression of composite dysfunction scores for each brain region:
 - Typical AD: temporal first
 - PCA: occipital first

Marinescu et al., MICCAI, 2019
The Disease Knowledge Transfer (DKT) framework

- Model disease as progression of composite dysfunction scores for each brain region:
 - Typical AD: temporal first
 - PCA: occipital first
 - Model dysfunction scores as “aggregate pathology” from multiple modalities (e.g. amyloid + tau + atrophy)

Marinescu et al., MICCAI, 2019
The Disease Knowledge Transfer (DKT) framework

• Model disease as progression of composite dysfunction scores for each brain region:

 • Typical AD: temporal first

 • PCA: occipital first

• Model dysfunction scores as “aggregate pathology” from multiple modalities (e.g. amyloid + tau + atrophy)

• Extend dysfunction modeling to all brain regions

Marinescu et al., MICCAI, 2019
The Disease Knowledge Transfer (DKT) framework

- Model disease as progression of composite dysfunction scores for each brain region:
 - Typical AD: temporal first
 - PCA: occipital first
- Model dysfunction scores as “aggregate pathology” from multiple modalities (e.g. amyloid + tau + atrophy)
- Extend dysfunction modeling to all brain regions
- A new disease, e.g. Posterior Cortical Atrophy (PCA) will have **different** dysfunction progression across the brain (disease specific), but **similar** progression within individual regions (disease agnostic)

Marinescu et al., MICCAI, 2019
DKT is a bayesian hierarchical model
DKT is a bayesian hierarchical model

- Define subject disease stage:

![Diagram of disease progression](image)
DKT is a bayesian hierarchical model

- Define subject disease stage:
 \[\beta_i + m_{ij} \]
DKT is a bayesian hierarchical model

- Define subject disease stage:
 \[\beta_i + m_{ij} \]

- Estimate dysfunction score of a particular brain ROI:
DKT is a bayesian hierarchical model

- Define subject disease stage:
 \[\beta_i + m_{ij} \]

- Estimate dysfunction score of a particular brain ROI:
 \[f(\beta_i + m_{ij}; \lambda^{(k)}_{d_i}) \]
DKT is a bayesian hierarchical model

- Define subject disease stage:
 \[\beta_i + m_{ij} \]

- Estimate dysfunction score of a particular brain ROI:
 \[f(\beta_i + m_{ij}; \lambda^{\psi(k)}_{\psi}) \]

- Estimate value of a biomarker of a particular modality given the dysfunction score:

![Growth curve diagram](image)
DKT is a bayesian hierarchical model

- Define subject disease stage:
 \[\beta_i + m_{ij} \]

- Estimate dysfunction score of a particular brain ROI:
 \[f(\beta_i + m_{ij}; \lambda^{(k)}_{di}) \]

- Estimate value of a biomarker of a particular modality given the dysfunction score:
DKT is a bayesian hierarchical model

- Define subject disease stage:
 \[\beta_i + m_{ij} \]

- Estimate dysfunction score of a particular brain ROI:
 \[f(\beta_i + m_{ij}, \lambda_{d_i}^{(k)}) \]

- Estimate value of a biomarker of a particular modality given the dysfunction score:

- Parameters are estimated through loopy belief propagation
DKT is a bayesian hierarchical model

- Define subject disease stage:
 \[\beta_i + m_{ij} \]

- Estimate dysfunction score of a particular brain ROI:
 \[f(\beta_i + m_{ij}; \lambda_{d_i}^{\psi(k)}) \]

- Estimate value of a biomarker of a particular modality given the dysfunction score:
 \[y_{ijk} \sim g(f(\beta_i + m_{ij}; \lambda_{d_i}^{\psi(k)}); \theta_k) + \epsilon_k \]

- Parameters are estimated through loopy belief propagation
DKT is a Bayesian hierarchical model

- Define subject disease stage:
 \[\beta_i + m_{ij} \]

- Estimate dysfunction score of a particular brain ROI:
 \[f(\beta_i + m_{ij}; \lambda_{d_i}^{\psi(k)}) \]

- Estimate value of a biomarker of a particular modality given the dysfunction score:
 \[y_{ijk} \sim g(f(\beta_i + m_{ij}; \lambda_{d_i}^{\psi(k)}); \theta_k) + \epsilon_k \]

- Parameters are estimated through loopy belief propagation

- Functions \(f \) and \(g \) are parameterized using sigmoidal curves
Outline of Results

- Results on simulated data
- Results on patient data from ADNI and the Dementia Research Center UK
- Quantitative evaluation
DKT works well on simulated data

- Simulated 100 subjects with two diseases: synAD & synPCA

- To simulate lack of multimodal data in synPCA, we discarded 4/6 biomarkers
DKT works well on simulated data

- Simulated 100 subjects with two diseases: synAD & synPCA

- To simulate lack of multimodal data in synPCA, we discarded 4/6 biomarkers

- DKT was able to:
DKT works well on simulated data

- Simulated 100 subjects with two diseases: synAD & synPCA

- To simulate lack of multimodal data in synPCA, we discarded 4/6 biomarkers

- DKT was able to:
 - Reliably fit the data
DKT works well on simulated data

- Simulated 100 subjects with two diseases: synAD & synPCA
- To simulate lack of multimodal data in synPCA, we discarded 4/6 biomarkers
- DKT was able to:
 - Reliably fit the data

Marinescu et al., MICCAI, 2019

Disease Knowledge Transfer

DTI → MRI
Common Diseases (AD)
→ FDG PET

 Ürün estim. Ürün estim. Ürün true Ürün true Ürün true Ürün true

Unit0 all trajectories

MAE = 0.057

0.00 0.25 0.50 0.75 1.00
disease progression score

−0.5 0.0 0.5 1.0
dysfunctionality score

biomark 0 estm.
biomark 0 true
biomark 2 estm.
biomark 2 true

Dis0 all trajectories

MAE = 0.057

0.00 0.25 0.50 0.75 1.00
disease progression score

−0.5 0.0 0.5 1.0
dysfunctionality score

biomark 1 estm.
biomark 1 true
biomark 3 estm.
biomark 3 true

Marinescu et al., MICCAI, 2019
DKT works well on simulated data

- Simulated 100 subjects with two diseases: synAD & synPCA

- To simulate lack of multimodal data in synPCA, we discarded 4/6 biomarkers

- DKT was able to:
 - Reliably fit the data
 - Infer the missing biomarkers in synPCA
DKT works well on simulated data

- Simulated 100 subjects with two diseases: synAD & synPCA

- To simulate lack of multimodal data in synPCA, we discarded 4/6 biomarkers

- DKT was able to:
 - Reliably fit the data
 - Infer the missing biomarkers in synPCA

Marinescu et al., MICCAI, 2019
On real data, DKT can estimate *multimodal* trajectories of Posterior Cortical Atrophy only using structural MRI

- Ran on 76 PCA subjects from the Dementia Research Center UK

- Given structural MRI, DKT was able to infer missing DTI, FDG, Tau PET and Amyloid PET in PCA, in lack of such data.
 - We subsequently validate the DTI trajectories

- The first such longitudinal trajectories of *multimodal* biomarkers in Posterior Cortical Atrophy

Marinescu et al., MICCAI, 2019
On real data, DKT can estimate *multimodal* trajectories of Posterior Cortical Atrophy only using structural MRI

- Ran on 76 PCA subjects from the Dementia Research Center UK

- Given structural MRI, DKT was able to infer missing DTI, FDG, Tau PET and Amyloid PET in PCA, in lack of such data.
 - We subsequently validate the DTI trajectories

- The first such longitudinal trajectories of *multimodal* biomarkers in Posterior Cortical Atrophy

Marinescu et al., MICCAI, 2019
Quantitative evaluation & validation through transfer learning

- Split ADNI into three different subgroups with different disease progressions (using SuStaIn)
Quantitative evaluation & validation through transfer learning

- Split ADNI into three different subgroups with different disease progressions (using SuStaIn)

- Transferred information from Cortical to Hippocampal subgroups

<table>
<thead>
<tr>
<th>Model</th>
<th>Cingulate</th>
<th>Frontal</th>
<th>Hippocam.</th>
<th>Occipital</th>
<th>Parietal</th>
<th>Temporal</th>
</tr>
</thead>
<tbody>
<tr>
<td>DKT (ours)</td>
<td>0.56 ± 0.23</td>
<td>0.35 ± 0.17</td>
<td>0.58 ± 0.14</td>
<td>-0.10 ± 0.29</td>
<td>0.71 ± 0.11</td>
<td>0.34 ± 0.26</td>
</tr>
<tr>
<td>Latent stage</td>
<td>0.44 ± 0.25</td>
<td>0.34 ± 0.21</td>
<td>0.34 ± 0.24*</td>
<td>-0.07 ± 0.22</td>
<td>0.64 ± 0.16</td>
<td>0.08 ± 0.24*</td>
</tr>
<tr>
<td>Multivariate</td>
<td>0.60 ± 0.18</td>
<td>0.11 ± 0.22*</td>
<td>0.12 ± 0.29*</td>
<td>-0.22 ± 0.22</td>
<td>-0.44 ± 0.14*</td>
<td>-0.32 ± 0.29*</td>
</tr>
<tr>
<td>Spline</td>
<td>-0.24 ± 0.25*</td>
<td>-0.06 ± 0.27*</td>
<td>0.58 ± 0.17</td>
<td>-0.16 ± 0.27</td>
<td>0.23 ± 0.25*</td>
<td>0.10 ± 0.25*</td>
</tr>
<tr>
<td>Linear</td>
<td>-0.24 ± 0.25*</td>
<td>0.20 ± 0.25*</td>
<td>0.58 ± 0.17</td>
<td>-0.16 ± 0.27</td>
<td>0.23 ± 0.25*</td>
<td>0.13 ± 0.23*</td>
</tr>
</tbody>
</table>
Quantitative evaluation & validation through transfer learning

- Split ADNI into three different subgroups with different disease progressions (using SuStaIn)

- Transferred information from Cortical to Hippocampal subgroups

<table>
<thead>
<tr>
<th>Model</th>
<th>Cingulate</th>
<th>Frontal</th>
<th>Hippocam.</th>
<th>Occipital</th>
<th>Parietal</th>
<th>Temporal</th>
</tr>
</thead>
<tbody>
<tr>
<td>DKT (ours)</td>
<td>0.56 ± 0.23</td>
<td>0.35 ± 0.17</td>
<td>0.58 ± 0.14</td>
<td>-0.10 ± 0.29</td>
<td>0.71 ± 0.11</td>
<td>0.34 ± 0.26</td>
</tr>
<tr>
<td>Latent stage</td>
<td>0.44 ± 0.25</td>
<td>0.34 ± 0.21</td>
<td>0.34 ± 0.24</td>
<td>-0.07 ± 0.22</td>
<td>0.64 ± 0.16</td>
<td>0.08 ± 0.24*</td>
</tr>
<tr>
<td>Multivariate</td>
<td>0.60 ± 0.18</td>
<td>0.11 ± 0.22</td>
<td>0.12 ± 0.29</td>
<td>-0.22 ± 0.22</td>
<td>-0.44 ± 0.14*</td>
<td>-0.32 ± 0.29*</td>
</tr>
<tr>
<td>Spline</td>
<td>-0.24 ± 0.25*</td>
<td>-0.06 ± 0.27*</td>
<td>0.58 ± 0.17</td>
<td>-0.16 ± 0.27</td>
<td>0.23 ± 0.25*</td>
<td>0.10 ± 0.25*</td>
</tr>
<tr>
<td>Linear</td>
<td>-0.24 ± 0.25*</td>
<td>0.20 ± 0.25*</td>
<td>0.58 ± 0.17</td>
<td>-0.16 ± 0.27</td>
<td>0.23 ± 0.25*</td>
<td>0.13 ± 0.23*</td>
</tr>
</tbody>
</table>

TADPOLE: Hippocampal subgroup to Cortical subgroup

typical Alzheimer's to Posterior Cortical Atrophy

- DKT (ours) | 0.77 ± 0.11 | 0.39 ± 0.26 | 0.75 ± 0.09 | 0.60 ± 0.14 | **0.55 ± 0.24** | **0.35 ± 0.22** |
| Latent stage | **0.80 ± 0.09** | **0.53 ± 0.17** | **0.80 ± 0.12** | 0.56 ± 0.18 | 0.50 ± 0.21 | 0.32 ± 0.24 |
| Multivariate | 0.73 ± 0.09 | 0.45 ± 0.22 | 0.71 ± 0.08 | -0.28 ± 0.21* | 0.53 ± 0.22 | 0.25 ± 0.23* |
| Spline | 0.52 ± 0.20* | -0.03 ± 0.35* | 0.66 ± 0.11* | 0.09 ± 0.25* | 0.53 ± 0.20 | 0.30 ± 0.21* |
| Linear | 0.52 ± 0.20* | 0.34 ± 0.27 | 0.66 ± 0.11* | **0.64 ± 0.17** | 0.54 ± 0.22 | 0.30 ± 0.21* |
Quantitative evaluation & validation through transfer learning

- Split ADNI into three different subgroups with different disease progressions (using SuStaIn)

- Transferred information from Cortical to Hippocampal subgroups

- From typical AD to Posterior Cortical Atrophy
Quantitative evaluation & validation through transfer learning

- Split ADNI into three different subgroups with different disease progressions (using SuStaIn)

- Transferred information from Cortical to Hippocampal subgroups

- From typical AD to Posterior Cortical Atrophy

- Validated on 20 left-out diffusion scans on PCA

<table>
<thead>
<tr>
<th>Model</th>
<th>Cingulate</th>
<th>Frontal</th>
<th>Hippocam.</th>
<th>Occipital</th>
<th>Parietal</th>
<th>Temporal</th>
</tr>
</thead>
<tbody>
<tr>
<td>TADPOLE: Hippocampal subgroup to Cortical subgroup</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DKT (ours)</td>
<td>0.56 ± 0.23</td>
<td>0.35 ± 0.17</td>
<td>0.58 ± 0.14</td>
<td>-0.10 ± 0.29</td>
<td>0.71 ± 0.11</td>
<td>0.34 ± 0.26</td>
</tr>
<tr>
<td>Latent stage</td>
<td>0.44 ± 0.25</td>
<td>0.34 ± 0.21</td>
<td>0.34 ± 0.24*</td>
<td>-0.07 ± 0.22</td>
<td>0.64 ± 0.16</td>
<td>0.08 ± 0.24*</td>
</tr>
<tr>
<td>Multivariate</td>
<td>0.60 ± 0.18</td>
<td>0.11 ± 0.22*</td>
<td>0.12 ± 0.29*</td>
<td>-0.22 ± 0.22</td>
<td>-0.44 ± 0.14*</td>
<td>-0.32 ± 0.29*</td>
</tr>
<tr>
<td>Spline</td>
<td>-0.24 ± 0.25*</td>
<td>-0.06 ± 0.27*</td>
<td>0.58 ± 0.17</td>
<td>-0.16 ± 0.27</td>
<td>0.23 ± 0.25*</td>
<td>0.10 ± 0.25*</td>
</tr>
<tr>
<td>Linear</td>
<td>-0.24 ± 0.25*</td>
<td>0.20 ± 0.25*</td>
<td>0.58 ± 0.17</td>
<td>-0.16 ± 0.27</td>
<td>0.23 ± 0.25*</td>
<td>0.13 ± 0.23*</td>
</tr>
</tbody>
</table>

Typical Alzheimer’s to Posterior Cortical Atrophy

DKT (ours)	0.77 ± 0.11	0.39 ± 0.26	0.75 ± 0.09	0.60 ± 0.14	0.55 ± 0.24	0.35 ± 0.22
Latent stage	0.80 ± 0.09	0.53 ± 0.17	0.80 ± 0.12	0.56 ± 0.18	0.50 ± 0.21	0.32 ± 0.24
Multivariate	0.73 ± 0.09	0.45 ± 0.22	0.71 ± 0.08	-0.28 ± 0.21*	0.53 ± 0.22	0.25 ± 0.23*
Spline	0.52 ± 0.20*	-0.03 ± 0.35*	0.66 ± 0.11*	0.09 ± 0.25*	0.53 ± 0.20	0.30 ± 0.21*
Linear	0.52 ± 0.20*	0.34 ± 0.27	0.66 ± 0.11*	0.64 ± 0.17	0.54 ± 0.22	0.30 ± 0.21*
Quantitative evaluation & validation through transfer learning

- Split ADNI into three different subgroups with different disease progressions (using SuStaIn)

- Transferred information from Cortical to Hippocampal subgroups

- From typical AD to Posterior Cortical Atrophy

- Validated on 20 left-out diffusion scans on PCA
 - Fractional anisotropy maps

<table>
<thead>
<tr>
<th>Model</th>
<th>Cingulate</th>
<th>Frontal</th>
<th>Hippocam.</th>
<th>Occipital</th>
<th>Parietal</th>
<th>Temporal</th>
</tr>
</thead>
<tbody>
<tr>
<td>DKT (ours)</td>
<td>0.56 ± 0.23</td>
<td>0.35 ± 0.17</td>
<td>0.58 ± 0.14</td>
<td>-0.10 ± 0.29</td>
<td>0.71 ± 0.11</td>
<td>0.34 ± 0.26</td>
</tr>
<tr>
<td>Latent stage</td>
<td>0.44 ± 0.25</td>
<td>0.34 ± 0.21</td>
<td>0.34 ± 0.24*</td>
<td>-0.07 ± 0.22</td>
<td>0.64 ± 0.16</td>
<td>0.08 ± 0.24*</td>
</tr>
<tr>
<td>Multivariate</td>
<td>0.60 ± 0.18</td>
<td>0.11 ± 0.22*</td>
<td>0.12 ± 0.29*</td>
<td>-0.22 ± 0.22</td>
<td>-0.44 ± 0.14*</td>
<td>-0.32 ± 0.29*</td>
</tr>
<tr>
<td>Spline</td>
<td>-0.24 ± 0.25*</td>
<td>-0.06 ± 0.27*</td>
<td>0.58 ± 0.17</td>
<td>-0.16 ± 0.27</td>
<td>0.23 ± 0.25*</td>
<td>0.10 ± 0.25*</td>
</tr>
<tr>
<td>Linear</td>
<td>-0.24 ± 0.25*</td>
<td>0.20 ± 0.25*</td>
<td>0.58 ± 0.17</td>
<td>-0.16 ± 0.27</td>
<td>0.23 ± 0.25*</td>
<td>0.13 ± 0.23*</td>
</tr>
</tbody>
</table>

TADPOLE: Hippocampal subgroup to Cortical subgroup

<table>
<thead>
<tr>
<th>Model</th>
<th>Cingulate</th>
<th>Frontal</th>
<th>Hippocam.</th>
<th>Occipital</th>
<th>Parietal</th>
<th>Temporal</th>
</tr>
</thead>
<tbody>
<tr>
<td>DKT (ours)</td>
<td>0.77 ± 0.11</td>
<td>0.39 ± 0.26</td>
<td>0.75 ± 0.09</td>
<td>0.60 ± 0.14</td>
<td>0.55 ± 0.24</td>
<td>0.35 ± 0.22</td>
</tr>
<tr>
<td>Latent stage</td>
<td>0.80 ± 0.09</td>
<td>0.53 ± 0.17</td>
<td>0.80 ± 0.12</td>
<td>0.56 ± 0.18</td>
<td>0.50 ± 0.21</td>
<td>0.32 ± 0.24</td>
</tr>
<tr>
<td>Multivariate</td>
<td>0.73 ± 0.09</td>
<td>0.45 ± 0.22</td>
<td>0.71 ± 0.08</td>
<td>-0.28 ± 0.21*</td>
<td>0.53 ± 0.22</td>
<td>0.25 ± 0.23*</td>
</tr>
<tr>
<td>Spline</td>
<td>0.52 ± 0.20*</td>
<td>-0.03 ± 0.35*</td>
<td>0.66 ± 0.11*</td>
<td>0.09 ± 0.25*</td>
<td>0.53 ± 0.20</td>
<td>0.30 ± 0.21*</td>
</tr>
<tr>
<td>Linear</td>
<td>0.52 ± 0.20*</td>
<td>0.34 ± 0.27</td>
<td>0.66 ± 0.11*</td>
<td>0.64 ± 0.17</td>
<td>0.54 ± 0.22</td>
<td>0.30 ± 0.21*</td>
</tr>
</tbody>
</table>
Summary and future work

• Proposed a model to perform transfer learning across different neurodegenerative diseases

• Transfer learning is done through sharing the underpinning disease mechanisms

• Model evaluated and validated in simulations as well as real data (ADNI & Dementia Research Center UK) on the largest PCA cohort to date

• Future work: transfer learning using deep-learning approaches, by synthesizing PET/DTI/CT scans for rarer neurodegenerative diseases where such data is very limited

• Such synthesis will enable characterizing their progression, which can help identify novel drug targets, stratify cohorts for clinical trials and identify suitable endpoints.