
Efficient Online Multiclass Prediction on Graphs via Surrogate Losses

Alexander Rakhlin Karthik Sridharan
University of Pennsylvania Cornell University

Abstract

We develop computationally efficient algorithms
for online multi-class prediction. Our construc-
tion is based on carefully-chosen data-dependent
surrogate loss functions, and the new methods
enjoy strong mistake bound guarantees.

To illustrate the technique, we study the combi-
natorial problem of node classification and de-
velop a prediction strategy that is linear-time per
round. In contrast, the offline benchmark is NP-
hard to compute in general. We demonstrate the
empirical performance of the method on several
datasets.

1 Introduction

As a motivating example, consider the problem of classify-
ing nodes in a network in an online manner. On each round,
we make a multi-class prediction, observe the outcome, and
move to the next node. The aim is to incur a small num-
ber of mistakes by taking advantage of the known network
structure. Properties of the graph that may lead to better
prediction accuracy in this natural prediction problem have
been investigated in [9, 10, 4, 17, 12], among others.

How does one model such a multi-class prediction prob-
lem, and what are the good prediction methods? The first
two sections of this paper are devoted to these general ques-
tions, and the later sections address the particular problem
of node classification.

Let y1, . . . , yn be a sequence with values in {1, . . . , k} ,
[k] that we wish to predict in an online manner. If we de-
note by ŷt = ŷt(y1, . . . , yt−1) ∈ [k] the (possibly random-
ized) prediction made by an algorithmA on round t, the ex-
pected average number of mistakes incurred on a sequence

Appearing in Proceedings of the 20th International Conference on
Artificial Intelligence and Statistics (AISTATS) 2017, Fort Laud-
erdale, Flordia, USA. JMLR: W&CP volume 54. Copyright 2017
by the authors.

y = (y1, . . . , yn) is

µA(y) , E

[
1

n

n∑
t=1

1 {ŷt 6= yt}

]
, (1)

where 1 {·} is the indicator function. For any algorithm A,
the function µA can be shown to satisfy

1

kn

∑
y

µA(y) = 1− 1

k
. (2)

In words, the performance of any algorithm, when aver-
aged over all possible sequences, cannot be better than ran-
dom guessing. This version of a No-Free-Lunch Theorem
should come as no surprise, since we have not made any
assumptions or specifications that distinguish one sequence
from another.

Prior knowledge about the prediction problem at hand may
be formalized by positing distributional assumptions on the
sequence, a prevalent approach in time-series prediction.
In the context of node classification, this might involve an
assumption on the process that generated the graph, such as
the Stochastic Block Model with latent class memberships.

An alternative approach is to directly model the solutions to
the prediction problem, bypassing the step of modeling and
estimating the stochastic process generating the data. This
paper is devoted to this second approach, which appears
to be a convenient alternative for complex online problems
such as node classification in a social network. It has also
been shown that this latter approach, aimed directly at the
problem of prediction rather than the problem of estima-
tion, may circumvent computational hardness of finding the
best model given the data [13]. Let us now describe this ap-
proach.

From (2), an algorithm may be better on some sequences
(in terms of the expected average number of mistakes) only
at the expense of being worse on some other sequences.
This immediately suggests a modeling approach: pick an
algorithmA such that µA is small on the sequences we ex-
pect to see in practice. For instance, in node classification,
we might hope to develop an algorithm with small µA on
sequences of node labels that do not have too many dis-
agreements on the edges of the graph. At the outset, it is
not entirely clear that this task is possible in general. More

Efficient Online Multiclass Prediction on Graphs via Surrogate Losses

precisely, suppose we pick a function φ : [k]n → R that
should control the expected number of mistakes on each
sequence. Is there an algorithm that guarantees µA = φ?

For k = 2, this question was asked and answered by Cover
[7]. More precisely, Cover’s result states that under the
stability condition

|φ(. . . , 1, . . .)− φ(. . . , 2, . . .)| ≤ 1/n, (3)

(for any coordinate, keeping the rest fixed), there is an al-
gorithm satisfying µA = φ if and only if 2−n

∑
y φ(y) =

1/2. The proof of this fact relies crucially on the stabil-
ity condition (3), which ensures that a certain optimization
problem has a solution within the probability simplex.

For k > 2, the analogous result may be stated as:

Lemma 1. Suppose φ : [k]n → R has the stability prop-
erty

max
r∈[k]

φ(. . . , r, . . .)− 1

k

k∑
i=1

φ(. . . , i, . . .) ≤ 1

nk
(4)

for any coordinate. Then there exists an algorithm A with
the expected average number of mistakes function µA = φ
if and only if

Eφ(u1, . . . , un) = 1− 1

k
, (5)

where ui’s are independent uniform on [k]. Moreover, the
randomized algorithm A has an explicit form: on round t,
given y1, . . . , yt−1, the probability distribution qt for pre-
dicting the class label is given by

qt(i) =
1

k
+ ψi −

1

k

k∑
j=1

ψj , (6)

where the scores ψi are computed as

ψi = −nEφ(y1, . . . , yt−1, i, ut+1, . . . , un). (7)

The proof is postponed to the Appendix.

Lemma 1 should be viewed as a tool for modeling
prior knowledge without stochastic assumptions on the se-
quence. As soon as (5) is verified for the chosen function
φ, there is an explicit algorithm with a guaranteed perfor-
mance µA(y) = φ(y) on all sequences.

Occasionally, it is easier to check that the inequality
Eφ(u1, . . . , un) ≥ 1 − 1

k (rather than the equality) holds.
In this case, the algorithm is guaranteed a mistake bound
µA(y) ≤ φ(y) for all y ∈ [k]n.

A standard approach to constructing φ is to take F ⊆ [k]n

and define

φ(y) = dH(y, F) + Cn(F) (8)

for the normalized Hamming distance

dH(y, F) , min
w∈F

1

n

n∑
t=1

1 {wt 6= yt} (9)

and Cn(F) a constant that measures “complexity” of F .
From (5), the smallest allowed value of Cn(F) is

Cn(F) =

(
1− 1

k

)
− EdH(u, F) (10)

= max
w∈F

1

n

n∑
t=1

e T

wt eut −
1

k
(11)

where ej is the jth standard unit vector and u =
(u1, . . . , un). For k = 2, this value of Cn(F) can be writ-
ten as half of the Rademacher averages of the set F , a result
that has appeared many times in the literature (e.g. in [5],
where elements of F are termed static experts). Indeed, the
reader familiar with the online learning literature will rec-
ognize (8) as an upper bound in the regret inequality and
Cn(F) as the regret with respect to the set F of “experts.”

Lemma 1 together with the standard definition (8) can be
employed to model many interesting prediction problems.
Consider, once again, the problem of online node classifi-
cation on a network. How can the graph structure help us in
making good predictions? As already mentioned, one basic
property we may expect is label similarity for neighboring
nodes. To capture this “smoothness” of the labeling with
respect to the graph in the φ function, one may define a set
of κ-smooth labelings as the set

Fκ = {w ∈ [k]n : wTLw ≤ κ} (12)

in terms of the graph Laplacian L and a parameter κ, and
then define φ as in (8) (recall that L = D − A where D is
the diagonal matrix of node degrees and A is the adjacency
matrix). This approach was investigated in [13].

To compute the prediction when φ is defined as in (8), one
needs to be able to evaluate φ, which is an integer program
(maximization of a linear function over the discrete set F).
While this computation may be NP-hard—e.g. for the case
when Fκ in (12) is defined with respect to a weighted graph
Laplacian with negative weights—the authors of [13, 12]
proposed polynomial-time methods that nearly attain the
mistake bound of φ(y). The idea is to relax the combi-
natorial subset F , used in the definition of φ, to a larger
subset of the hypercube with a polynomial number of con-
straints, so that the optimization problem can be solved
in polynomial-time. As shown in [13, 12], the integral-
ity gap for relaxing the integer program only appears in
the lower-order term Cn(F), which is good news from the
point of view of prediction accuracy. However, while the
approach leads to polynomial-time methods, the algorithms
are not easily implementable and not computationally effi-
cient in practice on large-scale problems. The obstacle is,

Alexander Rakhlin, Karthik Sridharan

in fact, the stability condition (4), as it forces the optimiza-
tion problem to be some approximation to the combinato-
rial problem restricted to the hypercube.

In summary, the applicability of Lemma 1 is limited by
the stability condition (4), and the methods developed so
far (for combinatorial prediction problems described in
[13, 12]) are polynomial-time, but may not be efficient in
practice. This served as a motivation for the present paper.

When computational efficiency is a concern, a natural ap-
proach is to employ a convex surrogate loss function ` that
serves as an upper bound on the zero-one loss. As a first
attempt, we may define

φ(y) = min
w∈F

1

n

n∑
t=1

`(wt, yt) + C ′n(F). (13)

However, the stability condition required by the lemma
fails for interesting loss functions, such as the hinge loss,
and Lemma 1 no longer applies. A different approach is
needed.

The use of convex surrogates, such as the hinge loss, has a
long history within both online and statistical learning, with
roots in the analysis of Perceptron and large-margin classi-
fiers, and dating back to the early days of Machine Learn-
ing. Within the context of online supervised learning, the
surrogate-loss approach leads to mistake bounds for linear
predictors (see [11, 8, 15, 6] and the references therein) in
terms of the surrogate loss of the best classifier. In contrast,
Lemma 1 with φ defined in (8) yields a prediction method
that enjoys a mistake bound in terms of the zero-one loss
of the comparator (rather than a surrogate loss), and the
method can be polynomial-time if F can be relaxed as in
[13, 12]. Therefore, it is natural to ask whether the use of
a surrogate loss function can further speed up computation
and still yield a mistake bound in terms of the zero-one loss
of the comparator. In the next section we indeed show that
this is possible, with an interesting transition between bi-
nary classification and k > 2.

The main contribution of this paper is a new approach
to multi-class classification that employs a carefully-
constructed data-dependent surrogate loss. Section 2 is de-
voted to this general analysis. Section 3 is devoted to the
node classification problem, while Section 4 contains ex-
periments.

We close this section with an informal statement about the
prediction performance and running time of the developed
method for node classification.

Theorem 2 (Informal, see Theorem 6). Consider the set
Fκ defined in (12) and let M =

(
1

2κL+ 1
2nIn

)−1
, with

In identity and L the graph Laplacian. There is an O(n)
per round algorithm A with expected average number of

mistakes µA at most

dH(y, Fκ) +
1

n

√
2 · trace(M),

for k = 2. For k > 2, the first term gains a multiplicative
factor 2

(
1− 1

k

)
.

2 Surrogate Loss

Why is stability (4) required for Lemma 1? For brevity, let
us drop the time index t and consider a single time step.
Denoting by ψ̄ the average of all ψi, the condition q(i) ≥ 0
for all i is equivalent to

ψ̄ −min
i
ψi ≤ 1/k, (14)

which follows from the stability condition (4) and the def-
inition of ψi. Hence, stability of φ is a sufficient condition
for ensuring that q is a proper probability distribution.

A general approach to designing a surrogate loss function is
to first compute scores ψ = (ψ1, . . . , ψk) that correspond
to “likelihood” of each class for the given example. We will
compute these scores in a manner different from (7), and,
in particular, we will not be able to guarantee (14). Yet,
we will design a prediction strategy that will coincide with
(6) if it happens that the scores do satisfy (14). Hence, this
paper provides a strict generalization of Lemma 1.

In the setting of supervised learning with side-information
x and multi-class label y, scores are typically computed as
functions of the x-variable (see e.g. [16, Chapter 17]). For
the online multi-class prediction problem, we also follow
the route of calculating the scores, but the analysis will be
more intricate since the scores depend on the global struc-
ture of F . The scores will be computed as solutions to a
certain optimization problem, and, for the time being, sup-
pose that ψi’s are given to us.

A natural approach to extending Lemma 1 beyond stability
is to construct q greedily. Let us find the level τ such that

k∑
i=1

[ψi − τ]+ = 1, (15)

where [a]+ = max{a, 0}, and define the support set

S(ψ) = {j ∈ [k] : ψj > τ}

of size s , |S(ψ)| and the distribution q = q(ψ) via

qj = [ψj − τ]+ = (ψj − τ) · 1 {j ∈ S(ψ)} .

Just as in Lemma 1, the value qj can be written as

qj =

1

s
+ ψj −

1

s

∑
i∈S(ψ)

ψi

 · 1 {j ∈ S(ψ)} . (16)

Efficient Online Multiclass Prediction on Graphs via Surrogate Losses

 1

 k

⌧

Figure 1: Blue region represents the distribution q.

Henceforth, we shall encode the class label by the standard
basis vector y ∈ {e1, . . . , ek}.

For g ∈ Rk and y ∈ {e1, . . . , ek} we define a ψ-dependent
surrogate loss as

`ψ(g, y) =

{
ξ(g, y) if y /∈ S(ψ)

1− g>y +
∑
j∈S(ψ) gj−1

|S(ψ)| if y ∈ S(ψ)

for any surrogate loss function ξ : Rk × {e1, . . . , ek} → R
with the property that

ξ(ψ, y) ≥ 1 whenever y /∈ S(ψ).

We now claim that `ψ is a surrogate loss function in the
following sense:

Lemma 3. For any ψ ∈ Rk and any j ∈ [k],

Eŷ∼q(ψ) [1 {ŷ 6= y}]
− [ξ(ej , y)1 {y /∈ S(ψ)}+ 1 {y 6= ej}1 {y ∈ S(ψ)}]

≤ `ψ(ψ, y)− `ψ(ej , y). (17)

Before proving the Lemma, let us interpret the result. We
think of the statement as an interpolation between the
“nice” case when stability holds and the case when it does
not hold. If ψ satisfies stability (14), S(ψ) = [k] and the
left-hand side of the inequality (17) is

Eŷ∼q(ψ) [1 {ŷ 6= y}]− 1 {y 6= ej} ,

which corresponds to the situation in Lemma 1 when φ is
defined as in (8). That is, the expected error is compared
to the zero-one loss. If the support of the distribution q is
smaller than [k] and y is outside this support, the zero-one
loss of the prediction strategy is compared instead to the
surrogate loss of the comparator.

Proof of Lemma 3. First, for any j ∈ [k] and any y /∈
S(ψ),

`ψ(ej , y) = ξ(ej , y).

On the other hand if y ∈ S(ψ), then for any j ∈ [k]

`ψ(ej , y) = 1− e>j y +

∑
i∈S(ψ) ej(i)− 1

|S(ψ)|

= 1 {ej 6= y}+

∑
i∈S(ψ) ej(i)− 1

|S(ψ)|
≤ 1 {ej 6= y} .

The expected classification loss when the prediction is
drawn from q is simply

Eŷ∼q1 {ŷ 6= y} = 1− q>y.

From the form of q in (16) (which we now write as q(ψ)
to emphasize the dependence on the given score vector), if
y /∈ S(ψ),

1− q(ψ)>y = 1 ≤ ξ(ψ, y).

On the other hand, when y ∈ S(ψ),

1− q(ψ)>y = 1− ψy +
1

|S(ψ)|

 ∑
i∈S(ψ)

ψi − 1

 .

Hence, we have that

Eŷ∼q(ψ) [1 {ŷ 6= y}] = 1− q(ψ)>y ≤ `ψ(ψ, y)

and for any j ∈ [k],

ξ(ej , y)1 {y /∈ S(ψ)}+ 1 {y 6= ej}1 {y ∈ S(ψ)}
≥ `ψ(ej , y).

We now bring back the time index t. Elements of F ⊆ [k]n

will now be denoted by f , and, abusing the notation, ft
shall stand for the basis vector associated to the class ft (to
avoid writing double subscripts in eft). We proved

n∑
t=1

E
ŷt∼q(ψt)

1 {ŷt 6= yt}

− inf
f∈F

{
n∑
t=1

(
ξ(ft, yt)1 {yt /∈ S(ψt)}

+ 1 {yt 6= ft}1 {yt ∈ S(ψt)}
)}

≤
n∑
t=1

`ψt(ψt, yt)− inf
f∈F

n∑
t=1

`ψt(ft, yt),

Using convexity of the loss for any ψ and y, we have that,

`ψ(g, y)− `ψ(h, y) ≤ ∇g`ψ(g, y)>(g − h)

for any g, h ∈ Rk. Thus
n∑
t=1

E
ŷt∼q(ψt)

1 {ŷt 6= yt} (18)

− inf
f∈F

{
n∑
t=1

(
ξ(ft, yt)1 {yt /∈ S(ψt)}

+ 1 {yt 6= ft}1 {yt ∈ S(ψt)}
)}

≤
n∑
t=1

∇>t (ψt − ft) (19)

Alexander Rakhlin, Karthik Sridharan

where∇t is defined as

∇a`ψt(a, yt)|a=ψt =

{
∇ξ(ψt, yt) if yt /∈ S(ψt)

1
|S(ψt)|1S(ψt) − yt otherwise

(20)

with 1S denoting the indicator vector of coordinates in S
and ∇ξ(ψt, yt) being the gradient with respect to the first
coordinate.

In Section 3.1 we show how one can use a relaxation-based
approach to produce ψt’s that yield a good upper bound for
the right-hand side of (18). For now, let us just denote this
bound by Bn.

What could be a good convex surrogate loss ξ(g, y)? First,
observe that the surrogate itself can depend on ψ. Of
course, we require that ξψ(ψ, y) ≥ 1 when y /∈ S(ψ).
An additional property that would make the bound inter-
pretable is that for any h ∈ {e1, . . . , ek}, ξψ(h, y) ≤
α1 {h 6= y} for some α. Such an inequality would allow
us to express the mistake bound purely in terms of the in-
dicator loss of the comparator. As we now show, the hinge
loss

`hinge(g, y) , 1 + max
r:er 6=y

g>er − g>y. (21)

possesses the desired properties after an appropriate scal-
ing.

Lemma 4. Suppose there is a method for choosing ψt such
that (18) is upper bounded by Bn. Take

ξψ(g, y) =
`hinge(g, y)

1 + 1/|S(ψ)|
. (22)

Then

n∑
t=1

E
ŷt∼q(ψt)

1 {ŷt 6= yt}

≤ inf
f∈F

{
2

(
1− 1

k

) ∑
t:yt /∈S(ψt)

1 {ft 6= yt}

+
∑

t:yt∈S(ψt)

1 {yt 6= ft}

}
+Bn

In particular, for binary classification (k = 2), we obtain
the regret bound

n∑
t=1

E
ŷt∼q(ψt)

1 {ŷt 6= yt} ≤ inf
f∈F

n∑
t=1

1 {ft 6= yt}+Bn.

Proof of Lemma 4. First, when yt /∈ S(ψt), it holds that

E
ŷt∼q(ψt)

1 {ŷt 6= yt} = 1. Hence, from (18),

n∑
t=1

E
ŷt∼q(ψt)

1 {ŷt 6= yt}

≤ inf
f∈F

{ ∑
t:yt /∈S(ψt)

ξ(ft, yt) E
ŷt∼q(ψt)

1 {ŷt 6= yt}

+
∑

t:yt∈S(ψt)

1 {yt 6= ft}

}
+Bn.

Notice, that for any j ∈ [k],

`hinge(ej , y) = 2 · 1 {ej 6= y} .

On the other hand, `hinge(ψ, y) ≥ 1 + 1/|S(ψ)| when-
ever y /∈ S(ψ). Indeed, the value of τ in (15) is

1
|S(ψ)|

∑
i∈S(ψ) ψi−1/|S(ψ)|, and the maximum value of ψ

is at least its average on S(ψ), implying that the difference
in (21) is at least 1/|S(ψ)|.

Hence, ξψ(ψ, y) ≥ 1 when y /∈ S(ψ) and, further, for
any j ∈ [k], we have that ξψ(ej , y) ≤ 2

1+ 1
S(ψ)

1 {ej 6= y}.
When y /∈ S(ψ), we have that |S(ψ)| ≤ k − 1, implying
ξψ(ej , y) ≤ 2

(
1− 1

k

)
1 {ej 6= y}.

Surprisingly, for binary classification we are able to upper
bound regret with respect to the zero-one loss of the com-
parator class F with an efficient method based on surrogate
loss, as long as the linearized problem in (18) can be solved
efficiently. We contrast our result with the typical mistake
bounds in terms of the surrogate loss of the comparator, a
price paid for computational efficiency.

While the online linear optimization problem with respect
to F may be, once again, computationally intractable, we
can now take a superset F ′ ⊃ F for which this optimization
is efficient and Bn is nontrivial. What distinguishes this
approach from the one taken in [13, 12] is that F ′ no longer
needs to be a subset of the hypercube. In Section 3 we shall
take an ellipse that roughly approximates F , making the
computation of the scores ψ essentially O(n) per step after
initial pre-processing.

3 Node Classification in Networks

The techniques developed in this paper will be illustrated
on the problem of node classification in networks. In its
simplest form, the problem is to predict a multi-class la-
bel at each time step, with the true outcome revealed after
each step. We suppose that the order of node presentation
is fixed ahead of time, although this restriction is easily re-
moved since the proposed method will not depend on the
order of the unseen nodes.

Efficient Online Multiclass Prediction on Graphs via Surrogate Losses

Several properties of the graph have been investigated in
connection to the number of mistakes incurred by a pre-
diction method. These include the cluster structure [9], the
cut-size of the graph [10], cuts of random spanning trees
[4], and random spanning trees on weighted graphs [17].

The approach of this paper is more aligned with the notions
of supervised online or statistical learning, whereby the
quality of prediction is compared to a benchmark set. This
benchmark set captures the prior knowledge of the prac-
titioner as the set of good solutions, as described in Sec-
tion 1. In particular, we are interested in problems where
the graph structure induces homogeneity (or, a like-dislike
structure in case of signed graphs) of the observed sequence
of outcomes.

To be more concrete, let the graphG = (V,E), |V | = n, be
fixed and known to us. At each time step t = 1, . . . , n, we
are required to predict a label of each node, without repeti-
tion. Our prediction is ŷt ∈ {e1, . . . , ek}, and the observed
outcome is yt ∈ {e1, . . . , ek}. To model the problem, we
choose, as before, a set F ⊆ [k]n.

To be consistent with the vector notation used in the previ-
ous sections, we represent F as a subset of

W =

{
W ∈ {0, 1}k×n :

∑
i

Wi,t = 1 ∀t ∈ [n]

}
. (23)

A vector g ∈ [k]n is identified with a matrix W such that
Wi,t = 1 {g(t) = i}. Let W i denote the ith column of
W T.

For the rest of the paper, we shall focus on the following
generalization of the set F defined in (12), written in the
present notation as

Fκ =

{
W ∈ W :

k∑
i=1

(W i)TLW i ≤ κ

}
(24)

where L is a positive semidefinite matrix. Examples of L
are:

1. graph Laplacian: L = D−A, whereD is the diagonal
matrix of node degrees and A is the adjacency matrix

2. weighted/signed Laplacian: L = D −W , where D is
diagonal with Di,i =

∑
j |Wi,j |, W is the matrix of

edge weights

3. normalized graph Laplacian: L = I−D−1/2AD−1/2

For the first example, the quadratic form in (24) is the value
of the cut induced by the labeling W . The other two exam-
ples have similar interpretations as measuring “homogene-
ity” of the labeling W with respect to the graph. As men-
tioned before, optimization over these sets is, in general, an
NP-hard problem.

Let In be the n×n identity matrix. For a positive semidef-
inite matrix L, the set Fκ can be relaxed as follows:

Fκ ⊆

{
W ∈ Rk×n :

k∑
i=1

(W i)T

(
1

2κ
L

)
W i ≤ 1

2

}

∩

{
W ∈ Rk×n :

k∑
i=1

(W i)T

(
1

2n
In

)
W i ≤ 1

2

}

⊆

{
W ∈ Rk×n :

k∑
i=1

(W i)T

(
1

2κ
L+

1

2n
In

)
W i ≤ 1

}
.

Denote the last set by F̄κ and observe that

sup
W∈F̄κ

W • Y =

√√√√ k∑
i=1

(Y i)TMY i (25)

for M ,
(

1
2κL+ 1

2nIn
)−1

and any Y ∈ Rk×n.

The sets Fκ defined in (24) can be employed to model
smoothness of prediction with respect to the graph. While
other models are also possible, we only focus on these for
the lack of space, and because the solutions are particularly
simple.

3.1 Computing the Scores via Relaxations

We now introduce one last ingredient before deriving the
algorithm. Consider the following online protocol. On
each round t = 1, . . . , n, we predict ψt ∈ Rk and observe
∇t ∈

√
kB2 in the Euclidean ball of Rk of radius

√
k. The

goal is to attain small regret
n∑
t=1

∇T

t(ψt − ft)

for any f ∈ F ⊂ W , as defined in (23). The vector ft
is now the standard basis vector corresponding to the tth
column of f , matching the convention used in the previous
sections.

It is tempting to view the problem through the lens of On-
line Convex Optimization. However, the dimensionality of
the set F is n and a naive application of gradient or mirror
descent yields a trivial bound. With a bit of work, however,
a closed-form algorithm can be developed. The analysis
below is based on the idea of relaxations.

A real-valued function on ∪nt=1(B2(D))t such that

Reln(∇1, . . . ,∇n) ≥ − inf
f∈F

n∑
t=1

∇>t ft (26)

and

inf
ψt∈Rk

sup
‖∇t‖≤D

{∇T

tψt + Reln(∇1, . . . ,∇t)}

≤ Reln(∇1, . . . ,∇t−1) (27)

Alexander Rakhlin, Karthik Sridharan

is called admissible. In this case, any algorithm for choos-
ing ψt such that (27) holds guarantees that

n∑
t=1

∇>t ψt − inf
f∈F

n∑
t=1

∇>t ft ≤ Reln(∅). (28)

Next, we will write down a relaxation function for the case
of Fκ defined in (24), prove its admissibility, and derive an
algorithm for choosing ψt’s. At time t, define the matrix
Yt = [∇1, . . . ,∇t,0, . . . ,0] ∈ Rk×n by stacking the ob-
served vectors. Let Y it be ith row (whose jth coordinate is
∇j [i] · 1 {j ≤ t}). Since F̄κ ⊇ Fκ,

− inf
f∈Fκ

n∑
t=1

∇>t ft ≤ − inf
f∈F̄κ

n∑
t=1

∇>t ft

=

√√√√ k∑
i=1

(Y in)TMY in

, Reln(∇1, . . . ,∇n)

by (25), where recall thatM =
(

1
2κL+ 1

2nIn
)−1 ∈ Rn×n.

For t ≤ n, the proof of admissibility suggests the definition

Reln(∇1, . . . ,∇t) ,

√√√√ k∑
i=1

(Y it)>MY it +D2

n∑
j=t+1

M [j, j].

(29)

Lemma 5. The relaxation in (29) is admissible, the algo-
rithm has closed form

ψt = − M [t, :]Yt−1√∑k
i=1(Y it−1)>MY it−1 +D2

∑n
j=tM [j, j]

(30)

and

Reln(∅) = D
√

trace(M)

= D

√√√√ n∑
i=1

λ−1
i (L/2κ+ 1n×n/2n)

where D ≥ maxt ‖∇t‖ and λi(A) denotes the ith eigen-
value of A.

The vector of scores ψt can be computed inO(t×K) time,
given that M is initially pre-computed.

3.2 The Algorithm

We are now ready to put all the pieces together and write
down the complete algorithm. For concreteness, take ξψ
to be the surrogate loss defined in (22) of Lemma 4, and
observe that D2 ≤ 2.

Algorithm 1 Prediction with Surrogate Loss
input Matrix L, parameter κ

1: Pre-compute M = (L/2κ+ In/2n)−1

2: Set T = trace(M), A = 0, G = []
3: for t = 1, . . . , n do
4: Compute v = Mt,. ×G, the numerator in (30)
5: Compute scores ψt = − v√

A+k·T
6: Compute the mixed strategy qt(ψt) as in (16), pre-

dict ŷt ∼ qt, and observe yt
7: Compute gradient∇t as in (20) and setG = [G;∇t]
8: Update A = A+ 2∇>t v +Mt,t · ‖∇t‖22
9: T = T −Mt,t

10: end for
output

Theorem 6. The average expected number of mistakes µA
for the above algorithm is at most

inf
f∈Fκ

1

n

n∑
t=1

1 {ft 6= yt}+
1

n

√
2 · trace(M).

for the binary prediction case. For k > 2, the bound is

2

(
1− 1

k

)
inf
f∈Fκ

1

n

n∑
t=1

1 {ft 6= yt}+
1

n

√
2 · trace(M).

4 Experiments

To evaluate our algorithm on real world data, we used
the following graph datasets: political blogs dataset (1222
nodes and binary labels), citeseer dataset (3312 nodes and 6
classes), and cora dataset (2708 nodes and 6 classes)[14, 1].
We also used the MNIST with random background noise
dataset [2] and created a graph with 12000 nodes (one node
per image) with points being connected if the Euclidean
distances between the images were smaller than a given
threshold. This dataset has 10 classes, one for every digit
from ’0’ to ’9’.

Since our method is built for the online classification sce-
nario, we first run experiments where we track the aver-
age accuracy so far over a single pass over the n nodes
as the labels of each one are revealed in an online fash-
ion. The following figure shows the plot of average accura-
cies with number of rounds for (a) our method, (b) Zhu et
al [18] (we added extra regularization for better accuracy)
and (c) Belkin et al [3]. The first plot shows the average
error up to a given round while predicting online, that is,∑t
j=1 1 {ŷt 6= yt} /t against t. We run the other two meth-

ods in an online fashion re-evaluating predictions based on
most recently observed labels. The first plot shows the re-
sults for the political blogs dataset. If this is contrasted to
the table, which has results in the batch setting, it is clear
that while on the Political blogs dataset the Belkin et al
method and our method perform roughly the same, in the
online setting our method far outperforms the other two.

Efficient Online Multiclass Prediction on Graphs via Surrogate Losses

number of round
0 200 400 600 800 1000 1200 1400

a
v
e
ra

g
e
 e

rr
o
r

u
p
 t
o
 t
h
a
t
ro

u
n
d

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

our method
Zhu et al
Belkin et al

Since the Zhu et al [18] and Belkin et al [3] results are
developed for the statistical semi-supervised setting we
also use our method in this setting by updating the online
algorithm first over the labeled points and then using it
over unlabeled nodes to make predictions. Specifically,
we used a 90-10 split of points into labeled and unlabeled
(randomly chosen split each time). For the Zhu et al
[18] and Belkin et al [3], we used a validation set to
pick parameters (10% of training data). We found that in
general our method was very robust against changes in
parameters. Hence, we simply picked a fixed κ for each
experiment that only depended on n the number of data
and not the data itself. The following table summarizes the
accuracies on the various datasets.

MNIST Citeseer Cora Political
Ours 85.9± 0.5 74.0 ± 1.0 81.7 ±1.6 95.2 ± 0.9
[3] 82.0 ± 1.7 71.2 ± 1.6 78.3 ± 1.4 94.9 ± 1.7
[18] 19.3 ± 3.0 72.9 ± 1.4 67.0 ± 2.2 54.1 ± 2.9

We see that our method performs favorably in most cases,
the bold font represents best method to within statistical
significance. In fact, that a graph based approach (where
graph simply picked based on tresholding distances be-
tween images) should even work this well for the MNIST
with random background noise is surprising. Nearest
neighbor and soft nearest neighbor approaches are known
to perform badly for this dataset as random noise blows up
distances between images even within the same class.

5 Summary and Future Directions

This paper developed new efficient algorithms that com-
bine several ideas: surrogate loss minimization and relax-
ations. This approach falls outside the scope of Lemma 1
since the required stability condition fails. Yet, we pre-
sented a mistake bound in terms of the zero-one loss for
binary classification, and a mix of zero-one and surrogate

losses more generally. For the case of prediction on graphs,
where the φ function is defined in terms of quadratic forms,
the proposed methods run in time linear in n per iteration.
The proposed method — while theoretically derived — ex-
hibits good predictive performance in our experiments.

Future work includes developing efficient methods for
other interesting models, beyond the Laplacian-based set
Fκ. Among other interesting directions is the setting with
side information at the nodes, and the case of a time-
evolving graph.

Acknowledgments

Research supported in part by the NSF under grants
CDS&E-MSS 1521529 and 1521544.

References
[1] Linqs, statistical relational learning group at UMD:

Datasets. http://linqs.umiacs.umd.edu/
projects/projects/lbc/.

[2] MNIST with random background dataset. https:
//sites.google.com/a/lisa.iro.
umontreal.ca/public_static_twiki/
variations-on-the-mnist-digits.

[3] M. Belkin, P. Niyogi, and V. Sindhwani. Manifold
regularization: A geometric framework for learning
from labeled and unlabeled examples. Journal of ma-
chine learning research, 7(Nov):2399–2434, 2006.

[4] N. Cesa-Bianchi, C. Gentile, F. Vitale, and G. Zap-
pella. Random spanning trees and the prediction of
weighted graphs. The Journal of Machine Learning
Research, 14(1):1251–1284, 2013.

[5] N. Cesa-Bianchi and G. Lugosi. On prediction of in-
dividual sequences. Annals of Statistics, pages 1865–
1895, 1999.

[6] N. Cesa-Bianchi and G. Lugosi. Prediction, Learn-
ing, and Games. Cambridge University Press, 2006.

[7] T. M. Cover. Behaviour of sequential predictors of
binary sequences. In Proc. 4th Prague Conf. Inform.
Theory, Statistical Decision Functions, Random Pro-
cesses, 1965.

[8] K. Crammer, O. Dekel, J. Keshet, S. Shalev-Shwartz,
and Y. Singer. Online passive-aggressive algorithms.
Journal of Machine Learning Research, 7(Mar):551–
585, 2006.

[9] M. Herbster. Exploiting cluster-structure to predict
the labeling of a graph. In Algorithmic Learning The-
ory, pages 54–69. Springer, 2008.

[10] M. Herbster and M. Pontil. Prediction on a graph with
a Perceptron. In Advances in neural information pro-
cessing systems, pages 577–584, 2006.

Alexander Rakhlin, Karthik Sridharan

[11] J. Kivinen and M. K. Warmuth. Exponentiated gradi-
ent versus gradient descent for linear predictors. In-
formation and Computation, 132(1):1–63, 1997.

[12] A. Rakhlin and K. Sridharan. Hierarchies of relax-
ations for online prediction problems with evolving
constraints. In COLT, 2015.

[13] A. Rakhlin and K. Sridharan. A tutorial on online
supervised learning with applications to node classi-
fication in social networks. CoRR, abs/1608.09014,
2016.

[14] P. Sen, G. M. Namata, M. Bilgic, L. Getoor, B. Gal-
lagher, and T. Eliassi-Rad. Collective classification in
network data. AI Magazine, 29(3):93–106, 2008.

[15] S. Shalev-Shwartz. Online learning and online con-
vex optimization. Foundations and Trends in Machine
Learning, 4(2):107–194, 2011.

[16] S. Shalev-Shwartz and S. Ben-David. Understanding
machine learning: From theory to algorithms. Cam-
bridge University Press, 2014.

[17] F. Vitale, N. Cesa-Bianchi, C. Gentile, and G. Zap-
pella. See the tree through the lines: The shazoo algo-
rithm. In Advances in Neural Information Processing
Systems, pages 1584–1592, 2011.

[18] X. Zhu, Z. Ghahramani, and J. Lafferty. Semi-
supervised learning using gaussian fields and har-
monic functions. In ICML, volume 3, pages 912–919,
2003.

Efficient Online Multiclass Prediction on Graphs via Surrogate Losses

A Proof of Admissibility

Proof of Lemma 1. Define functions Reln : ∪t[k]t → R as

Reln(y1, . . . , yn) = −φ(y1, . . . , yn)

and

Reln(y1, . . . , yt−1) = Eyt∼Unif[k]Reln(y1, . . . , yt) +
1

n

(
1− 1

k

)
, (31)

with Reln(∅) being a constant. We desire to prove that there is an algorithm such that

∀y ∈ [k]n, E

[
1

n

n∑
t=1

1 {ŷt 6= yt}

]
− φ(y1, . . . , yn) = 0.

Consider the last time step n and write the above expression as

E

[
1

n

n−1∑
t=1

1 {ŷt 6= yt}+
1

n
1 {ŷn 6= yn}+ Reln(y1, . . . , yn)

]
. (32)

Let En−1 denote the conditional expectation given ŷ1, . . . , ŷn−1. We shall prove that there exists a randomized strategy
for the last step such that for any yn ∈ [k],

En−1

[
1

n
1 {ŷn 6= yn}

]
+ Reln(y1, . . . , yn) = Reln(y1, . . . , yn−1). (33)

This last statement is translated as

min
qn∈∆k

max
yn∈[k]

{
En−1

[
1

n
1 {ŷn 6= yn}

]
+ Reln(y1, . . . , yn)

}
= Reln(y1, . . . , yn−1). (34)

Writing 1 {ŷn 6= yn} = 1− eT

ŷn
eyn , the left-hand side of (34) is

1

n
min
qn∈∆k

max
yn∈[k]

{1− qT

neyn + nReln(y1, . . . , yn)} . (35)

The stability condition means that we can choose qn to equalize the choices of yn. Let ψ(1), . . . , ψ(k) be the sorted values
of

nReln(y1, . . . , yn−1, 1), . . . , nReln(y1, . . . , yn−1, k),

in non-increasing order. In view of the stability condition,

k∑
i=1

(ψ(i)− ψ(k)) ≤ 1.

Hence, qn can be chosen so that all ψ(i)− qn(i) have the same value. One can check that this is the minimizing choice for
qn. Let q∗n denote this optimal choice. The common value of ψ(i)− q∗n(i) can then be written as

ψ(k)− 1

k

(
1−

k∑
i=1

(ψ(i)− ψ(k))

)
=

1

k

k∑
i=1

ψ(i)− 1

k

and hence (35) is equal to

1

n

(
1− 1

k

)
+

1

k

k∑
i=1

Reln(y1, . . . , yn−1, i). (36)

This value is precisely Reln(y1, . . . , yn−1), as per Eq. (31), thus verifying (34). Repeating the argument for t = n − 1
until t = 0, we find that

Reln(∅) = −Eφ+

(
1− 1

k

)
= 0,

thus ensuring existence of an algorithm with (32) equal to zero. The other direction of the statement is proved by taking
sequences y uniformly at random from [k]n, concluding the proof.

Alexander Rakhlin, Karthik Sridharan

Proof of Lemma 5. Recall that
Yt = [∇1, . . . ,∇t,0, . . . ,0]T.

We can write

Reln(∇1, . . . ,∇t) =

√√√√ k∑
i=1

(Y it)TMY it +D2

n∑
j=t+1

M [j, j]

=

√√√√ k∑
i=1

(Y it−1)TMY it−1 + 2∇t[i]M [t, :]Y it−1 +∇2
t [i]M [t, t] +D2

n∑
j=t+1

M [j, j]

≤

√√√√ k∑
i=1

(
(Y it−1)TMY it−1 + 2∇t[i]M [t, :]Y it−1

)
+D2M [t, t] +D2

n∑
j=t+1

M [j, j]

since ‖∇t‖22 ≤ D2. Hence,

inf
ψt∈Rk

sup
‖∇t‖≤D

{∇T

tψt + Reln(∇1, . . . ,∇t)}

≤ inf
ψt∈Rk

sup
‖∇t‖≤D

∇T

tψt +

√√√√ k∑
i=1

(
(Y it−1)TMY it−1 + 2∇t[i]M [t, :]Y it−1

)
+D2

n∑
j=t

M [j, j]

Now the claim is that

ψt = − M [t, :]Yt−1√∑k
i=1(Y it−1)TMY it−1 +D2

∑n
j=tM [j, j]

is the solution to the above minimization problem. To see this, note that for the given ψt, the gradient with respect to∇t is
0 and hence this ∇t is the maximizer. Plugging in this solution we get an upper bound on the value

sup
‖∇t‖≤D

∇T

tψt +

√√√√ k∑
i=1

(
(Y it−1)TMY it−1 + 2∇t[i]M [t, :]Y it−1

)
+D2

n∑
j=t

M [j, j]

≤

√√√√ k∑
i=1

((Y it−1)TMY it−1) +D2

n∑
j=t

M [j, j]

= Reln(∇1, . . . ,∇t−1).

The bound at the end is given by
Reln(∅) = D

√
trace(M).

Now once the matrix M is pre-computed, the time complexity per round is O(t).

