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Abstract

We consider the problem of choosing, sequen-
tially, a map which assigns elements of a setA
to a few elements of a set B. On each round,
the algorithm suffers some cost associated
with the chosen assignment, and the goal
is to minimize the cumulative loss of these
choices relative to the best map on the en-
tire sequence. Even though the offline prob-
lem of finding the best map is provably hard,
we show that there is an equivalent online
approximation algorithm, Randomized Map
Prediction (RMP), that is efficient and per-
forms nearly as well. While drawing upon
results from the “Online Prediction with Ex-
pert Advice” setting, we show how RMP can
be utilized as an online approach to several
standard batch problems. We apply RMP
to online clustering as well as online feature
selection and, surprisingly, RMP often out-
performs the standard batch algorithms on
these problems.

1. Introduction

A number of problems in machine learning involve
finding constrained similarity mappings or correspon-
dences between two sets. The performance in such
problems often depends crucially on the quality of the
mapping, feature selection being one example. In this
paper, we present an online method for dynamically
finding similarities between sets, prove performance
guarantees, and apply our method to various settings.

Consider the following general problem. Given sets A
and B, we would like to dynamically find (learn) sim-
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ilarity maps π : A → B with the following constraint:
|image(π)| ≤ m for some given m ≤ |B|. In other
words, we are looking for a good way to assign ele-
ments of A to a few elements of B, where the quality
of the assignment is possibly changing through time.

While the unconstrained matching problem can be
solved efficiently, the constrained problem is provably
hard, as the problem reduces to the SET COVER prob-
lem. We argue that there are several natural online
learning scenarios where the problem of finding a con-
strained mapping arises, and that the issue of hardness
can be avoided by an approximate algorithm, which
enjoys provably good performance guarantees.

An important aspect of this constrained mapping
problem is the dynamic nature of the cost of a given
map. The assumption that the cost of π changes over
time is relevant in many real-world applications. This
is in contrast to the well-studied machine learning ap-
proaches which assume a static nature of the world
and the i.i.d. nature of the observed data.

Since the quality of the constrained mappings may
change through time, we model our problem as be-
ing online: on each round t, we predict a mapping
πt : A → B and observe a cost (loss) associated with
assigning a 7→ b, for every a ∈ A and b ∈ B, thus re-
ceiving feedback as to how good our prediction πt was.
We make no assumption about the nature of this feed-
back: the cost functions may in fact be adversarially
chosen. The objective is to choose a map πt at every
round such that, in the long run, we perform nearly
as well as the best fixed map π∗ chosen in hindsight.
This objective fits perfectly with the setting of predic-
tion with expert advice (see Cesa-Bianchi and Lugosi
(2006) for a comprehensive treatment).

The problem of discovering a constrained mapping be-
tween two sets is quite general and can be applied to a
large number of settings often considered in machine



Online Discovery of Similarity Mappings

learning. Before diving into details, we mention a few
possible applications.

1. Online Feature Selection: Assuming that we
are given a collection of features F , we can let
A = B = F . The goal is to choose a representa-
tive subset of features at each step, re-evaluating
the choices based on the observed data. We there-
fore consider maps F → F which assign features
to the m most representative features. The cost of
an assignment πt : F → F is the total dissimilarly
between features 〈fi〉 and 〈πt(fi)〉. The dynamic
nature of the problem allows us to adaptively se-
lect features and still perform as well as the best
choice of features in the long run.

2. Multitask Feature Selection: Assume we are
given K related tasks; for example, the tasks of
detecting a face, a vehicle, an animal, etc., in
images. We have a number of fixed features F
and we would like to find a small number of them
which are salient on each of the tasks. Here, we
assume that A = {1, . . . ,K} and B = F , or that
B is a collection of small subsets of features F .

3. Online Data Clustering: Suppose we are given
a fixed number K of non-stationary data points,
and we would like find m “prototypes” from these
data points such that all the remaining data are
similar to one of the prototypes. In other words,
we are looking for maps πt : [K] → S where S is
an m-sized subset of [K] and the total distortion,∑K

i=1 d(i, π(i)), is as small as possible. This type
of vector quantization can be performed online,
where we assume that the data points change with
time, or even that each data point is revealed to
us slowly, e.g. one feature at a time.

4. Dynamic Resource Allocation: There are
numerous real-world applications, where a small
set of resources has to be adaptively allocated at
every time step. As an example, suppose m sen-
sors or light sources have to be turned on or placed
in an N × N network grid so that each of the A
moving objects is close to some sensor. The prob-
lem corresponds to setting B to be the N2 grid
points and adaptively choosing a mapping from
objects to grid points for sensor placement.

The above examples, as well as other scenarios which
fall under the framework presented in this paper, have
a flavor of “clustering”. One might argue that the
problem we present can be solved with batch EM-like
clustering methods. While such an approach is rea-
sonable, the contribution of this paper is an efficient

method for which we can in fact prove worst-case per-
formance guarantees. Moreover, our experiments sug-
gest that the method we propose often performs better
than EM.

As we discuss later in the paper, our approach yields
vanishing per-round error, while an approach which
finds the best solution at each step is not only provably
hard, but is also inferior in the adversarial setting in
terms of the performance guarantees. Indeed, it has
been observed by Hannan in 1957 that a prediction
strategy has to be randomized – an approach we take.

In the online setting, which better models the real
world, we are required to make predictions/actions at
each round before we see all the data. In fact, our
predictions may even influence the environment thus
giving us dependent data. This is in contrast to most
machine learning algorithms which require an i.i.d. as-
sumption. Our influence on the environment might
have a profound positive impact on performance – we
might be able to focus on the important aspects of the
problem faster, akin to active learning. Surprisingly,
we are still able to make a sequence of predictions and
suffer a loss comparable to an offline best choice1 – a
generally unrealistic choice since the presented data
depends on the intermediate actions.

The novel contributions of this paper are the following.
We provide a general formulation of online learning of
similarity mappings for which an offline version is an
NP-hard optimization problem. We prove a theoreti-
cal guarantee on the exponentially weighted prediction
strategy over the set of mappings which provides an
approximate online solution to solve this hard prob-
lem. We exhibit an efficient algorithm for implement-
ing this strategy. Finally, we explore applications to
feature selection and clustering, with experimental re-
sults highlighting the soundness of our approach.

2. Formal Setting

Without loss of generality, suppose A = [A] :=
{1, . . . , A}, B = [B] and fix m ≤ B. Let

Πm = {π : A → B s.t. |image(π)| ≤ m}

be the class of all possible constrained mappings be-
tween the two sets. The algorithm we present below
competes with the best choice of a mapping from Πm.
Let ct

i,j ∈ [0, 1] be the cost of assigning i 7→ j at time
t ∈ [T ].

There are two closely related scenarios which we could
1In the present paper we do not consider comparators

that change through time, although such an analysis would
be interesting.
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consider in this paper: (a) At each time step we are
asked where an individual element i is mapped, and
after predicting i 7→ j, the algorithm suffers a loss ct

i,j .
Alternatively, (b) at each time step we have to predict
a complete mapping πt ∈ Πm, and the loss is the sum
of the costs of assignments i 7→ πt(i) for all i ∈ A.

The present paper is inspired by (Abernethy et al.,
2007), who considered scenario (a) in the setting of
multitask learning and developed online algorithms
with near-optimal performance guarantees. In this pa-
per we consider scenario (b), as it is more natural for
the applications we have in mind.

Accordingly, at time t ∈ [T ], we predict a mapping
πt ∈ Πm. We then observe the costs ct

i,j ∈ [0, 1] for
all i ∈ A, j ∈ B and suffer ĉt =

∑A
i=1 ct

i,πt(i) ∈ [0, A].
The cumulative loss of the algorithm after t steps is
Ĉt =

∑t
s=1 ĉs. Similarly, for any fixed π, the cost of

predicting π at time t is ct
π =

∑A
i=1 ct

i,π(i) ∈ [0, A] and
the cumulative loss after t steps is

Ct
π =

t∑
s=1

cs
π =

t∑
s=1

A∑
i=1

cs
i,π(i).

Further, define the unnormalized weights wt
i,j =

exp
(
−η

∑t
s=1 cs

i,j

)
for some learning rate parameter

η > 0 and set w0
i,j = 1 for all i ∈ A, j ∈ B.

We can now formulate our goal as follows: find an
algorithm for predicting πt such that the cumulative
loss ĈT is close to minπ∈Πm

CT
π .

Recall the setting of learning with expert advice.
The exponentially weighted prediction strategy (Lit-
tlestone & Warmuth, 1994) keeps weights over actions
proportional to exp(−η ·Cumulative Loss(action)) and
randomly draws an action according to the distribu-
tion induced by these weights. Corollary 4.2 of (Cesa-
Bianchi & Lugosi, 2006) states that such a strategy
has, with high probability, a bound on the regret (i.e.
the difference between the cumulative loss of the algo-
rithm and the best fixed action) of the order

√
T lnN ,

where N is the number of actions.

Our problem of dynamically discovering mappings be-
tween sets can be seen as a problem of taking a com-
pound action πt ∈ Πm at time t. The natural step
is thus to employ the results for the exponentially
weighted strategy described above. Note that this
would require keeping, updating, and sampling from
a distribution over Πm, an approach one might fear
is infeasible due to the combinatorial explosion of the
size of Πm. Postponing these computational issues, let
us nevertheless derive a performance guarantee for the
exponentially weighted strategy over actions Πm as a

consequence of Corollary 4.2 of (Cesa-Bianchi & Lu-
gosi, 2006). Let ut

π denote the weight of action π ∈ Πm

at time t. The strategy requires that

ut
π =

exp (−ηCt
π)∑

π′∈Πm
exp (−ηCt

π′)
, (1)

where Ct
π is the cumulative loss of an action π as de-

fined above. If πt is chosen randomly according to
the distribution induced by weights ut

π, we obtain the
following result.

Theorem 2.1 Let η =
√

8(m ln(B/m) + A lnm)/T .
Given an algorithm that, on round t, samples a map
π ∈ Πm according to the distribution p(π) = ut

π de-
scribed in (1), then with probability at least 1− δ,

Ĉt ≤ min
π

CT
π + A

√
T

2

(
m ln

B

m
+ A lnm

)
+ A

√
T

2
ln

1
δ

for any δ ∈ (0, 1). Here u0
π = 1 for all π.

The proof proceeds by observing that the number of
different mappings π : A → B such that |image(π)| ≤
m is bounded as |Πm| ≤

(
B
m

)
·mA and, hence, ln |Πm| ≤

m ln(B/m) + A lnm.

The main message of the above theorem is that the
per-round regret is diminishing with increasing T , re-
sulting in an O(1/

√
T ) approximation to the best of-

fline mapping. Also note that the choice of η depends
on the time horizon T , but the standard doubling trick
can be employed to remove this requirement (Cesa-
Bianchi & Lugosi, 2006).

Of course, the theoretical bound of Theorem 2.1 is use-
ful only if we can demonstrate that the exponentially-
weighted scheme over the set of actions Πm can be
efficiently implemented. Recently, there is growing in-
terest in online prediction problems when the decision
space is exponentially large yet structured. The prob-
lem of this paper is one of such cases, and we now
provide an efficient approximate solution.

First, we notice that the linearity of the cost of an
action π implies that the weights vπ can be written as

ut
π =

exp (−ηCt
π)∑

π′∈Πm
exp (−ηCt

π′)

=

∏A
i=1 exp

(
−η

∑t
s=1 cs

i,π(i)

)
∑

π′∈Πm

∏A
i=1 exp

(
−η

∑t
s=1 cs

i,π′(i)

)
=

∏A
i=1 wt

i,π(i)∑
π′∈Πm

∏A
i=1 wt

i,π′(i)

.
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Hence, the weight ut
π of any π can be obtained di-

rectly from the A × B matrix [wt
i,j ]i,j by taking a

product of weights of individual assignments i 7→ π(i)
and normalizing. For now, we put aside the feasibil-
ity issues associated with computing the normaliza-
tion as these are addressed in Section 3. After the
costs ct

i,j are observed, the new unnormalized weights
of the mappings i 7→ j are naturally updated as
wt

i,j = wt−1
i,j · exp

(
−ηct

i,j

)
for all i ∈ A, j ∈ B. This

solves the problem of keeping and updating the weights
over exponentially many actions Πm. However, to em-
ploy Corollary 4.2 of (Cesa-Bianchi & Lugosi, 2006),
we must sample actions according to the weights ut

π.
This computationally difficult problem has been ad-
dressed in (Abernethy et al., 2007) in the setting of
multitask learning. The idea is to use a random walk
over subsets of size m, as presented in the next section.

3. Randomized Map Prediction
Algorithm

The algorithm we present next keeps a ma-
trix of weights [wt

i,j ]i∈A,j∈B, such that wt
i,j =

exp
(
−η

∑t
s=1 cs

i,j

)
for some η > 0. Let Sm = {S ⊂

B : |S| = m}. On round t we sample a map πt accord-
ing to the following procedure.

Algorithm 1 Randomized Map Prediction (RMP)
1: Input: Round t; Parameter m < B; Matrix

[wt
i,j ]i∈A,j∈B

2: Sample S ∈ Sm according to

P (S) =

 A∏
i=1

∑
j∈S

wt
i,j

 /  ∑
S′∈Sm

A∏
i=1

∑
j∈S′

wt
i,j


3: Order S = {j1, . . . , jm} s.t. j1 < j2 < . . . < jm

4: Sample φ : [A] → [m] by sampling φ(i)
independently for all i ∈ [A], k ∈ [m]:

P (φ(i) = k|S) =
wt

i,jk∑
j∈S wt

i,j

5: Output πt defined by πt(i) := jφ(i)

The above procedure for choosing πt is as follows: first
sample a set S ∈ Sm, which becomes the image(π),
then sample the assignment π(i) ∈ S for every i ∈ A
according to the weights {wt

i,j : j ∈ S}. This proce-
dure produces an m-constrained map, and (Abernethy
et al., 2007) showed that this sampling induces a dis-
tribution resulting in the bound of Theorem 2.1.

Hence, an algorithm which updates the A×B matrix
of weights as wt

i,j = wt−1
i,j ·exp

(
−ηct

i,j

)
and predicts πt

according to Algorithm 1, enjoys the regret bound of

Theorem 2.1. However, we are not done yet, as step 2
of Algorithm 1 still requires computing

(
B
m

)
quantities

– a number smaller than the size of Πm, but still in-
feasible for large B. The Metropolis-Hastings method
below (Algorithm 2) approximates step 2 by perform-
ing a random walk over Sm.

Algorithm 2 Sampling an m-subset of B
1: Input: Matrix [wt

i,j ]i∈A,j∈B; number of rounds R
2: Start with some S0 ∈ Sm

3: for r = 0 to R− 1 do
4: Uniformly at random, choose s′ ∈ [B] \ Sr and

s ∈ Sr. Let S′r = Sr ∪ s′ \ s.
5: Calculate ω(Sr) =

∏A
i=1

∑
j∈Sr

wt
i,j and

ω(S′r) =
∏A

i=1

∑
j∈S′

r
wt

i,j

6: With probability min
{

1,
ω(S′

r)
ω(Sr)

}
,

set Sr+1 ← S′r, otherwise Sr+1 ← Sr

7: end for
8: Output: SR

The final issue is the choice of R. While the distri-
bution induced by our random walk will certainly ap-
proach the desired distribution as we increase R, it
must be shown that our Markov chain mixes quickly.
Unfortunately, such results are scarce and can only be
proven in particular cases. On the other hand, our ex-
perimental results – and those reported in (Abernethy
et al., 2007) – show that, in all cases we have tested,
this Markov chain mixes very rapidly.

4. A General Optimization Problem

One can see that the previous section provides a ran-
domized online algorithm which approximates the fol-
lowing objective function:

Φm = min
j1,...,jm∈[B]

A∑
i=1

min
k∈{1,...,m}

T∑
t=1

ct
i,jk

(2)

for an arbitrary sequence of ct
i,j ∈ [0, 1] for all i ∈

[A], j ∈ [B], t ∈ [T ]. As the next theorem shows, the
exact minimization problem is provably hard, while
the online approximation to within O(

√
T ) is achieved

by our algorithm.

Theorem 4.1 Finding Φm is NP-hard. Furthermore,
this is true even when T = 1 and the ct

i,j are restricted
to {0, 1}.

We now sketch a proof. Suppose we could solve (2)
exactly. We claim that then we could solve the SET
COVER problem. Indeed, without loss of generality let
S = {1, . . . , A} and D = {D1, . . . DB} a collection
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of subsets of S. Construct the binary A × B matrix
G as follows: Gi,j = 0 if i ∈ Dj and 1 otherwise.
Note that finding a set cover of size m is equivalent
to finding a subset {j1, . . . , jm} of columns (subsets of
S) such that for all i ∈ [A], Gi,j = 0 for at least one
j ∈ {j1, . . . , jm}, i.e. Φm = 0. If we could solve (2)
exactly, we would be able to find an m-sized set cover,
if it exists.

Hence, finding the best mapping π given a matrix of
cumulative costs at time t is hard. More importantly,
we note that, even if we could efficiently perform the
above optimization, simply predicting with the best
expert π at time t, known as “Follow the Leader”, is
not a good prediction strategy in the adversarial set-
ting. We illustrate this fact in Section 5.1. We con-
clude that our online algorithm has several virtues:
it has performance competitive with the best offline
choice, even when finding the best is hard, and it ran-
domizes its prediction at each step to be robust in the
adversarial setting.

5. Applications and Experiments

We now show how RMP can be applied to two com-
mon machine learning problems: data clustering and
feature selection (dimensionality reduction). Since our
focus is on the online learning setting, we cast each of
these problems within this framework and also com-
pare our online approach to several batch algorithms.

In each of the examples below, we are considering ob-
jects {vj} that are typically members of Euclidean
space, and we will use the term “vector.” However,
this is not entirely necessary, as we require only that
each object vj can be described by some sequence
〈v1

j , v2
j , . . . , vT

j 〉, and that we have a distortion function
d(·, ·) which can be represented as a coordinatewise
sum. That is, d(vi,vj) =

∑T
t=1 d(vt

i , v
t
j). Here, for

convenience, we slightly abuse notation, as we write
d(·, ·) as both a function on vi as well as on indi-
vidual coordinates vt

i . As an example, if vj ’s are in
RT , we can choose the Euclidean distance squared,
d(vi,vj) =

∑T
t=1(v

t
i − vt

j)
2, or L1 distance d(vi,vj) =∑T

t=1 |vt
i − vt

j |.

5.1. Online Data Clustering

Consider the following scenario. We have K objects,
where object j ∈ [K] is defined by a T -dimensional
vector vj = (v1

j , . . . , vT
j ), and we have some distortion

function d(·, ·) as described above. Assume that we
cannot observe the entire vector and, instead, on ev-
ery round t = 1, . . . , T , we receive vt

j for each object
j. In other words, the descriptions of each object are

revealed to us slowly. More generally, we could con-
sider a setting where our objects are in fact moving,
and the position of object i on round t is vt

i , where vt
i

is itself a position vector.

We are interested in choosing a clustering of the K
objects into m groups. One can see that this prob-
lem can be interpreted as the problem of finding a
map π : [K] → [K] such that |image(π)| ≤ m. We
can consider image(π) = {i1, . . . , im} to be a set of
m or fewer “prototype” objects, and the clusters are
exactly the sets π−1(i1), . . . , π−1(im). If a clustering
is chosen offline, that is where each vector vj is fully
revealed, then the “cost” of this clustering is simply∑K

j=1 d(vj ,vπ(j)) =
∑T

t=1

∑K
j=1 d(vt

j , v
t
π(j)).

The objective function we are trying to minimize for
this particular clustering method is the same as the
“K-medoids” algorithm (Hastie et al., 2002). This
particular objective differs from that of other stan-
dard clustering algorithms, e.g. K-means or EM clus-
tering, where the goal is to find m “cluster centers”
which themselves need not be members of the dataset
but arbitrary points in the ambient space. In gen-
eral, performing K-medoids clustering is computation-
ally more expensive than K-means (Hastie et al., 2002,
page 468).

Now assume that the algorithm is required to clus-
ter the objects while the data is revealed. That
is, the algorithm would like to find a dynamic clus-
tering with a cost that is minimal relative to the
cost of the best offline clustering. At each round
t, the algorithm has, for each i and j, a record
of the total distortion d(v1:t−1

i ,v1:t−1
j ). The algo-

rithm must choose a map πt : [K] → [K] such
that |image(πt)| is a set of m or fewer prototypes.
The next coordinates vt

1, . . . , v
t
K are revealed, and

the algorithm suffers
∑K

i=1 d(vt
i , v

t
πt(i)). The total

loss of the dynamic clustering (π1, π2, . . . , πT ) is then∑T
t=1

∑K
i=1 d

(
vt

j , v
t
πt(j)

)
. At the end of the sequence,

the algorithm’s cumulative regret is
T∑

t=1

K∑
i=1

d
(
vt

i , v
t
πt(i)

)
− min

π∈Πm

K∑
i=1

d
(
vi,vπ(i)

)
.

This problem translates directly to our dynamic map-
ping problem and we thus obtain a natural online al-
gorithm for choosing a clustering. Here, A = B = [K],
ct
i,j := d(vt

i , v
t
j), and Ct

π =
∑K

i=1 d(v1:t
i ,v1:t

π(i)). On
each round, by utilizing the random walk described
in Algorithm 2, we sample a map πt ∈ Πm, and the
algorithm returns the clustering π as its prediction.

We experimented with this algorithm by generating a
set of data points in high-dimensional space, vi ∈ Rd
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Figure 1. The regret of RMP and EM clustering in the on-
line clustering task.

where T = d = 50 and i = 1, . . . , 400. The vi’s were
sampled from a mixture of four gaussian distributions
with randomly chosen centers. The width of all guas-
sians was chosen so that the gaussians would be easily
separable with all 50 dimensions, but non-separable
with fewer than (roughly) 15 dimensions. Since we
generated the data, we were able to efficiently com-
pute the optimal offline clustering π∗.

In Figure 1 we plot Ĉt − Ct
π∗ , the cumulative perfor-

mance of our dynamic clustering relative to the per-
formance of π∗, for t = 1, . . . , 50. We observe that the
regret of our algorithm is sublinear in T and appears
to be roughly O(

√
T ), as we would expect given our

bound of vanishing per-round regret (Theorem 2.1).

In addition, we applied the EM clustering method,
adapted for the online framework as follows: on round
t we used the EM algorithm to cluster the set of par-
tially revealed vectors, {v1:t−1

j }j , and we defined the
clustering π to be the map which sends every data
point in each cluster to the data point nearest to the
centroid of this cluster. The regret of EM was also
plotted in Figure 1. The performance was quite vari-
able and here we chose a typical run. EM cluster-
ing suffers from problems of local minima, particularly
when the data is high-dimensional, and this may be the
reason for its relatively poor performance. We include
this second graph not to provide a fair comparison with
EM but to point out that our sampling algorithm is
apparently quite robust. Interestingly, other exper-
iments not reported in this paper suggest that RMP
performs substantially better than EM on sparse, high-
dimensional data.

In addition to the difficulties mentioned above, there

is a more subtle issue associated with applying a “find
the best” algorithm, such as K-means. A central
theme in online learning is that a learner must always
“hedge” his trust in any particular decision, for the
best decision historically may not be the best deci-
sion today. This is why we sample a map π on each
round, rather than just choose the π with the lowest
loss. Motivated by a similar example in (Kalai & Vem-
pala, 2005), consider dynamically clustering the fol-
lowing three data vectors: A := 〈.5, 1, 1, 1, 1, . . .〉, B :=
〈0, 1, 0, 1, 0, . . .〉, C := 〈0, 0, 0, 0, 0, . . .〉 Assume we are
looking for two clusters. After round 1, the optimal
clustering is {A} and {B,C}; after 2 rounds, the opti-
mal clustering is {A,B} and {C}; after 3 rounds, it’s
{A} and {B,C} again; and so on. Notice, if we al-
ways choose historically the best clustering, then on
the next round we always suffer maximal loss. The
total loss of this “follow the leader” style algorithm is
going to be at least T after T +1 time steps, while the
loss of the best fixed clustering will be at most T/2.
Thus the regret of this approach will be linear in T .
On the other hand, the bound in Theorem 2.1 tells
us that the regret of our randomized algorithm will be
O(
√

T ), and thus the per-round regret will approach
0 for large T .

5.2. Online Feature Selection

The problem of feature selection, too, can be inter-
preted as a problem of finding an m-constrained map
π. Here, we assume we are given F features, a distor-
tion function d(·, ·), and we would like to choose a map
π : [F ] → [F ] which maps our feature set to a small
set of features and minimizes distortion. However, in
contrast to clustering, where we were mostly interested
in the clusters π−1(i1), . . . , π−1(im), we are now inter-
ested in the actual prototype objects i1, . . . , im which
will be our selected features. Note that, unlike the ma-
jority of feature selection algorithms, we obtain these
features in an entirely unsupervised fashion. It is thus
rather surprising, as we demonstrate below, that we
can outperform supervised selection methods.

Feature selection in an online setting was previously
studied by (Levi & Ullman, 2006), whose method in-
volves adding and removing features to the set of se-
lected features one-by-one at each round. While their
paper develops several good heuristics to choose rele-
vant features, we are concerned in this work with al-
gorithms with provable theoretical guarantees, such as
the bound in Theorem 2.1. We also note that our cho-
sen subset of features can completely change between
rounds, allowing faster adaptation to new information
in a changing environment.
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The feature selection problem that we pose here
is quite similar to the clustering problem discussed
above, and we give a brief outline. Assume we are
given a sequence of data points xt, for t = 1, 2, . . . , T .
Assume that each data point is described by a set of
F features, xt = 〈f t

1, f
t
2, . . . , f

t
F 〉. After t rounds, we

can consider the feature vector f1:t
i = 〈f1

i , f2
i , . . . , f t

i 〉
for the ith feature. We are also given some distortion
function d(·, ·) on feature vectors with the properties
mentioned in the beginning of this section. We de-
fine the online feature selection problem as follows.
On round t, the algorithm has access to the total dis-
tortions d(f1:t−1

i ,f1:t−1
j ) for each i and j, then must

choose an m-constrained map πt : [F ]→ [F ], and suf-
fers

∑F
i=1 d

(
f t

i , f
t
πt(i)

)
. The goal of the algorithm is

to perform nearly as well as the best offline map in
hindsight, that is, to minimize

T∑
t=1

F∑
i=1

d
(
f t

i , f
t
πt(i)

)
− min

π∈Πm

F∑
i=1

d
(
f i,fπ(i)

)
. (3)

Of course, this way of posing the feature selection
problem is somewhat unusual. Often, we are given
labelled data and a feature selection method is used
to choose a set of m features that are most helpful in
predicting the labels. For instance, in analyzing gene
expression data to investigate genes associated with a
certain type of cancer, the predictive accuracy of a set
of genes might be used as a proxy for the biological rel-
evance of those genes; see, for example, (Guyon et al.,
2002). In that approach, we should be searching for
features that are informative, as opposed to represen-
tative, and we would say that a feature set S is better
than S′ if a classifier trained using the features in S
performs better than that trained using S′.

On the other hand, the objective (3) has several ad-
vantages. First, it is unsupervised, and can thus be
applied more generally. Second, the alternative mea-
sure, feature “informativeness”, is hard to determine
when the data are sparse. Third, we can prove bounds
on how well our method will perform in the long run.
Lastly, by selecting features without labels, we are less
prone to overfitting, especially when there is a large
number of features but only few data points.

We can apply RMP in the following simple way. Let
A = B = [F ]. On round t, we set ct

i,j := d(f t
i , f

t
j ), and

thus Ct
π =

∑T
t=1

∑F
i=1 d

(
f t

i , f
t
π(i)

)
for any π. Imple-

menting our random walk, we sample a map π ∈ Πm

and choose image(π) as our feature set on this round.

Due to Theorem 2.1, we have a performance guarantee
for the dynamically chosen feature set, at least with re-
spect to the measure in (3). Yet it is also interesting

to consider how well these features perform when used
in classification. We have therefore tested our feature
selection on the well known MNIST dataset (LeCun
et al., 1998) of handwritten digits. Each digit lies on a
28× 28 grid, and each pixel in the grid has an integer
grayscale value in the range 0 to 255. Here we con-
sider each data point as a 784 = 282 feature vector,
and we note that each method we tested has no access
to positional information. The dataset consists of 10
classes, and in our experiments we consider classifica-
tion between digits ‘1’ and ‘8’, an easy task, and digits
‘3’ and ‘8’, a slightly harder task.

On every round, we provide various algorithms with a
new data point, and each algorithm must repeatedly
return a set of features. We implemented the follow-
ing four methods of feature selection: (a) A random set
of m features; (b) A set of features chosen by Recur-
sive Feature Elimination (RFE) (Guyon et al., 2002) –
a supervised feature selection method that recursively
trains a kernel classifier and eliminates features based
on their weight of the returned classifier 2; (c) A set
of m features chosen using RMP; (d) No feature selec-
tion, that is, using all 768 features.

After choosing features, we used ridge regression to
build a linear classifier with those feature sets. We
report the performance of each selection method in
Figure 2. We consider the “1 vs. 8” and the “3 vs.
8” classification problems (which are representative of
other two-class classification problems), and we test
values m = 10 and m = 50. The most interesting
comparison is between RMP and RFE. RMP doesn’t
appear to perform well with only a few data points.
However, when given at least 50 data points, it clearly
outperforms RFE for the larger choice of m. This is
particularly surprising since RFE is a supervised selec-
tion method, while RMP simply picks features based
on their similarities to other features.

To get a feel for what our feature selection algorithm
is doing, we display the output of RMP on the 28×28
feature grid in Figure 3. Given 50 random images from
the “1 vs. 8” training set, and the “3 vs. 8” training
set, we sample a map π ∈ Πm, which assigns our pixel
set to an m-sized subset of pixels. Given this π, we as-
sign the same color to pixels i and j if π(i) = π(j). Re-
call, the algorithm receives no positional information –
we simply assign features based on similarities across
data points. As we see from the images, RMP finds
strongly representative regions in our features space
without topological information or image labels.

2We applied the built-in Spi-
der implementation of RFE, found at
http://www.kyb.tuebingen.mpg.de/bs/people/spider
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Figure 2. The performance of RMP on the MNIST dataset
for different m and two tasks. We compare RMP to RFE
and two baseline methods.

6. Conclusions

In recent years, one witnesses an increasing number
of interesting applications of the online experts frame-
work to solving optimization problems. Clever reduc-
tions of convex problems as well as provably hard prob-
lems to the exponentially weighted prediction strat-
egy (e.g. Arora et al., 2005) yield simple and elegant
online approximation algorithms. Structured predic-
tion problems, such as finding shortest paths in graphs
(Kalai & Vempala, 2005), can sometimes be solved in
the expert prediction framework despite a combinato-
rial explosion in the number of possible actions.

The present paper makes a connection between the set-
ting of prediction with expert advice and online discov-
ery of similarity mappings between two sets (clustering
being one example). The connection allows us to have
a theoretical bound on the performance of our algo-
rithm (RMP) for this non-convex optimization prob-
lem. We overcome the difficulty of predicting with ac-
tions from a very large set by exploiting the structure
of the set of mappings Πm. In particular, we show that
only an A × B matrix of weights is required to keep
track of the weights over actions, making our algorithm
truly online. An efficient sampling technique for this
problem performs well in the experiments, matching
the theoretical guarantees.
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