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Myth #1: Current theory is lacking because deep neural networks
have too many parameters.
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» Margin theory was developed to address this very problem for Boosting
and NN (e.g. Koltchinskii & Panchenko '02 and references therein)

» Example: linear classifiers {x — sign({w,x)) : [|[w[, <1} and assume
margin. Then dimension of w (num. of params in 1-layer NN) never
appears in generalization bounds (and can be infinite). This
observation already appears in the 60’s.
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» In Statistics, one often deals with infinite-dimensional models

» Numer of parameters is rarely the right notion of complexity (true, in
classical statistics still the case for linear regression or simple models)

» VC dimension is known to be a loose quantity (distribution-free, only
an upper bound)



A study of complexity notions
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» Fisher local norm as a common starting point for many measures of
complexity currently studied in the literature (see work of Srebro’s
group and Bartlett et al).

» Information Geometry suggests Natural Gradient as the optimization
method. Appears to resolve ill-conditioned problems in
Shalev-Shwartz et al ’17.
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Myth #2: To prove good out-of-sample performance, we need to show
uniform convergence (a la Vapnik) over some class.
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Importantly, can interpolate between the two notions using penalization. A
few more approaches (e.g. use bracketing entropy) — ask me after the talk.
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Myth #3: Sample complexity of neural nets scales exponentially with



Myth #3: Sample complexity of neural nets scales exponentially with
depth.

» A common pitfall of making conclusions based on (possibly loose)
upper bounds.

Mostly resolved:

N. Golowich, A.R., O. Shamir, “Size-Independent Sample Complexity of Neural

Networks,” 2017

From 2¢ to V/d dependence was simply a technical issue. From Vd to 0(1)
requires more work.



Myth #4: If we can fit any set of labels, then Rademacher complexity
is too large and, hence, nothing useful can be concluded.
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Myth #4: If we can fit any set of labels, then Rademacher complexity
is too large and, hence, nothing useful can be concluded.

Related to Myth #2, but let’s illustrate with a slightly different technique.
Bottom line: we can have a very large overall model, but performance
depends on a posteriori complexity of the obtained solution.

Most trivial example: take a large F = uxFi, where
Fi = {f: compl, (f) <k} and for simplicity assume compl, (f) is positive
homogenous. Suppose (this is standard) we have that with high probability

VieFi, Ef-EfsZ(Fi)+...

where % (F1) is empirical Rademacher. Then with same probability

VfeF, Ef-Efgcompl, (f)-Z(Fi)+...

Conclusion: an a posteriori data-dependent guarantee for all f based on
complexity of f, yet Z(F) never appears (huge or infinite). If complexity is
not positive homogenous, use union bound instead.



So, is there anything left to do? Yes, tons. Perhaps need to ask different
questions.

» What are the properties of solutions that optimization methods find in
a nonconvex landscape? Is there “implicit regularization” that we can
isolate?

» What are the salient features of the random landscape? Uniform
deviations for gradients and Hessians?

» How can one exploit randomness to make conclusions about
optimization solutions? (e.g. see the SGLD work of Raginsky et al, as
well as papers on escaping saddles)

» What geometric notions can be associated to multi-layer neural nets?
How can this geometry be exploited in optimization methods and be
reflected in sample complexity?

» Theoretical understanding of adversarial examples.

> etc.
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