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A Few Remarks on Generalization Myths
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Myth #1: Current theory is lacking because deep neural networks
have too many parameters.

P. Bartlett, “The Sample Complexity of Pattern Classification with Neural Networks:

The Size of the Weights is More Important than the Size of the Network,” 1998

▸ Margin theory was developed to address this very problem for Boosting
and NN (e.g. Koltchinskii & Panchenko ’02 and references therein)

▸ Example: linear classifiers {x↦ sign(⟨w,x⟩) ∶ ∥w∥2 ≤ 1} and assume
margin. Then dimension of w (num. of params in 1-layer NN) never
appears in generalization bounds (and can be infinite). This
observation already appears in the 60’s.

▸ In Statistics, one often deals with infinite-dimensional models

▸ Numer of parameters is rarely the right notion of complexity (true, in
classical statistics still the case for linear regression or simple models)

▸ VC dimension is known to be a loose quantity (distribution-free, only
an upper bound)
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A study of complexity notions

Our own (arguably incomplete) take on this problem:
T. Liang, T. Poggio, J. Stokes, A.R. “Fisher-Rao Metric, Geometry, and Complexity of

Neural Networks,” 2017.

▸ Fisher local norm as a common starting point for many measures of
complexity currently studied in the literature (see work of Srebro’s
group and Bartlett et al).

▸ Information Geometry suggests Natural Gradient as the optimization
method. Appears to resolve ill-conditioned problems in
Shalev-Shwartz et al ’17.
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Myth #2: To prove good out-of-sample performance, we need to show
uniform convergence (a la Vapnik) over some class.

The oldest counter-example:
Cover and Hart, “Nearest neighbor pattern classification,” 1967.

Second (related) issue: uniform vs universal consistency.

Uniform Consistency
There exists a sequence {ŷt}∞t=1 of estimators, such that for any ε > 0, there
exists nε such that for any distribution P ∈ P and n ≥ nε,

EL(ŷn) − inf L(f) ≤ ε

Universal Consistency
There exists a sequence {ŷt}∞t=1 of estimators, such that for any distribution
P ∈ P and any ε > 0, there exists nε such that for n ≥ nε(P),

EL(ŷn) − inf L(f) ≤ ε

Importantly, can interpolate between the two notions using penalization. A
few more approaches (e.g. use bracketing entropy) – ask me after the talk.
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Myth #3: Sample complexity of neural nets scales exponentially with
depth.

▸ A common pitfall of making conclusions based on (possibly loose)
upper bounds.

Mostly resolved:

N. Golowich, A.R., O. Shamir, “Size-Independent Sample Complexity of Neural

Networks,” 2017

From 2d to
√
d dependence was simply a technical issue. From

√
d to O(1)

requires more work.
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Myth #4: If we can fit any set of labels, then Rademacher complexity
is too large and, hence, nothing useful can be concluded.

Related to Myth #2, but let’s illustrate with a slightly different technique.
Bottom line: we can have a very large overall model, but performance
depends on a posteriori complexity of the obtained solution.

Most trivial example: take a large F = ∪kFk, where
Fk = {f ∶ compln(f) ≤ k} and for simplicity assume compln(f) is positive
homogenous. Suppose (this is standard) we have that with high probability

∀f ∈ F1, Ef − Êf ≲ R̂(F1) + . . .

where R̂(F1) is empirical Rademacher. Then with same probability

∀f ∈ F , Ef − Êf ≲ compln(f) ⋅ R̂(F1) + . . .

Conclusion: an a posteriori data-dependent guarantee for all f based on
complexity of f, yet R̂(F) never appears (huge or infinite). If complexity is
not positive homogenous, use union bound instead.
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So, is there anything left to do? Yes, tons. Perhaps need to ask different
questions.

▸ What are the properties of solutions that optimization methods find in
a nonconvex landscape? Is there “implicit regularization” that we can
isolate?
A nice line of work by Srebro and co-authors

▸ What are the salient features of the random landscape? Uniform
deviations for gradients and Hessians?
Nice work by Montanari and co-authors

▸ How can one exploit randomness to make conclusions about
optimization solutions? (e.g. see the SGLD work of Raginsky et al, as
well as papers on escaping saddles)

▸ What geometric notions can be associated to multi-layer neural nets?
How can this geometry be exploited in optimization methods and be
reflected in sample complexity?

▸ Theoretical understanding of adversarial examples.

▸ etc.
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