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Abstract

We develop unified information-theoretic machinery for deriving lower bounds
for passive and active learning schemes. Our bounds involve the so-called Alexan-
der’s capacity function. The supremum of this function has been recently redis-
covered by Hanneke in the context of active learning under the name of “disagree-
ment coefficient.” For passive learning, our lower bounds match the upper bounds
of Giné and Koltchinskii up to constants and generalize analogous results of Mas-
sart and Nédélec. For active learning, we provide first known lower bounds based
on the capacity function rather than the disagreement coefficient.

1 Introduction

Not all Vapnik-Chervonenkis classes are created equal. This was observed by Massart and Nédélec
[24], who showed that, when it comes to binary classification rates on a sample of size n under a
margin condition, some classes admit rates of the order 1/n while others only (log n)/n. The latter
classes were called “rich” in [24]. As noted by Giné and Koltchinskii [15], the fine complexity
notion that defines this “richness” is in fact embodied in Alexander’s capacity function.1 Somewhat
surprisingly, the supremum of this function (called the disagreement coefficient by Hanneke [19])
plays a key role in risk bounds for active learning. The contribution of this paper is twofold. First, we
prove lower bounds for passive learning based on Alexander’s capacity function, matching the upper
bounds of [15] up to constants. Second, we prove lower bounds for the number of label requests in
active learning in terms of the capacity function. Our proof techniques are information-theoretic in
nature and provide a unified tool to study active and passive learning within the same framework.

Active and passive learning. Let (X ,A) be an arbitrary measurable space. Let (X,Y ) be a random
variable taking values in X × {0, 1} according to an unknown distribution P = Π ⊗ PY |X , where
Π denotes the marginal distribution of X . Here, X is an instance (or a feature, a predictor variable)
and Y is a binary response (or a label). Classical results in statistical learning assume availability of
an i.i.d. sample {(Xi, Yi)}ni=1 from P . In this framework, the learner is passive and has no control
on how this sample is chosen. The classical setting is well studied, and the following question has
recently received attention: do we gain anything if data are obtained sequentially, and the learner
is allowed to modify the design distribution Π of the predictor variable before receiving the next
pair (Xi, Yi)? That is, can the learner actively use the information obtained so far to facilitate faster
learning?

Two paradigms often appear in the literature: (i) the design distribution is a Dirac delta function
at some xi that depends on (xi−1, Y i−1), or (ii) the design distribution is a restriction of the orig-
inal distribution to some measurable set. There is rich literature on both approaches, and we only
mention a few results here. The paradigm (i) is closely related to learning with membership queries
[21], generalized binary search [25], and coding with noiseless feedback [6]. The goal is to actively
choose the next xi so that the observed Yi ∼ PY |X=xi is sufficiently “informative” for the clas-
sification task. In this paradigm, the sample no longer provides information about the distribution
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1To be precise, the capacity function depends on the underlying probability distribution.
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Π (see [7] for further discussion and references). The setting (ii) is often called selective sampling
[9, 13, 8], although the term active learning is also used. In this paradigm, the aim is to sequentially
choose subsets Di ⊆ X based on the observations prior to the ith example, such that the label Yi
is requested only if Xi ∈ Di. The sequence {Xi}ni=1 is assumed to be i.i.d., and so, form the view
point of the learner, the Xi is sampled from the conditional distribution Π(·|Di).

In recent years, several interesting algorithms for active learning and selective sampling have ap-
peared in the literature, most notably: the A2 algorithm of Balcan et al. [4], which explicitly main-
tains Di as a “disagreement” set of a “version space”; the empirical risk minimization (ERM) based
algorithm of Dasgupta et al. [11], which maintains the set Di implicitly through synthetic and real
examples; and the importance-weighted active learning algorithm of Beygelzimer et al. [5], which
constructs the design distribution through careful reweighting in the feature space. An insightful
analysis has been carried out by Hanneke [20, 19], who distilled the role of the so-called disagree-
ment coefficient in governing the performance of several of these active learning algorithms. Finally,
Koltchinskii [23] analyzed active learning procedures using localized Rademacher complexities and
Alexander’s capacity function, which we discuss next.

Alexander’s capacity function. Let F denote a class of candidate classifiers, where a classifier is a
measurable function f : X → {0, 1}. Suppose the VC dimension of F is finite: VC-dim(F) = d.
The loss (or risk) of f is its probability of error, RP (f) , EP [1{f(X)6=Y }] = P (f(X) 6= Y ).
It is well known that the risk is globally minimized by the Bayes classifier f∗ = f∗P , defined by
f∗(x) , 1{2η(x)≥1}, where η(x) , E[Y |X = x] is the regression function. Define the margin as
h , infx∈X |2η(x) − 1|. If h > 0, we say the problem satisfies Massart’s noise condition. We
define the excess risk of a classifier f by EP (f) , RP (f) − RP (f∗), so that EP (f) ≥ 0, with
equality if and only if f = f∗ Π-a.s. Given ε ∈ (0, 1], define

Fε(f∗) , {f ∈ F : Π(f(X) 6= f∗(X)) ≤ ε} ,
Dε(f∗) , {x ∈ X : ∃f ∈ Fε(f∗) s.t. f(x) 6= f∗(x)}

The set Fε consists of all classifiers f ∈ F that are ε-close to f∗ in the L1(Π) sense, while the set
Dε consists of all points x ∈ X , for which there exists a classifier f ∈ Fε that disagrees with the
Bayes classifier f∗ at x. The Alexander’s capacity function [15] is defined as

τ(ε) , Π(Dε(f∗))/ε, (1)

that is, τ(ε) measures the relative size (in terms of Π) of the disagreement region Dε compared to ε.
Clearly, τ(ε) is always bounded above by 1/ε; however, in some cases τ(ε) ≤ τ0 with τ0 <∞.

The function τ was originally introduced by Alexander [1, 2] in the context of exponential in-
equalities for empirical processes indexed by VC classes of functions, and Giné and Koltchin-
skii [15] generalized Alexander’s results. In particular, they proved (see [15, p. 1213]) that,
for a VC-class of binary-valued functions with VC-dim(F) = d, the ERM solution f̂n =
arg minf∈F 1

n

∑n
i=1 1{f(Xi)6=Yi} under Massart’s noise condition satisfies

EP (f̂n) ≤ C
[
d

nh
log τ

(
d

nh2

)
+

s

nh

]
(2)

with probability at least 1−Ks−1e−s/K for some constants C,K and any s > 0. The upper bound
(2) suggests the importance of the Alexander’s capacity function for passive learning, leaving open
the question of necessity. Our first contribution is a lower bound which matches the upper bound (2)
up to constant, showing that, in fact, dependence on the capacity is unavoidable.

Recently, Koltchinskii [23] made an important connection between Hanneke’s disagreement coeffi-
cient and Alexander’s capacity function. Under Massart’s noise condition, Koltchinskii showed (see
[23, Corollary 1]) that, for achieving an excess loss of εwith confidence 1−δ, the number of queries
issued by his active learning algorithm is bounded above by

C
τ0 log(1/ε)

h2
[d log τ0 + log(1/δ) + log log(1/ε) + log log(1/h)] , (3)

where τ0 = supε∈(0,1] τ(ε) is Hanneke’s disagreement coefficient. Similar bounds based on the
disagreement coefficient have appeared in [19, 20, 11]. The second contribution of this paper is a
lower bound on the expected number of queries based on Alexander’s capacity τ(ε).
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Comparison to known lower bounds. For passive learning, Massart and Nédélec [24] proved
two lower bounds which, in fact, correspond to τ(ε) = 1/ε and τ(ε) = τ0, the two endpoints on
the complexity scale for the capacity function. Without the capacity function at hand, the authors
emphasize that “rich” VC classes yield a larger lower bound. Our Theorem 1 below gives a unified
construction for all possible complexities τ(ε).

In the PAC framework, the lower bound Ω(d/ε + (1/ε) log(1/δ)) goes back to [12]. It follows
from our results that in the noisy version of the problem (h 6= 1), the lower bound is in fact
Ω((d/ε) log(1/ε) + (1/ε) log(1/δ)) for classes with τ(ε) = Ω(1/ε).

For active learning, Castro and Nowak [7] derived lower bounds, but without the disagreement
coefficient and under a Tsybakov-type noise condition. This setting is out of the scope of this paper.
Hanneke [19] proved a lower bound on the number of label requests specifically for theA2 algorithm
in terms of the disagreement coefficient. In contrast, lower bounds of Theorem 2 are valid for any
algorithm and are in terms of Alexander’s capacity function. Finally, a result by Kääriäinen [22]
(strengthened by [5]) gives a lower bound of Ω(ν2/ε2) where ν = inff∈F EP (f). A closer look
at the construction of the lower bound reveals that it is achieved by considering a specific margin
h = ε/ν. Such an analysis is somewhat unsatisfying, as we would like to keep h as a free parameter,
not necessarily coupled with the desired accuracy ε. This point of view is put forth by Massart and
Nédélec [24, p. 2329], who argue for a non-asymptotic analysis where all the parameters of the
problem are made explicit. We also feel that this gives a better understanding of the problem.

2 Setup and main results

We suppose that the instance space X is a countably infinite set. Also, log(·) ≡ loge(·) throughout.

Definition 1. Given a VC function class F and a margin parameter h ∈ [0, 1], let C(F , h) denote
the class of all conditional probability distributions PY |X of Y ∈ {0, 1} given X ∈ X , such that:
(a) the Bayes classifier f∗ ∈ F , and (b) the corresponding regression function satisfies the Massart
condition with margin h > 0.

Let P(X ) denote the space of all probability measures on X . We now introduce Alexander’s ca-
pacity function (1) into the picture. Whenever we need to specify explicitly the dependence of τ(ε)
on f∗ and Π, we will write τ(ε; f∗,Π). We also denote by T the set of all admissible capacity
functions τ : (0, 1]→ R+, i.e., τ ∈ T if and only if there exist some f∗ ∈ F and Π ∈ P(X ), such
that τ(ε) = τ(ε; f∗,Π) for all ε ∈ (0, 1]. Without loss of generality, we assume τ(ε) ≥ 2.

Definition 2. Given some Π ∈ P(X ) and a pair (F , h) as in Def. 1, we let P(Π,F , h) denote the set
of all joint distributions of (X,Y ) ∈ X × {0, 1} of the form Π⊗ PY |X , such that PY |X ∈ C(F , h).
Moreover, given an admissible function τ ∈ T and some ε ∈ (0, 1], we let P(Π,F , h, τ, ε) denote
the subset of P(Π,F , h), such that τ(ε; f∗,Π) = τ(ε).

Finally, we specify the type of learning schemes we will be dealing with.

Definition 3. An n-step learning scheme S consists of the following objects: n conditional proba-
bility distributions Π(t)

Xt|Xt−1,Y t−1 , t = 1, . . . , n, and a mapping ψ : Xn × {0, 1}n → F .

This definition covers the passive case if we let

Π(t)
Xt|Xt−1,Y t−1(·|xt−1, yt−1) = Π(·), ∀(xt−1, yt−1) ∈ X t−1 × {0, 1}t−1

as well as the active case, in which Π(t)
Xt|Xt−1,Y t−1 is the user-controlled design distribution for

the feature at time t given all currently available information. The learning process takes place
sequentially as follows: At each time step t = 1, . . . , n, a random feature Xt is drawn accord-
ing to Π(t)

Xt−1,Y t−1(·|Xt−1, Y t−1), and then a label Yt is drawn given Xt. After the n samples

{(Xt, Yt)}nt=1 are collected, the learner computes the candidate classifier f̂n = ψ(Xn, Y n).

To quantify the performance of such a scheme, we need the concept of an induced measure, which
generalizes the set-up of [14]. Specifically, given some P = Π ⊗ PY |X ∈ P(Π,F , h), define the
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following probability measure on Xn × {0, 1}n:

PS(xn, yn) =
n∏
t=1

PY |X(yt|xt)Π(t)
Xt|Xt−1,Y t−1(xt|xt−1, yt−1).

Definition 4. Let Q be a subset of P(Π,F , h). Given an accuracy parameter ε ∈ (0, 1) and a
confidence parameter δ ∈ (0, 1), an n-step learning scheme S is said to (ε, δ)-learn Q if

sup
P∈Q

PS
(
EP (f̂n) ≥ εh

)
≤ δ. (4)

Remark 1. Leaving the precision as εh makes the exposition a bit cleaner in light of the fact that,
under Massart’s noise condition with margin h, EP (f) ≥ h‖f − f∗P ‖L1(Π) = hΠ(f(X) 6= f∗P (X))
(cf. Massart and Nédélec [24, p. 2352]).

With these preliminaries out of the way, we can state the main results of this paper:
Theorem 1 (Lower bounds for passive learning). Given any τ ∈ T , any sufficiently large d ∈ N and
any ε ∈ (0, 1], there exist a probability measure Π ∈ P(X ) and a VC class F with VC-dim(F) = d
with the following properties:

(1) Fix any K > 1 and δ ∈ (0, 1/2). If there exists an n-step passive learning scheme that (ε/2, δ)-
learns P(Π,F , h, τ, ε) for some h ∈ (0, 1−K−1], then

n = Ω
(

(1− δ)d log τ(ε)
Kεh2

+
log 1

δ

Kεh2

)
. (5)

(2) If there exists an n-step passive learning scheme that (ε/2, δ)-learns P(Π,F , 1, τ, ε), then

n = Ω
(

(1− δ)d
ε

)
. (6)

Theorem 2 (Lower bounds for active learning). Given any τ ∈ T , any sufficiently large d ∈ N and
any ε ∈ (0, 1], there exist a probability measure Π ∈ P(X ) and a VC class F with VC-dim(F) = d
with the following property: Fix any K > 1 and any δ ∈ (0, 1/2). If there exists an n-step active
learning scheme that (ε/2, δ)-learns P(Π,F , h, τ, ε) for some h ∈ (0, 1−K−1], then

n = Ω
(

(1− δ)d log τ(ε)
Kh2

+
τ(ε) log 1

δ

Kh2

)
. (7)

Remark 2. The lower bound in (6) is well-known and goes back to [12]. We mention it because it
naturally arises from our construction. In fact, there is a smooth transition between (5) and (6), with
the extra log τ(ε) factor disappearing as h approaches 1. As for the active learning lower bound, we
conjecture that d log τ(ε) is, in fact, optimal, and the extra factor of τ0 in dτ0 log τ0 log(1/ε) in (3)
arises from the use of a passive learning algorithm as a black box.

The remainder of the paper is organized as follows: Section 3 describes the required information-
theoretic tools, which are then used in Section 4 to prove Theorems 1 and 2. The proofs of a number
of technical lemmas can be found in the Supplementary Material.

3 Information-theoretic framework

Let P and Q be two probability distributions on a common measurable space W . Given a convex
function φ : [0,∞)→ R such that φ(1) = 0, the φ-divergence2 between P and Q [3, 10] is given by

Dφ(P‖Q) ,
∫
W

dQ
dµ

φ

(
dP/dµ
dQ/dµ

)
dµ, (8)

where µ is an arbitrary σ-finite measure that dominates both P and Q.3 For the special case of
W = {0, 1}, when P and Q are the distributions of a Bernoulli(p) and a Bernoulli(q) random

2We deviate from the standard term “f -divergence” since f is already reserved for a generic classifier.
3For instance, one can always take µ = P + Q. It it easy to show that the value of Dφ(P‖Q) in (8) does not

depend on the choice of the dominating measure.
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variable, we will denote their φ-divergence by

dφ(p‖q) = q · φ
(
p

q

)
+ (1− q) · φ

(
1− p
1− q

)
. (9)

Two particular choices of φ are of interest: φ(u) = u log u, which gives the ordinary Kullback–
Leibler (KL) divergence D(P‖Q), and φ(u) = − log u, which gives the reverse KL divergence
D(Q‖P), which we will denote by Dre(P‖Q). We will write d(·‖·) for the binary KL divergence.

Our approach makes fundamental use of the data processing inequality that holds for any φ-
divergence [10]: if P and Q are two possible probability distributions for a random variableW ∈ W
and if PZ|W is a conditional probability distribution of some other random variable Z givenW , then

Dφ(PZ‖QZ) ≤ Dφ(P‖Q), (10)

where PZ (resp., QZ) is the marginal distribution of Z when W has distribution P (resp., Q).

Consider now an arbitrary n-step learning scheme S. Let us fix a finite set {f1, . . . , fN} ⊂ F and
assume that to eachm ∈ [N ] we can associate a probability measure Pm = Π⊗PmY |X ∈ P(Π,F , h)
with the Bayes classifier f∗Pm = fm. For each m ∈ [N ], let us define the induced measure

PS,m(xn, yn) ,
n∏
t=1

PmY |X(yt|xt)Π(t)
Xt|Xt−1,Y t−1(xt|xt−1, yt−1). (11)

Moreover, given any probability distribution π over [N ], let PS,π(m,xn, yn) , π(m)PS,m(xn, yn).
In other words, PS,π is the joint distribution of (M,Xn, Y n) ∈ [N ] × Xn × {0, 1}n, under which
M ∼ π and P(Xn, Y n|M = m) = PS,m(Xn, Y n).

The first ingredient in our approach is standard [27, 14, 24]. Let {f1, . . . , fN} be an arbitrary 2ε-
packing subset of F (that is, ‖fi − fj‖L1(Π) > 2ε for all i 6= j). Suppose that S satisfies (4) on
some Q that contains {P 1, . . . , PN}. Now consider

M̂ ≡ M̂(Xn, Y n) , arg min
1≤m≤N

‖f̂n − fm‖L1(Π). (12)

Then the following lemma is easily proved using triangle inequality:

Lemma 1. With the above definitions, PS,π(M̂ 6= M) ≤ δ.

The second ingredient of our approach is an application of the data processing inequality (10) with a
judicious choice of φ. LetW , (M,Xn, Y n), let M be uniformly distributed over [N ], π(m) = 1

N

for all m ∈ [N ], and let P be the induced measure PS,π . Then we have the following lemma (see
also [17, 16]):
Lemma 2. Consider any probability measure Q for W , under which M is distributed according to
π and independent of (Xn, Y n). Let the divergence-generating function φ be such that the mapping
p 7→ dφ(p‖q) is nondecreasing on the interval [q, 1]. Then, assuming that δ ≤ 1− 1

N ,

Dφ(P‖Q) ≥ 1
N
· φ (N(1− δ)) +

(
1− 1

N

)
· φ
(

Nδ

N − 1

)
. (13)

Proof. Define the indicator random variable Z = 1{cM=M}. Then P(Z = 1) ≥ 1− δ by Lemma 1.
On the other hand, since Q can be factored as Q(m,xn, yn) = 1

NQXn,Y n(xn, yn), we have

Q(Z = 1) =
N∑
m=1

Q(M = m, M̂ = m) =
1
N

N∑
m=1

∑
xn,yn

QXn,Y n(xn, yn)1{cM(xn,yn)=m} =
1
N
.

Therefore,

Dφ(P‖Q) ≥ Dφ(PZ‖QZ) = dφ(P(Z = 1)‖Q(Z = 1)) ≥ dφ(1− δ‖1/N),

where the first step is by the data processing inequality (10), the second is due to the fact that Z is
binary, and the third is by the assumed monotonicity property of φ. Using (9), we arrive at (13).

Next, we need to choose the divergence-generating function φ and the auxiliary distribution Q.
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Choice of φ. Inspection of the right-hand side of (13) suggests that the usual Ω(logN) lower
bounds [14, 27, 24] can be obtained if φ(u) behaves like u log u for large u. On the other hand,
if φ(u) behaves like − log u for small u, then the lower bounds will be of the form Ω

(
log 1

δ

)
.

These observations naturally lead to the respective choices φ(u) = u log u and φ(u) = − log u,
corresponding to the KL divergenceD(P‖Q) and the reverse KL divergenceDre(P‖Q) = D(Q‖P).

Choice of Q. One obvious choice of Q satisfying the conditions of the lemma is the product of
the marginals PM ≡ π and PXn,Y n ≡ N−1

∑N
m=1 PS,m: Q = PM ⊗ PXn,Y n . With this Q and

φ(u) = u log u, the left-hand side of (13) is given by
D(P‖Q) = D(PM,Xn,Y n‖PM ⊗ PXn,Y n) = I(M ;Xn, Y n), (14)

where I(M ;Xn, Y n) is the mutual information betweenM and (Xn, Y n) with joint distribution P.
On the other hand, it is not hard to show that the right-hand side of (13) can be lower-bounded by
(1− δ) logN − log 2. Combining with (14), we get

I(M ;Xn, Y n) ≥ (1− δ) logN − log 2,
which is (a commonly used variant of) the well-known Fano’s inequality [14, Lemma 4.1], [18,
p. 1250], [27, p. 1571]. The same steps, but with φ(u) = − log u, lead to the bound

L(M ;Xn, Y n) ≥
(

1− 1
N

)
log

1
δ
− log 2 ≥ 1

2
log

1
δ
− log 2,

where L(M ;Xn, Y n) , Dre(PM,Xn,Y n‖PM ⊗ PXn,Y n) is the so-called lautum information be-
tween M and (Xn, Y n) [26], and the second inequality holds whenever N ≥ 2.

However, it is often more convenient to choose Q as follows. Fix an arbitrary conditional distribution
QY |X of Y ∈ {0, 1} given X ∈ X . Given a learning scheme S, define the probability measure

QS(xn, yn) ,
n∏
t=1

QY |X(yt|xt)Π(t)
Xt|Xt−1,Y t−1(xt|xt−1, yt−1) (15)

and let Q(m,xn, yn) = 1
NQS(xn, yn) for all m ∈ [N ].

Lemma 3. For each xn ∈ Xn and y ∈ X , let N(y|xn) , |{1 ≤ t ≤ n : xt = y}|. Then

D(P‖Q) =
1
N

N∑
m=1

∑
x∈X

D(PmY |X(·|x)‖QY |X(·|x))EPS,m [N(x|Xn)] ; (16)

Dre(P‖Q) =
1
N

N∑
m=1

∑
x∈X

Dre(PmY |X(·|x)‖QY |X(·|x))EQ [N(x|Xn)] . (17)

Moreover, if the scheme S is passive, then Eq. (17) becomes

Dre(P‖Q) = n · EXEM
[
Dre(PMY |X(·|X)‖QY |X(·|X))

]
, (18)

and the same holds for Dre replaced by D.

4 Proofs of Theorems 1 and 2

Combinatorial preliminaries. Given k ∈ N, onsider the k-dimensional Boolean cube {0, 1}k =
{β = (β1, . . . , βk) : βi ∈ {0, 1}, i ∈ [k]}. For any two β, β′ ∈ {0, 1}k, define their Hamming dis-
tance dH(β, β′) ,

∑k
i=1 1{βi 6=β′i}. The Hamming weight of any β ∈ {0, 1}k is the number of its

nonzero coordinates. For k > d, let {0, 1}kd denote the subset of {0, 1}k consisting of all binary
strings with Hamming weight d. We are interested in large separated and well-balanced subsets of
{0, 1}kd . To that end, we will use the following lemma:
Lemma 4. Suppose that d is even and k > 2d. Then, for d sufficiently large, there exists a set
Mk,d ⊂ {0, 1}kd with the following properties: (i) log |Mk,d| ≥ d

4 log k
6d ; (ii) dH(β, β′) > d for

any two distinct β, β′ ∈M(2)
k,d ; (iii) for any j ∈ [k],

d

2k
≤ 1
|Mk,d|

∑
β∈Mk,d

βj ≤
3d
2k

(19)
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Proof of Theorem 1. Without loss of generality, we take X = N. Let k = dτ(ε) (we increase ε if
necessary to ensure that k ∈ N), and consider the probability measure Π that puts mass ε/d on each
x = 1 through x = k and the remaining mass 1− ετ(ε) on x = k + 1. (Recall that τ(ε) ≤ 1/ε.)

Let F be the class of indicator functions of all subsets of X with cardinality d. Then VC-dim(F) =
d. We will focus on a particular subclass F ′ of F . For each β ∈ {0, 1}kd , define fβ : X → {0, 1}
by fβ(x) = βx if x ∈ [k] and 0 otherwise, and take F ′ = {fβ : β ∈ {0, 1}kd}. For p ∈ [0, 1], let νp
denote the probability distribution of a Bernoulli(p) random variable. Now, to each fβ ∈ F ′ let us
associate the following conditional probability measure P βY |X :

P βY |X(y|x) =
[
ν(1+h)/2(y)βx + ν(1−h)/2(y)(1− βx)

]
1{x∈[k]} + 1{y=0}1{x6∈[k]}

It is easy to see that each P βY |X belongs to C(F , h). Moreover, for any two fβ , fβ′ ∈ F we have

‖fβ − fβ′‖L1(Π) = Π(fβ(X) 6= fβ′(X)) =
ε

d

k∑
i=1

1{βi 6=β′i} ≡
ε

d
dH(β, β′).

Hence, for each choice of f∗ = fβ∗ ∈ F we have Fε(fβ∗) = {fβ : dH(β, β∗) ≤ d}. This implies
that Dε(fβ∗) = [k], and therefore τ(ε; fβ∗ ,Π) = Π([k])/ε = τ(ε). We have thus established that,
for each β ∈ {0, 1}kd , the probability measure P β = Π ⊗ P βY |X is an element of P(Π,F , h, τ, ε).

Finally, letMk,d ⊂ {0, 1}kd be the set described in Lemma 4, and let G , {fβ : β ∈Mk,d}. Then
for any two distinct β, β′ ∈ Mk,d we have ‖fβ − fβ′‖L1(Π) = ε

ddH(β, β′) > ε. Hence, G is a
ε-packing of F ′ in the L1(Π)-norm.

Now we are in a position to apply the lemmas of Section 3. Let {β(1), . . . , β(N)}, N = |Mk,d|,
be a fixed enumeration of the elements of Mk,d. For each m ∈ [N ], let us denote by PmY |X the

conditional probability measure P β
(m)

Y |X , by Pm the measure Π ⊗ PmY |X on X × {0, 1}, and by
fm ∈ G the corresponding Bayes classifier. Now consider any n-step passive learning scheme that
(ε/2, δ)-learns P(Π,F , h, τ, ε), and define the probability measure P on [N ] × Xn × {0, 1}n by
P(m,xn, yn) = 1

N PS,m(xn, yn), where PS,m is constructed according to (11). In addition, for
every γ ∈ (0, 1) define the auxiliary measure Qγ on [N ] × Xn × {0, 1}n by Qγ(m,xn, yn) =
1
NQS

γ(xn, yn), where QS
γ is constructed according to (15) with

QγY |X(y|x) , νγ(y)1{x∈[k]} + 1{y=0}1{x 6∈[k]}.

Applying Lemma 2 with φ(u) = u log u, we can write

D(P‖Qγ) ≥ (1− δ) logN − log 2 ≥ (1− δ)d
4

log
k

6d
− log 2 (20)

Next we apply Lemma 3. Defining η = 1+h
2 and using the easily proved fact that

D(PmY |X(·|x)‖QγY |X(·|x)) = [d(η‖γ)− d(1− η‖γ)] fm(x) + d(1− η‖γ)1{x∈[k]},

we get

D(P‖Qγ) = nε [d(η‖γ) + (τ(ε)− 1)d(1− η‖γ)] . (21)

Therefore, combining Eqs. (20) and (21) and using the fact that k = dτ(ε), we obtain

n ≥
(1− δ)d log τ(ε)

6 − log 16
4ε [d(η‖γ) + (τ(ε)− 1)d(1− η‖γ)]

, ∀γ ∈ (0, 1) (22)

This bound is valid for all h ∈ (0, 1], and the optimal choice of γ for a given h can be calculated in
closed form: γ∗(h) = 1−h

2 + h
τ(ε) . We now turn to the reverse KL divergence. First, suppose that

h 6= 1. Lemma 2 gives Dre(P‖Q1−η) ≥ (1/2) log(1/δ) − log 2. On the other hand, using the fact
that

Dre(PmY |X(·|x)‖Q1−η
Y |X(·|x)) = d(η‖1− η)fm(x) (23)
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and applying Eq. (18), we can write

Dre(P‖Q1−η) = nε · d(η‖1− η) = nε · h log
1 + h

1− h
. (24)

We conclude that

n ≥
1
2 log 1

δ − log 2
εh log 1+h

1−h
. (25)

For h = 1, we get the vacuous bound n ≥ 0.

Now we consider the two cases of Theorem 1.

(1) For a fixed K > 1, it follows from the inequality log u ≤ u − 1 that h log 1+h
1−h ≤ Kh2 for all

h ∈ (0, 1−K−1]. Choosing γ = 1−h
2 and using Eqs. (22) and (25), we obtain (5).

(2) For h = 1, we use (22) with the optimal setting γ∗(1) = 1/τ(ε), which gives (6). The transition
between h = 1 and h 6= 1 is smooth and determined by γ∗(h) = 1−h

2 + h
τ(ε) .

Proof of Theorem 2. We work with the same construction as in the proof of Theorem 1. First, let
QXn,Y n , 1

N

∑N
m=1 PS,m. and Q = π ⊗ QXn,Y n , where π is the uniform distribution on [N ].

Then, by convexity,

D(P‖Q) ≤ 1
N2

N∑
m,m′=1

EP

[
n∑
t=1

log
PmY |X(Yt|Xt)

Pm
′

Y |X(Yt|Xt)

]
≤ n max

m,m′∈[N ]
max
x∈[k]

D(PmY |X(·|x)‖Pm
′

Y |X(·|x))

which is upper bounded by nh log 1+h
1−h . Applying Lemma 2 with φ(u) = u log u, we therefore

obtain

n ≥
(1− δ)d log k

6d − log 16
4h log 1+h

1−h
. (26)

Next, consider the auxiliary measure Q1−η with η = 1+h
2 . Then

Dre(P‖Q1−η) (a)=
1
N

N∑
M=1

k∑
x=1

Dre(PmY |X(·|x)‖Q1−η
Y |X(·|x))EQ1−η [N(x|Xn)]

(b)=
d(η‖1− η)

N

N∑
m=1

k∑
x=1

fm(x)EQ1−η [N(x|Xn)]

= d(η‖1− η)
k∑
x=1

(
1
N

N∑
m=1

fm(x)

)
EQ1−η [N(x|Xn)]

(c)= d(η‖1− η)
k∑
x=1

(
1
N

N∑
m=1

β(m)
x

)
EQ1−η [N(x|Xn)]

(d)
≤ 3

2τ(ε)
h log

1 + h

1− h
EQ1−η

[
k∑
x=1

N(x|Xn)

]
(e)
≤ 3n

2τ(ε)
h log

1 + h

1− h
,

where (a) is by Lemma 3, (b) is by (23), (c) is by definition of {fm}, (d) is by the balance condi-
tion (19) satisfied byMk,d, and (e) is by the fact that

∑k
x=1N(x|Xn) ≤

∑
x∈X N(x|Xn) = n.

Applying Lemma 2 with φ(u) = − log u, we get

n ≥
τ(ε)

(
log 1

δ − log 4
)

3h log 1+h
1−h

(27)

Combining (26) and (27) and using the bound h log 1+h
1−h ≤ Kh

2 for h ∈ (0, 1−K−1], we get (7).
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Supplementary Material: Proofs of Lemmas 1 and 3

Proof of Lemma 1. If M = m but M̂ 6= m, then

‖f̂n − fm‖L1(Π) ≥ ‖fm − fcM‖L1(Π) − ‖f̂n − fcM‖L1(Π) ≥ 2ε− ‖f̂n − fcM‖L1(Π). (28)

Thus, if ‖f̂n − fm‖L1(Π) < ε, then it must be the case that ‖f̂n − fcM‖L1(Π) < ε, which, in view of
(28), is a contradiction. Hence,

PS,π(M̂ 6= M) ≤ PS,π
(
f̂n 6∈ Fε(fM )

)
≤ δ,

and the lemma is proved.

Proof of Lemma 3. We only prove (16), since the proof of (17) is similar. First note that

PS,m(xn, yn)
QS(xn, yn)

=
n∏
t=1

PmY |X(yt|xt)
QY |X(yt|xt)

=
∏
x∈X

∏
t:xt=x

PmY |X(yt|x)

QY |X(yt|x)
.

Then

D(P‖Q) =
1
N

N∑
m=1

∑
xn,yn

PS,m(xn, yn) log
PS,m(xn, yn)
QS(xn, yn)

=
1
N

N∑
m=1

∑
x∈X

EPS,m

[ ∑
t:Xt=x

log
PmY |X(Yt|x)

QY |X(Yt|x)

]

=
1
N

N∑
m=1

∑
x∈X

D(PmY |X(·|x)‖QY |X(·|x))EPS,m [N(x|Xn)] ,

which gives (16). Eq. (18) follows from the fact that, for a passive strategy, the expectation of
N(x|Xn) is equal to nΠ(x) under both PS,m and QS. The same proof holds with Dre replaced by
D.

Proof of Lemma 4. The proof is via the probabilistic method. Specifically, we shall show that if we
select N binary strings from {0, 1}kd uniformly at random, then the resulting set will have all three
desired properties with probability strictly greater than 0.

For a fixed β ∈ {0, 1}kd , let Uβ ,
{
β′ ∈ {0, 1}kd : dH(β, β′) ≤ d

}
. Then for any β′ ∈ Uβ

|{i ∈ [k] : βi = β′i = 1}| ≥ d
2 . Hence,

|Uβ | ≤
(
d

d/2

)(
k − d/2
d/2

)
≤
(
d

d/2

)(
k

d/2

)
≤ 2d

(
k

d/2

)
,

where we have used the fact that
(
d
`

)
≤ 2d for any ` ≤ d. From this we see that if we draw an

element of {0, 1}kd uniformly at random, then it will be in |Uβ | with probability

p =
|Uβ |∣∣{0, 1}kd∣∣ ≤

2d
(
k
d/2

)(
k
d

) .

Thus, if we select N elements of {0, 1}kd uniformly at random, then the probability that the jth
element will be d-close in the Hamming distance to any of the j− 1 already selected ones is at most
(j − 1)p, and the probability that any two elements are d-close is at most (N2/2)p. Hence, with the
choice N = b(3k/16d)d/4c ≥ (k/6d)d/4 we have

N2p

2
≤ 1

2

(
3k
16d

)d/2 2d
(
k
d/2

)(
k
d

) ≤ 1
2
,

where we have used the fact that
(
k
d

)
/
(
k
d/2

)
≥
(
k
d −

1
2

)k/2
, as well as the fact that 3k

4d ≤
k
d −

1
2 for

d ≤ k/2. Hence, with probability at least 1/2, all the N elements will be strictly d-separated.



We now show that the randomly selected set of N elements of {0, 1}kd will also be “well-balanced”
in the sense of (19) with probability strictly larger than 1/2. To that end, let us fix j ∈ [k] and
let Z1, . . . , ZN be the {0, 1}-valued random variables, corresponding to the jth coordinates of the
randomly chosen elements. Observe that EZi = d/k. Then Bernstein’s inequality gives

Pr

(∣∣∣∣∣ 1
N

N∑
i=1

Zi −
d

k

∣∣∣∣∣ > d

2k

)
≤ 2 exp

(
− N(d/2k)2

2(d/k)(1− d/k) + 2(1− d/k)(d/(2k))/3

)
= 2 exp

(
−Nd

12k

)
This, together with the union bound, shows that the probability of (19) being violated is at most
2k exp

(
−Nd

12k

)
, which will be strictly less than 1/2 for sufficiently large d. Hence, the probability

that a set ofN elements of {0, 1}kd drawn uniformly at random will fail to satisfy either the separation
condition (ii) or the balance condition (iii) is strictly less than 1. This completes the proof.


