
Competing in the Dark: An Efficient Algorithm for Bandit Linear Optimization

Jacob Abernethy
Computer Science Division

UC Berkeley
jake@cs.berkeley.edu

Elad Hazan
IBM Almaden

hazan@us.ibm.com

Alexander Rakhlin
Computer Science Division

UC Berkeley
rakhlin@cs.berkeley.edu

Abstract

We introduce an efficient algorithm for the prob-
lem of online linear optimization in the bandit set-
ting which achieves the optimal O∗(

√
T) regret.

The setting is a natural generalization of the non-
stochastic multi-armed bandit problem, and the ex-
istence of an efficient optimal algorithm has been
posed as an open problem in a number of recent
papers. We show how the difficulties encountered
by previous approaches are overcome by the use of
a self-concordant potential function. Our approach
presents a novel connection between online learn-
ing and interior point methods.

1 Introduction
One’s ability to learn and make decisions rests heavily on the
availability of feedback. Indeed, an agent may only improve
itself when it can reflect on the outcomes of its own taken
actions. In many environments feedback is readily available:
a gambler, for example, can observe entirely the outcome of
a horse race regardless of where he placed his bet. But such
perspective is not always available in hindsight. When the
same gambler chooses his route to travel to the race track,
perhaps at a busy hour, he will likely never learn the outcome
of possible alternatives. When betting on horses, the gambler
has thus the benefit (or perhaps the detriment) to muse “I
should have done...”, yet when betting on traffic he can only
think “the result was...”.

This problem of sequential decision making was stated
by Robbins [18] in 1952 and was later termed “the multi-
armed bandit problem”. The name inherits from the model
whereby, on each of a sequence of rounds, a gambler must
pull the arm on one of several slot machines (“one-armed
bandits”) that each returns a reward chosen stochastically
from a fixed distribution. Of course, an ideal strategy would
simply be to pull the arm of the machine with the greatest re-
wards. However, as the gambler does not know the best arm
a priori, his goal is then to maximize the reward of his strat-
egy relative to reward he would receive had he known the
optimal arm. This problem has gained much interest over
the past 20 years in a number of fields, as it presents a very
natural model of an agent seeking to simultaneously explore
the world while exploiting high-reward actions.

As early as 1990 [8, 13] the sequential decision problem
was studied under adversarial assumptions, where we as-
sume the environment may even try to hurt the learner. The
multi-armed bandit problem was brought into the adversar-
ial learning model in 2002 by Auer et al [1], who showed
that one may obtain nontrivial guarantees on the gambler’s
performance relative to the best arm even when the arm val-
ues are chosen by an adversary! In particular, Auer et al [1]
showed that the gambler’s regret, i.e. the difference between
the gain of the best arm minus the gain of the gambler, can
be bounded by O(

√
NT) where N is the number of bandit

arms, and T is the length of the game. In comparison, for the
game where the gambler is given full information about al-
ternative arms (such as the horse racing example mentioned
above), it is possible to obtain O(

√
T log N), which scales

better in N but identically in T .
One natural and well studied problem, which escapes the

Auer et al result, is that of “online shortest path”, considered
in [11, 20] among others. In this problem the decision set is
exponentially large (i.e., the set of all paths in a given graph),
and the straightforward reduction of modeling each path as
an arm for the multi-armed bandit problem suffers from both
efficiency issues as well as regret exponential in the descrip-
tion length of the graph. To cope with these issues, several
authors [2, 9, 14] have recently proposed a very natural gen-
eralization of the multi-armed bandit problem to the field of
Convex Optimization, and we will call this “bandit linear op-
timization”. In this setting we imagine that, on each round
t, an adversary chooses some linear function ft(·) which is
not revealed to the player. The player then chooses a point xt

within some given convex set1 K ⊂ Rn. The player then suf-
fers ft(xt) and this quantity is revealed to him. This process
continues for T rounds, and at the end the learner’s payoff is
his regret:

RT =
T∑

t=1

ft(xt)− min
x∗∈K

T∑
t=1

ft(x∗).

Online linear optimization has been often considered, yet
primarily in the full-information setting where the learner
sees all of ft(·) rather than just ft(xt). In the full-information
model, it has been known for some time that the optimal re-
gret bound is O(

√
T), and it had been conjectured that the

1In the case of online shortest path, the convex set can be rep-
resented as a set of vectors in R|E|. Hence, the dependence on
number of paths in the graph can be circumvented.

same should hold for the bandit setting as well. Neverthe-
less, several initially proposed algorithms were shown only
to obtain bounds with O(T 3/4) (e.g. [14, 9]) or O(T 2/3)
(e.g. [2, 7]). Only recently was this conjecture proven to
be true by Dani et al. [6], who provided an algorithm with
O(poly(n)

√
T) regret. However, their proposed method,

which deploys a clever reduction to the multi-armed bandit
algorithm of Auer et al [1], is not efficient.

We propose an algorithm for online linear bandit opti-
mization that is the first, we believe, to be both computa-
tionally efficient and achieve a O(poly(n)

√
T) regret bound.

Moreover, with a thorough analysis we aim to shed light on
the difficulties in obtaining such an algorithm. Our technique
provides a curious link between the notion of Bregman diver-
gences, which have often been used for constructing and an-
alyzing online learning algorithms, and self-concordant bar-
riers, which are of great importance in the study of interior
point methods in convex optimization. A rather surprising
consequence is that divergence functions, which are widely
used as a regularization tool in online learning, provide the
right perspective for the problem of managing uncertainty
given limited feedback. To our knowledge, this is the first
time such connections have been made.

2 Notation and Motivation
LetK ⊂ Rn be a compact closed convex set. For two vectors
x,y ∈ Rn, we denote their dot product as xTy. We write
A � B if (A−B) is positive semi-definite. Let

DR(x,y) := R(x)−R(y)−∇R(y)T(x − y)

be the Bregman divergence between x and y with respect to
a convex differentiableR.

Define the Minkowsky function (see page 34 of [16] for
details) on K, parametrized by a pole yt as

πyt(xt) = inf{t ≥ 0 : yt + t−1(xt − yt) ∈ K}.

We define a scaled version of K by

Kδ = {u : πx1(u) ≤ (1 + δ)−1}

for δ > 0. Here x1 is a “center” ofK defined in the later sec-
tions. We assume that K is not “flat” and so x1 is a constant
distance away from the boundary.

In the rest of the section we describe the rich body of
previous work which led to our result. The reader familiar
with online optimization in the full and partial information
settings can skip directly to the next section.

The online linear optimization problem is defined as the
following repeated game between the learner (player) and
the environment (adversary).

At each time step t = 1 to T ,
• Player chooses xt ∈ K
• Adversary independently chooses ft ∈ Rn

• Player suffers loss f T
t xt and observes feedback =

The goal of the Player is not simply to minimize his to-
tal loss

∑T
t=1 f T

t xt, for an adversary could simply choose ft

to be as large as possible at every point in K. Rather, the
Player’s goal is to minimize his regret RT defined as

RT :=
T∑

t=1

f T

t xt − min
x∗∈K

T∑
t=1

f T

t x
∗.

When the objective is his regret, the Player is not compet-
ing against arbitrary strategies, he need only perform well
relative to the total loss of the single best fixed point in K.

We distinguish the full-information and bandit versions
of the above problem. The full-information version, the Player
may observe the entire function ft as his feedback = and can
exploit this in making his decisions. In this paper we study
the more challenging bandit setting, where the feedback =
provided to the player on round t is only the scalar value
f T
t xt. This is significantly less information for the Player:

instead of observing the entire function ft, he may only wit-
ness the value of ft at a single point.

2.1 Algorithms Based on Full Information
All previous work on bandit online learning, including the
present one, relies heavily on techniques developed in the
full-information setting and we now give a brief overview of
some well-known approaches.

Follow The Leader (FTL) is perhaps the simplest online
learning strategy one might think of: the player simply uses
the heuristic “select the best choice thus far”. For the online
optimization task we study, this can be written as

xt+1 := arg min
x∈K

t∑
s=1

f T

sx. (1)

For certain types of problems, applying FTL does guaran-
tee low regret. Unfortunately, when the loss functions ft are
linear on the input space it can be shown that FTL will suf-
fer regret that grows linearly in T . A natural approach2, and
more well-known within statistical learning, is to regularize
the optimization problem (1). That is, an appropriate reg-
ularization function R(x) and a trade-off parameter λ are
selected, and the prediction is obtained as

xt+1 := arg min
x∈K

[
t∑

s=1

f T

sx + λR(x)

]
. (2)

We call the above approach Follow The Regularized Leader
(FTRL). An alternative way to view this exact algorithm is
by sequential updates, which capture the difference between
consecutive solutions for FTRL. Given thatR is convex and
differentiable, the general form of this update is

x̄t+1 = ∇R∗(∇R(x̄t)− ηft), (3)

followed by a projection onto K with respect to the diver-
gence DR:

xt+1 = arg min
u∈K

DR(u, x̄t+1).

Here R∗ is the Fenchel dual function and η is a parameter.
This procedure is known as the mirror descent (e.g. [5]).

2In the context of classification, this approach has been formu-
lated and analyzed by Shalev-Shwartz and Singer [19].

Applying the above rule we see that the well known On-
line Gradient Descent algorithm [21, 10] is derived3 by choos-
ing the regularizer to be the squared Euclidean norm. Simi-
larly, the Exponentiated Gradient [12] algorithm is obtained
with the entropy function as the regularizer.

This unified view of various well-known algorithms as
solutions to regularization problems gives us an important
degree of freedom of choosing the regularizer. Indeed, we
will choose a regularizer for our problem that possesses key
properties needed for the regret to scale as O(

√
T). In Sec-

tion 4, we give a bound on the regret for (2) with any regular-
izer R and in Section 5 we will discuss the specific R used
in this paper.

2.2 The Dilemma of Bandit Optimization
Effectively all previous algorithms for the Bandit setting have
utilized a reduction to the full-information setting in one way
or another. This is reasonable: any algorithm that aimed
for low-regret in the bandit setting would necessarily have
to achieve low regret given full information. Furthermore,
as the full-information online learning setting is relatively
well-understood, it is natural to exploit such techniques for
this more challenging problem.

The crucial reduction that has been utilized by several au-
thors [1, 2, 6, 7, 14] is the following. First choose some full-
information online learning algorithm A. A will receive in-
put vectors f1, . . . , ft, corresponding to previously observed
functions, and will return some point xt+1 ∈ K to predict.
On every round t, do one or both of the following:

• Query A for its prediction xt and either predict xt ex-
actly or in expectation.

• Construct some random estimate f̃t in such a way that
Ef̃t = ft, and input f̃t into A as though it had been
observed on this round

The key idea here is simple: so long as we are roughly pre-
dicting xt per advice of A, and so long as we are “guess-
ing” ft (i.e. so that the estimates f̃t is correct in expectation),
then we can guarantee low regret. This approach is validated
in Lemma 3 which shows that, as long as A performs well
against the random estimates f̃t in expectation, then we will
also do well against the true functions f1, . . . , fT .

This observation is quite reassuring yet unfortunately does
not address a significant obstacle: how can we simultane-
ously estimate f̃t and predict xt when only one query is al-
lowed? The algorithm faces an inherent dilemma: whether to
follow the advice of A of predicting xt, or to try to estimate
ft by sampling in a wide region around K, possibly hurt-
ing its performance on the given round. This exploration-
exploitation trade-off is the primary source of difficulty in
obtaining O(

√
T) guarantees on the regret.

Roughly two categories of approaches have been sug-
gested to perform both exploration and exploitation:

1. Alternating Explore/Exploit: Flip an ε-biased coin to
determine whether to explore or exploit. On explore

3Strictly speaking, this equivalence is true if the updates are ap-
plied to unprojected versions of xt.

rounds, sample uniformly on some wide region around
K and estimate ft accordingly, and input this intoA. On
exploit rounds, query A for xt and predict this.

2. Simultaneous Explore/Exploit: Query A for xt and
construct a random vector Xt such that EXt = xt.
Construct f̃t randomly based on the outcome of Xt and
the learned value f T

t Xt.

The methods of [14, 2, 7] fit within in the first category but,
unfortunately, fail to obtain the desired O(poly(n)

√
T) re-

gret. This is not surprising: it has been suggested by [7] that
Ω(T 2/3) regret is unavoidable by any algorithm in which the
observation f T

t xt is ignored on rounds pledged for exploita-
tion. Algorithms falling into the second category, such as
those of [1, 6, 9], are more sophisticated and help to moti-
vate our results. We review these methods below.

2.3 Methods For Simultaneous Exploration and
Exploition

On first glance, it is rather surprising that one can perform
the task of predicting some xt (in expectation) while, simul-
taneously, finding an unbiased estimate of ft. To get a feel
for how this can be done, we briefly review the methods of
[1] and [9] below.

The work of Auer et al [1] is not, strictly speaking, con-
cerned with a general bandit optimization problem but in-
stead the more simple “Multi-armed bandit” problem. The
authors consider the problem of sequentially choosing one
of N “arms” each of which contains a hidden loss where the
learner may only see the loss of his chosen arm. The regret,
in this case, is the learner’s loss minus the smallest cumula-
tive loss over all arms. This multi-armed bandit problem can
indeed be cast as a bandit optimization problem: letK be the
N -simplex (convex hull of {e1, . . . , eN}), let ft be identi-
cally the vector of hidden losses on the set of arms, and note
that minx∈K

∑
f T
sx = mini

∑
fs[i].

The algorithm of [1], EXP3, utilizes EG (mentioned ear-
lier) as its black box full-information algorithm A. First, a
point xt ∈ K is returned by A. The hypothesis xt is then
biased slightly:

xt ← (1− γ)xt + γ

〈
1
n

, . . . ,
1
n

〉
.

We describe the need for this bias in Section 2.4. EXP3 then
randomly chooses one of the corners of K according to the
distribution xt and uses this as its prediction. More precisely,
a basis vector ei is sampled with probability xt[i] and clearly
EI∼xteI = xt. Once we observe f T

t ei = ft[i], the estimate
is constructed as follows:

f̃t :=
(

ft[i]
xt[i]

)
ei.

It is very easy to check that Ef̃t = ft.
Flaxman et al [9] developed a bandit optimization algo-

rithm that used OGD as the full-information subroutine A.
Their approach uses a quite different method of performing
exploration and exploitation. On each round, the algorithm
queries A for a hypothesis xt and, as in [1], this hypothesis
is biased slightly:

xt ← (1− γ)xt + γu

where u is some “center” vector of the set K. Similarly to
EXP3, the algorithm doesn’t actually predict xt. The al-
gorithm determines the distance r to the boundary of the
set, and a vector rv is sampled uniformly at random from
a sphere of radius r. The prediction is yt := xt + rv and
indeed Eyt = xt +rEv = xt as desired. The algorithm pre-
dicts yt, receives feedback f T

t yt, and function ft is estimated
as

f̃t :=
f T
t yt

r
v.

It is, again, easy to check that this provides an unbiased esti-
mate of ft.

2.4 The Curse of High Variance and the Blessing of
Regularization

Upon inspecting the definitions of f̃t in the method of Auer
et al and Flaxman et al it becomes apparent that the estimates
are inversely proportional to the distance of xt to the bound-
ary. This implies high variance of the estimated functions.
At first glance, this seems to be a disaster. Indeed, most full-
information algorithms scale linearly with the magnitude of
the functions played by the environment. Let us take a closer
look at how exactly this leads to the suboptimality of the al-
gorithm of Flaxman et al.

The bound on the expected regret of OGD on f̃t’s in-
volves terms E‖f̃t‖2 (see proof of Lemma 2), which scale as
the inverse of the squared distance to the boundary. Biasing
of xt away from the boundary leads to an upper bound on this
quantity of the order γ−2. Unfortunately, γ cannot be taken
to be large. Indeed, the optimal point x∗, chosen in hind-
sight, lies on the boundary of the set, as the cost functions
are linear. Thus, stepping away from the boundary comes
at a cost of potentially losing O(γT) over the course of the
game. Since the goal is to obtain an O(

√
T) bound on the

regret, γ = O(T−1/2) is the most that can be tolerated. Bi-
asing away from the boundary does reduce the variance of
the estimates somewhat; unfortunately, it is not the panacea.
To terminate the discussion on the method of Flaxman et al,
we state the dependence of the regret bound on the learning
rate η and the biasing parameter γ:

RT = O(η−1 + γ−2ηT + γT).

The first term is due to the distance between the initial choice
and the comparator; the second is the problematic E‖f̃t‖2
term summed over time; and the last term is due to stepping
away from the boundary. The best choice of the parameters
leads to the unsatisfying O(T 3/4) bound.

From the above discussion it is clear that the problematic
term is E‖f̃t‖2 = O(1/r2), owing its high magnitude to its
inverse dependence on the squared distance to the boundary.
A similar dependence occurs in the estimate of Auer et al,
though the non-uniform sampling from the basis implies an
O(1/xt[i]) magnitude. One can ask whether this inverse de-
pendence on the distance is an artifact of these algorithms
and can be avoided. In fact, it is possible to prove that this is
intrinsic to the problem if we require that f̃t be unbiased and
xt be the center of the sampling distribution.

Does this result imply that no O(
√

T) bound on the re-
gret is possible? Fortunately, no. If we restrict our search

to a regularization algorithm of the type (2), the expected
regret can be proved to be equal to an expression involving
EDR(xt,xt+1) terms. ForR(x) ∝ ‖x‖2 we indeed recover
(modulo projections) the method of Flaxman et al with its in-
surmountable hurdle of E‖f̃t‖2. Fortunately, other choices of
R have better behavior. Here, the formulation of the regular-
ized minimization (2) as a dual-space mirror descent comes
to the rescue.

In the space of gradients (the dual space), the step-wise
updates (3) for Follow The Regularized Leader are ηf̃t no
matter what R we choose. It is a known fact (e.g. [5]) that
the divergence in the original space between xt and xt+1 is
equal to the divergence between the corresponding gradients
with respect to the dual potential R∗. It is, therefore, not
surprising that the dual divergence can be tuned to be small
even if ‖f̃t‖ is very large. Having small divergence corre-
sponds to the requirement thatR∗ be “flat” whenever ‖f̃t‖ is
large, i.e. when xt is close to the boundary. Flatness in the
dual space corresponds to large curvature in the primal. This
motivates the use of a potential function R which becomes
more and more curved at the boundary of the setK. In a nut-
shell, this is the Blessing of Regularization which allows us
to obtain an efficient optimal algorithm which was escaping
all previous attempts.

Recall that the method of Auer et al attains the optimal
O(
√

T) rate but only when K is the simplex. If our intu-
ition about the importance of regularization is sound, we
should find that the method uses a potential which curves
at the edges of the simplex. One can see that the exponen-
tial weights (more generally, EG) used by Auer et al corre-
sponds to regularization with R being the entropy function
R(x) =

∑n
i=1 x[i] log x[i]. Taking the second derivative,

we see that, indeed, the curvature increases as 1/x[i] as x
gets closer to the boundary. For the present paper, we will
actually choose a regularizer that curves as inverse squared
distance to the boundary. The reader can probably guess that
such a regularizer should be defined, roughly, as the log-
distance to the boundary.

While for simple convex bodies, such as sphere, exis-
tence of a function behaving like log-distance to the bound-
ary seems plausible, a similar statement for general convex
sets K seems very complex. Luckily, this very question has
been studied in the theory of Interior Point Methods, and ex-
istence and construction of such functions, called self- con-
cordant barriers, is well-established.

3 Main Result
We first state our main result: an algorithm for online linear
optimization in the bandit setting for an arbitrary compact
convex setK. The analysis of this algorithm has a number of
facets and we discuss these individually throughout the re-
mainder of this paper. In Section 4 we describe the regular-
ization framework in detail and show how the regret can be
computed in terms of Bregman divergences. In Section 5 we
review the theory of self-concordant functions and state two
important properties of such functions. In Section 6 we high-
light several key elements of the proof of our regret bound.
In Section 7 we show how this algorithm can be used for
one interesting case, namely the bandit version of the Online

Algorithm 1 Bandit Online Linear Optimization
1: Input: η > 0, ϑ-self-concordantR
2: Let x1 = arg minx∈K [R(x)].
3: for t = 1 to T do
4: Let {e1, . . . , en} and {λ1, . . . , λn} be the set of

eigenvectors and eigenvalues of ∇2R(xt).
5: Choose it uniformly at random from {1, . . . , n} and

εt = ±1 with probability 1/2.
6: Predict yt = xt + εtλ

−1/2
it

eit
.

7: Observe the gain f T
t yt ∈ R.

8: Define f̃t := n (f T
t yt) εtλ

1/2
it
· eit

.
9: Update

xt+1 = arg min
x∈K

[
η

t∑
s=1

f̃ T

sx +R(x)

]
.

10: end for

Shortest Path problem. The precise analysis of our algorithm
is given in Section 8. Finally, in Section 9 we spell out how
to implement the algorithm with only one iteration of the
Damped Newton method per time step.

The following theorem is the main result of this paper
(see Section 5 for the definition of ϑ-self-concordant barrier).

Theorem 1 LetK be a convex set andR be a ϑ-self-concordant
barrier on K. Let u be any vector in K′ = K1/

√
T . Suppose

we have the property that |f T
t x| ≤ 1 for any x ∈ K. Setting

η =
√

ϑ log T

4n
√

T
, the regret of Algorithm 1 is bounded as

E
T∑

t=1

f T

t yt ≤ min
u∈K′

E

(
T∑

t=1

f T

t u

)
+ 16n

√
ϑT log T

whenever T > 8ϑ log T .

The expected regret over the original set K is within an
additive O(

√
nT) factor from the above guarantee, as im-

plied by Lemma 8 in the Appendix.

4 Regularization Algorithms and Bregman
Divergences

As our algorithm is clearly based on a regularization frame-
work, we now state a general result for the performance of
any algorithm minimizing the regularized empirical loss. We
call this method Follow the Regularized Leader, and we de-
fer the proof of the regret bound to the Appendix. A similar
analysis for convex loss functions can be found in [5], Chap-
ter 11. We remark that the use of Bregman divergences in
the context of online learning goes back at least to Kivinen
and Warmuth [12].

Let f̃1, . . . , f̃T ∈ Rn be any sequence of vectors. Sup-
pose xt+1 is obtained as

xt+1 = arg min
x∈K

[
η

t∑
s=1

f̃ T

sx +R(x)

]
︸ ︷︷ ︸

Φt(x)

(4)

for some strictly-convex differentiable function R. We de-
note Φ0(x) = R(x) and Φt = Φt−1 + ηf̃t.

We will assume ∇R approaches infinity at the boundary
of K so that the unconstrained minimization problem will
have a unique solution within K. We have the following
bound on the performance of such an algorithm.

Lemma 2 For any u ∈ K, the algorithm defined by (4) en-
joys the following regret guarantee

η

T∑
t=1

f̃ T

t (xt − u) ≤ DR(u,x1) +
T∑

t=1

DR(xt,xt+1)

≤ DR(u,x1) + η

T∑
t=1

f̃ T

t (xt − xt+1)

for any sequence {f̃t}Tt=1.

In addition, we state a useful result that bounds the true
regret based on the regret against the estimated functions f̃t.

Lemma 3 Suppose that, for t = 1, . . . , T , f̃t is such that
E f̃t = ft and yt is such that Eyt = xt. Suppose that we
have the following regret bound:

T∑
t=1

f̃ T

t xt ≤ min
u∈K′

T∑
t=1

f̃ T

t u + CT .

Then the expected regret satisfies

E

(
T∑

t=1

f T

t yt

)
≤ min

u∈K′
E

(
T∑

t=1

f T

t u

)
+ CT .

5 Self-concordant Functions and the Dikin
ellipsoid

Interior-point methods are arguably one of the greatest achieve-
ments in the field of Convex Optimization in the past two
decades. These iterative polynomial-time algorithms for Con-
vex Optimization find the solution by adding a barrier func-
tion to the objective and solving the unconstrained minimiza-
tion problem. The rough idea is to gradually reduce the
weight of the barrier function as one approaches the solu-
tion. The construction of barrier functions for general convex
sets has been studied extensively, and we refer the reader to
[16, 4] for a thorough treatment on the subject. To be more
precise, most of the results of this section can be found in
[15], page 22-23, as well as in the aforementioned texts.

5.1 Definitions and Properties
Definition 4 A self-concordant functionR : int K → R is a
C3 convex function such that

|D3R(x)[h,h,h]| ≤ 2
(
D2R(x)[h,h]

)3/2
.

Here, the third-order differential is defined as

D3R(x)[h1,h2,h3] :=

∂3

∂t1∂t2∂t3
|t1=t2=t3=0R(x + t1h1 + t2h2 + t3h3).

We will further assume that the function approaches infin-
ity for any sequence of points approaching the boundary of
K. An additional requirement leads to the notion of a self-
concordant barrier.

Definition 5 A ϑ-self-concordant barrierR is a self-concordant
function with

|DR(x)[h]| ≤ ϑ1/2
[
D2R(x)[h,h]

]1/2
.

The generality of interior-point methods comes from the fact
that any arbitrary n-dimensional closed convex set admits an
O(n)-self-concordant barrier [16]. Hence, throughout this
paper, ϑ = O(n), but can even be independent of the dimen-
sion, as for the sphere.

We note that some of the results of this paper, such as the
Dikin ellipsoid, rely on R being a self-concordant function,
while others necessarily require the barrier property. We
therefore assume from the outset that R is a self-concordant
barrier.

SinceK is compact, we can assume thatR is non-degenerate.
For a given x ∈ K, define

〈g,h〉x = gT∇2R(x)h and ‖h‖x = (〈h,h〉x)−1/2.

This inner product defines the local Euclidean structure at x.
Nondegeneracy of R implies that the above norm is indeed
a norm, not a seminorm.

It is natural to talk about a ball with respect to the above
norm. Define the open Dikin ellipsoid of radius r centered at
x as the set

Wr(x) = {y ∈ K : ‖y − x‖x < r}.
The following facts about the Dikin ellipsoid are central to
the results of this paper (we refer to [15], page 23 for proofs).
The first non-trivial fact is that W1(x) ⊆ K for any x ∈ K.
In other words, the inverse Hessian of the self-concordant
function R stretches the space in such a way that the eigen-
vectors fall in the setK. This is crucial for our sampling pro-
cedure. Indeed, our method (Algorithm 1) samples yt from
the Dikin ellipsoid centered at xt. Since W1(xt) is contained
in K, the sampling procedure is legal.

The second fact is that within the Dikin ellipsoid, that is
for ‖h‖x < 1, the Hessians of R are “almost proportional”
to the Hessian ofR at the center of the ellipsoid :

(1− ‖h‖x)2∇2R(x) � ∇2R(x + h) (5)

� (1− ‖h‖x)−2∇2R(x).
This gives us the crucial control of the Hessians for second-
order approximations. Finally, if ‖h‖x < 1 (i.e. x + h is in
the unit Dikin ellipsoid), then for any z,

|zT(∇R(x + h)−∇R(x))| ≤ ‖h‖x
1− ‖h‖x

‖z‖x. (6)

Assuming that R is a ϑ-self-concordant barrier, we have
(see page 34 of [16])

R(u)−R(x1) ≤ ϑ ln
1

1− πx1(u)
.

For any u ∈ Kδ , πx1(u) ≤ (1+δ)−1 by definition, implying
that (1− πx1(u))−1 ≤ 1+δ

δ . We conclude that

R(u)−R(x1) ≤ ϑ ln(
√

T + 1) ≤ 2ϑ log T (7)
for u ∈ K1/

√
T .

5.2 Examples of Self-Concordant Functions
A nice fact about self-concordant barriers is that R1 + R2

is ϑ1 + ϑ2-self-concordant for ϑ1-self-concordant R1 and
ϑ2-self-concordant R2. For linear constraints aTxt ≤ b, the
barrier − ln(b − aTxt) is 1-self-concordant. Hence, for a
polyhedron defined by m constraints, the corresponding bar-
rier is m-self-concordant. Thus, for the n-dimensional sim-
plex or a cube, θ = n, leading to n3/2 dependence on the
dimension in the main result.

For the n-dimensional ball,

Bn = {x ∈ Rn ,
∑

i

x2
i ≤ 1},

the barrier functionR(x) = − log(1−‖x‖2) is 1-self-concordant.
This, somewhat surprisingly, leads to the linear dependence
of the regret bound on the dimension n, as ϑ = 1.

6 Sketch of Proof
We have now presented all necessary tools to prove Theo-
rem 1: regret in terms of Bregman divergences, self-concordant
barriers and the Dikin ellipsoid. While we provide a com-
plete proof in Section 8 here we sketch the key elements of
the analysis of our algorithm.

As we tried to motivate in the end of Section 2, any
method that can simultaneously (a) predict xt in expecta-
tion and (b) obtain an unbiased one-sample estimate of f̃t
will necessarily suffer from high variance when xt is close
to the boundary of the set K. As we have hinted previously,
we would like our regularizer R to control the variance. Yet
the problem is even more subtle than this: xt may be close
to the boundary in one dimension while have plenty of space
in another, which in turn suggests that f̃t need only have high
variance in certain directions.

Quite amazingly, the self-concordant function R gives
us a handle on two key issues. The Dikin ellipsoid, de-
fined in terms ∇2R(xt), gives us exactly a rough approxi-
mation to the available “space” around xt. At the same time,
∇2R(xt)−1 annihilates f̃t in exactly the directions in which
it is large. This is absolutely necessary for bounding the re-
gret, as we discuss next.

Lemma 2 implies that regret scales with the cumulative
divergence η−1

∑
t DR(xt,xt+1) and thus we must have

that E DR(xt,xt+1) = O(η2) on average to obtain a regret
bound of O(

√
T). Analyzing the divergence requires some

care and so we provide only a rough sketch here (with more
in Section 8). If R were exactly quadratic then the diver-
gence is

DR(xt,xt+1) := η2f̃ T

t (∇2R(xt))−1f̃t. (8)

Even when R is not quadratic, however, (8) still provides
a decent approximation to the divergence and, given cer-
tain regularity conditions on R, it is enough to bound the
quadratic form f̃ T

t (∇2R(xt))−1f̃t.
The precise interaction between the Dikin ellipsoid, the

estimates f̃t, and the divergence DR(xt,xt+1) is as follows.
Assume we are at the point xt and we have computed the
unit eigenvectors e1, . . . , en and corresponding eigenvalues
λ1, . . . , λn of∇2R(xt). Properties of self-concordant func-
tions ensure that the Dikin ellipsoid around xt is contained

withinK and thus, in particular, so are the points xt±λ
−1/2
i ei

for each i. Assuming the point yt := xt+λ
−1/2
j ej was sam-

pled and we received the value f T
t yt, we then construct the

estimate
f̃t := n

√
λj(f T

t yt)ej .

Notice it is crucial that we scale by
√

λj , the inverse `2 dis-
tance between xt and yt, to ensure that ft is unbiased.On
the other hand, we see that the divergence is approximately
computed as

DR(xt,xt+1) ≈ η2f̃ T

t∇2R−1f̃t
= η2n2(f T

t yt)2λj(eT

j∇2R−1ej)

= η2n2(f T

t yt)2.

As an interesting and important aside, a necessary re-
quirement of the above analysis is that we construct our es-
timates f̃t from the eigendirections ej . To see this, imagine
that one eigenvalue λ1 is very large, while another, λ2 small.
This corresponds to a thin and long Dikin ellipsoid, which
would occur near a flat boundary. Suppose that instead of
eigen-directions, we sample at an angle between them. With
the thin ellipsoid the sampled points are still close in `2 dis-
tance, implying that f̃t will be large in both eigen-directions.
However, the inverse Hessian will only annihilate one of
these directions.

7 Application to the online shortest path
problem

Because of its appealing structure, the online shortest path
problem is one of the best studied problems in online opti-
mization. Takimoto and Warmuth [20], and later Kalai and
Vempala [11], gave efficient algorithms for the full informa-
tion setting. Awerbuch and Kleinberg [2] were the first to
give an efficient algorithm with O(T 2/3) regret in the partial
information (bandit) setting. The recent work of Dani et al
[6] implies a O(m3/2

√
T)-regret algorithm, where m = |E|

is the number of edges in the graph.
Turning to Algorithm 1, we notice that wheneverK is de-

fined by linear constraints, R is defined in a straightforward
way (see Section 5.2). As we show below, the online shortest
path is an optimization problem on such a set, and we obtain
an efficient O(m3/2

√
T)-regret algorithm.

Formally, the bandit shortest path problem is defined as
the following repeated game:

Given a directed graph G = (V,E) and a source-sink pair
s, t ∈ V , at each time step t = 1 to T ,

• Player chooses a path pt ∈ Ps,t, where Ps,t ⊆ {E}|V |
is the set of all s, t-paths in the graph

• Adversary independently chooses weights on the edges
of the graph ft ∈ Rm

• Player suffers and observes loss, which is the weighted
length of the chosen path

∑
e∈pt

ft(e)

The problem is transformed into an instance of bandit
linear optimization by associating each path with a vector
x ∈ {0, 1}|E|, where x(i) indicates the presence of the ith
edge. The loss is then defined through the dot product f Tx.

Define the set K as the convex hull of the set of paths.
It is well-known that this set is the set of flows in the graph
and can be defined using O(m) constraints: positivity con-
straints and conservation of in-flow and out-flow for every
vertex other than source/sink (which have unit out-flow and
in-flow, respectively).

Theorem 1 implies that Algorithm 1 attains O(m3/2
√

T)
regret for the bandit linear optimization problem over this
set K. However, an astute reader would notice that with this
definition of K, the algorithm produces a flow yt ∈ K, not
necessarily a path, at each round. The loss suffered by the
online player is f T

t yt and the game is specified differently
from the bandit shortest path.

However, it is easy to convert this flow algorithm into a
randomized online shortest path algorithm: according to the
standard flow decomposition theorem (see e.g. [17]), a given
flow in the graph can be decomposed into a distribution over
at most m+1 paths in polynomial time. Hence, given a flow
yt ∈ K, one can obtain an unbiased estimator for f T

t yt by
choosing a path according to the distribution of the decom-
position, and estimating f T

t yt by the length of this path. In
fact, we have the following general statement.

Proposition 1 Suppose that, having computed yt in step (1)
of Algorithm 1, we predict a random ȳt ∈ K such that Eȳt =
yt, and in step (1) observe f T

t ȳt . If we use this observed
value instead of f T

t yt in step (1), the expected regret of the
modified algorithm is the same as that of Algorithm 1.

The proposition implies that the modified algorithm at-
tains low regret for games defined over discrete sets of pos-
sible predictions for the player. This is achieved by working
with the convex hull of the discrete set while predicting in
the original set. In particular, the modification allows us to
predict a legal path while the algorithm works with the set of
flows.

The proof of Proposition 1 is straightforward: following
closely the proof of Theorem 1, we observe that the value
f T
t yt is used in only two places. The first is in Equation (9),

where it is upper-bounded by 1, and the second is in the proof
of the fact that f̃t is unbiased.

8 Proof of the regret bound

8.1 Unbiasedness

First, we show that Ef̃t = ft. Condition on the choice it and
average over the choice of εt:

Eεt f̃t =
1
2
n
(
ft · (xt + λ

−1/2
it

eit
)
)

λ
1/2
it
· eit

− 1
2
n
(
ft · (xt − λ

−1/2
it

eit)
)

λ
1/2
it
· eit

= n(f T

t eit
)eit

.

Hence,
Ef̃t = n

(
Eiteite

T

it

)
ft = ft.

Furthermore, Eyt = xt.

xt

xt+1

W1(xt)

Figure 1: The Dikin ellipsoid W1(xt) at xt. The next mini-
mum is guaranteed to lie in its scaled version W4nη(xt).

8.2 Closeness of the next minimum
We now use the properties of the Dikin ellipsoids mentioned
in the previous section.

Lemma 6 The next minimizer xt+1 is “close” to xt:

xt+1 ∈W4nη(xt).

Proof:
Recall that

xt+1 = arg min
x∈K

Φt(x) and xt = arg min
x∈K

Φt−1(x)

where Φt(x) = η
∑t

s=1 f̃ T
t x+R(x). Since∇Φt−1(xt) = 0,

we conclude that ∇Φt(xt) = ηf̃t.
Consider any point in z ∈ W 1

2
(xt). It can be written as

z = xt + αu for some vector u such that ‖u‖xt
= 1 and

α ∈ (− 1
2 , 1

2). Expanding,

Φt(z) = Φt(xt + αu)

= Φt(xt) + α∇Φt(xt)Tu + α2 1
2
uT∇2Φt(ξ)u

= Φt(xt) + αηf̃ T

t u + α2 1
2
uT∇2Φt(ξ)u

for some ξ on the path between xt and xt + αu.
Let us check where the optimum of the RHS is obtained.

Setting the derivative with respect to α to zero, we obtain

|α∗| = η|̃f T
t u|

uT∇2Φt(ξ)u
=

η|̃f T
t u|

uT∇2R(ξ)u
.

The fact that ξ is on the line xt to xt + αu implies that ‖ξ −
xt‖xt

≤ ‖αu‖xt
< 1

2 . Hence, by Eq (5),

∇2R(ξ) � (1− ‖ξ − xt‖xt)
2∇2R(xt) �

1
4
∇2R(xt).

Thus uT∇2R(ξ)u > 1
4‖u‖xt = 1

4 , and hence

α∗ < 4η|̃f T

t u|.

Recall that f̃t = n (ft · yt) εtλ
1/2
it
·eit

and so f̃ T
t u is max-

imized/minimized when u is a unit (with respect to ‖ · ‖xt
)

vector in the direction of eit
, i.e. u = ±λ

−1/2
it

eit
. We con-

clude that

|̃f T

t u| ≤ n |ft · yt| ≤ n (9)

and
|α∗| < 4nη <

1
2

by our choice of η and T . We conclude that the local op-
timum arg minz∈W 1

2
(xt) Φt(z) is strictly inside W4nη(xt),

and since Φt is convex, the global optimum is

xt+1 = arg min
z∈K

Φt(z) ∈W4nη(xt).

8.3 Proof of Theorem 1
We are now ready to prove the regret bound for Algorithm 1.
Since xt+1 ∈ W4nη(xt), we invoke Eq (6) at x = xt and
z = h = xt+1 − xt:

|hT(∇R(xt+1)−∇R(xt))| ≤
‖h‖2xt

1− ‖h‖xt

.

Observe that xt+1 ∈W4nη(xt) implies ‖h‖xt < 4nη.
The proof of Lemma 2 (Equation (12) in the Appendix)

reveals that

∇R(xt)−∇R(xt+1) = ηf̃t.

We have

f̃ T

t (xt − xt+1) = η−1hT(∇R(xt+1)−∇R(xt))

≤ η−1 ‖h‖2xt

1− ‖h‖xt

≤ 16n2η

1− 4nη

≤ 32n2η. (10)

By Lemma 2, for any u ∈ K1/
√

T

T∑
t=1

f̃ T

t (xt − u) ≤ η−1DR(u,x1) +
T∑

t=1

f̃ T

t (xt − xt+1)

≤ η−1DR(u,x1) + 32n2ηT

= η−1(R(u)−R(x1)) + 32n2ηT

≤ 1
η
(2ϑ log T) + 32n2ηT,

where the first equality follows since ∇R(x1) = 0, by the
choice of x1; the last inequality follows from Equation (7).
Balancing with η =

√
ϑ log T

4n
√

T
, we get

T∑
t=1

f̃ T

t (xt − u) ≤ 16n
√

ϑT log T .

for any u in the scaled set K′. Using Lemma 3, which we
prove below, we obtain the statement of Theorem 1.

8.4 Expected Regret

Note that it is not f̃ T
t xt that the algorithm should be incurring,

but rather f T
t yt. However, it is easy to see that these are equal

in expectation.

Proof:[Lemma 3] Let Et[·] = E[·|i1, . . . , it−1, ε1, . . . , εt−1]
denote the conditional expectation. Note that

Etf̃ T

t xt = f T

t xt = Etf T

t yt.

Taking expectations on both sides of the bound for f̃t’s,

E
T∑

t=1

f̃ T

t xt ≤ E min
u∈K′

T∑
t=1

f̃ T

t u + CT

≤ min
u∈K′

E

(
T∑

t=1

f̃ T

t u

)
+ CT

= min
u∈K′

E

(
T∑

t=1

f T

t u

)
+ CT .

In the case of an oblivious adversary,

min
u∈K′

E

(
T∑

t=1

f T

t u

)
= min

u∈K′

T∑
t=1

f T

t u.

However, if the adversary is not oblivious, ft depends on the
random choices at time steps 1, . . . , t − 1. Of course, it is
desirable to obtain a stronger bound on the regret

E

[
T∑

t=1

f T

t yt − min
u∈K′

T∑
t=1

f T

t u

]
= O(

√
T),

which allows the optimal u to depend on the randomness of
the player4. Obtaining guarantees for adaptive adversaries is
another dimension of the bandit optimization problem and is
beyond the scope of the present paper.

Auer et al [1] provide a clever modification of their EXP3
algorithm which leads to high-probability bounds on the re-
gret, thus guaranteeing low regret against an adaptive ad-
versary. The modification is based on the idea of adding
confidence intervals to the losses. The same idea has been
employed in the work of [3] (note that [3] is submitted con-
currently with this paper) for the bandit optimization over
arbitrary convex sets. While the work of [3] does succeed in
obtaining a high-probability bound, the algorithm is based on
the inefficient method of Dani et al [6], which is a reduction
to the algorithm of Auer et al.

9 Efficient Implementation
In this section we describe how to efficiently implement Al-
gorithm 1. Recall that in each iteration our algorithm re-
quires the eigen-decomposition of the Hessian in order to
derive the unbiased estimator, which takes O(n3) time. This
is coupled with a convex minimization problem in order to
compute xt, which seems to be the most time consuming
operation in the entire algorithm.

The message of this section is that the computation of xt

given the previous iterate xt−1 takes essentially only one it-
eration of the Damped Newton method. More precisely,
instead of using xt as defined in Algorithm 1, it suffices

4It is known that the optimal strategy for the adversary does not
need any randomization beyond the player’s choices.

to maintain a sequence of points {zt}, such that zt is ob-
tained from zt−1 by only one iteration of the Damped New-
ton method. The sequence of points {zt} are shown to be
sufficiently close to {x̂t}, which enjoy the same guarantee
as the sequence of {xt} defined by Algorithm 1.

A single iteration of the Damped Newton method re-
quires matrix inversion. However, since we have the eigen-
decomposition ready made, as it was required for the unbi-
ased estimator, we can produce the inverse and the Newton
direction in O(n2) time. Thus, the most time-consuming part
of the algorithm is the eigen-decomposition of the Hessian,
and the total running time is O(n3) per iteration.

Before we begin, we require a few more facts from the
theory of interior point methods, taken from [15].

Let Ψ be a non-degenerate self-concordant barrier on do-
main K, for any x ∈ K define the Newton direction as

e(Ψ, x) = −[∇2Ψ(x)]−1∇Ψ(x)

and let the Newton decrement be

λ(Ψ, x) =
√
∇Ψ(x)T[∇2Ψ(x)]−1∇Ψ(x).

The Damped Newton iteration for a given x ∈ K is

DN(Ψ,x) = x − 1
1 + λ(Ψ,x)

e(Ψ,x).

The following facts can be found in [15]:

A: DN(Ψ,x) ∈ K. 5

B: λ(Ψ, DN(Ψ,x)) ≤ 2λ(Ψ,x)2.

C: ‖x − x∗‖x∗ ≤ λ(Ψ,x)
1−λ(Ψ,x) .

D: ‖x − x∗‖x ≤ λ(Ψ,x)
1−2λ(Ψ,x) .

Here x∗ = arg minx∈K Ψ(x).

Algorithm 2 Efficient Implementation
1: Input: η > 0, ϑ-self-concordantR.
2: Let z1 = arg minx∈KR(x).
3: for t = 1 to T do
4: Let {e1, . . . , en} and {λ1, . . . , λn} be the set of

eigenvectors and eigenvalues of ∇2R(zt).
5: Choose it uniformly at random from {1, . . . , n} and

εt = ±1 with probability 1/2.
6: Predict yt = zt + εtλ

−1/2
it

eit .
7: Observe the gain f T

t yt ∈ R.
8: Define f̂t := n (f T

t yt) εtλ
1/2
it
· eit .

9: Update

zt+1 = zt −
1

1 + λ(Ψt, zt)
e(Ψt, zt),

where

Ψt(z) ≡ η

t∑
s=1

f̂ T

sz +R(z).

10: end for

5This follows easily since the Newton increment is in the Dikin
ellipsoid 1

1+λ(Ψ,x)
e(Ψ,x) ∈ W1(x).

The functions f̂t computed by the above algorithm are
unbiased estimates of ft constructed by sampling eigenvec-
tors of∇2R(zt). Define the Follow The Regularized Leader
solutions

x̂t+1 ≡ arg min
x∈K

Ψt(x),

on the new functions f̂t’s. The sequence {x̂t, f̂t} is different
from the sequence {xt, f̃t} generated by Algoritm 1. How-
ever, the same regret bound can be proved for the new algo-
rithm. The only difference from the proof for Algorithm 1 is
in the fact that f̂t’s are estimated using the Hessian at zt, not
x̂t. However, as we show next, zt is very close to x̂t, and
therefore the Hessians are within a factor of 2 by Equation
(5), leading to a slightly worse constant for the regret.

Lemma 7 It holds that for all t,

λ2(Ψt, zt) ≤ 4n2η2

Proof: The proof is by induction on t. For t = 1 the result
is true because x1 is chosen to minimize R. Suppose the
statement holds for t− 1. By definition,

λ2(Ψt, zt) = ∇Ψt(zt)[∇2Ψt(zt)]−1∇Ψt(zt)

= ∇Ψt(zt)[∇2R(zt)]−1∇Ψt(zt).

Note that
∇Ψt(zt) = ∇Ψt−1(zt) + ηf̂ T

t .

Using (x + y)T A(x + y) ≤ 2xT Ax + 2yT Ay we obtain

1
2
λ2(Ψt, zt) ≤ ∇Ψt−1(zt)[∇2R(zt)]−1∇Ψt−1(zt)

+ η2f̂ T

t [∇2R(zt)]−1f̂t

= λ2(Ψt−1, zt) + η2f̂ T

t [∇2R(zt)]−1f̂t.

The first term can be bounded by fact (B) and using the in-
duction hypothesis,

λ2(Ψt−1, zt) ≤ 4λ4(Ψt−1, zt−1) ≤ 64n4η4. (11)

As for the second term,

f̂t[∇2R(zt)]−1f̂t ≤ n2

because of the way f̂t is defined and since |f T
t yt| ≤ 1 by

assumption. Combining the results,

λ2(Ψt, zt) ≤ 128n4η4 + 2n2η2 ≤ 4n2η2

using the definition of η of Theorem 1 and large enough T .
This proves the induction step.

Note that Equation (11) with the choice of η and large
enough T implies λ2(Ψt−1, zt) << 1

2 . Using this together
with the above Lemma and facts (B) and (C), we conclude
that

‖zt − x̂t‖x̂t ≤ 2λ(Ψt−1, zt) ≤ 4λ(Ψt−1, zt−1)2 ≤ 16n2η2

We observe that x̂t and zt are very close in the local distance.
This implies closeness in L2 distance as well. Indeed, square
roots of inverse eigenvalues λ

−1/2
i , being the distances from

x̂t to the corresponding radii of the Dikin ellipsoid, can be

at most the D. Thus, ∇2R ≥ D2I and thus ‖zt − x̂t‖2 ≤
D−1‖zt − x̂t‖x̂t

≤ 16D−1n2η2.
As we proved, it requires only one Damped Newton up-

date to maintain the sequence zt, which are O(1/T) close to
x̂t. Hence,

T∑
t=1

|f T

t (zt − x̂t)| ≤
T∑

t=1

‖ft‖‖zt − x̂t‖ = O(1).

Therefore, for any u ∈ K

E
T∑

t=1

f T

t (yt − u) = E
T∑

t=1

f̂ T

t (zt − u)

= E
T∑

t=1

f̂ T

t (x̂t − u) + E
T∑

t=1

f̂ T

t (zt − x̂t)

= E
T∑

t=1

f̂ T

t (x̂t − u) + E
T∑

t=1

f T

t (zt − x̂t)

= E
T∑

t=1

f̂ T

t (x̂t − u) + O(1)

A slight modification of the proofs of Section 8 leads to a
O(
√

T) bound on the expected regret of the sequence {x̂t}.

Acknowledgments.
We would like to thank Peter Bartlett for numerous illumi-
nating discussions. We gratefully acknowledge the support
of DARPA under grant FA8750-05-2-0249 and NSF under
grant DMS-0707060.

References
[1] Peter Auer, Nicolò Cesa-Bianchi, Yoav Freund, and

Robert E. Schapire. The nonstochastic multiarmed ban-
dit problem. SIAM J. Comput., 32(1):48–77, 2003.

[2] Baruch Awerbuch and Robert D. Kleinberg. Adaptive
routing with end-to-end feedback: distributed learning
and geometric approaches. In STOC ’04: Proceedings
of the thirty-sixth annual ACM symposium on Theory of
computing, pages 45–53, New York, NY, USA, 2004.
ACM.

[3] P. Bartlett, V. Dani, T. Hayes, S. Kakade, A. Rakhlin,
and A. Tewari. High-probability bounds for the regret
of bandit online linear optimization, 2008. In submis-
sion to COLT 2008.

[4] A. Ben-Tal and A. Nemirovski. Lectures on Modern
Convex Optimization: Analysis, Algorithms, and En-
gineering Applications, volume 2 of MPS/SIAM Series
on Optimization. SIAM, Philadelphia, 2001.

[5] Nicolò Cesa-Bianchi and Gábor Lugosi. Prediction,
Learning, and Games. Cambridge University Press,
2006.

[6] Varsha Dani, Thomas Hayes, and Sham Kakade. The
price of bandit information for online optimization. In
J.C. Platt, D. Koller, Y. Singer, and S. Roweis, edi-
tors, Advances in Neural Information Processing Sys-
tems 20. MIT Press, Cambridge, MA, 2008.

[7] Varsha Dani and Thomas P. Hayes. Robbing the bandit:
less regret in online geometric optimization against an
adaptive adversary. In SODA ’06: Proceedings of the
seventeenth annual ACM-SIAM symposium on Discrete
algorithm, pages 937–943, New York, NY, USA, 2006.
ACM.

[8] Meir Feder, Neri Merhav, and Michael Gutman.
Correction to ’universal prediction of individual se-
quences’ (jul 92 1258-1270). IEEE Transactions on
Information Theory, 40(1):285, 1994.

[9] Abraham D. Flaxman, Adam Tauman Kalai, and
H. Brendan McMahan. Online convex optimization
in the bandit setting: gradient descent without a gradi-
ent. In SODA ’05: Proceedings of the sixteenth annual
ACM-SIAM symposium on Discrete algorithms, pages
385–394, Philadelphia, PA, USA, 2005. Society for In-
dustrial and Applied Mathematics.

[10] D. P. Helmbold, J. Kivinen, and M. K. Warmuth. Rel-
ative loss bounds for single neurons. IEEE Transac-
tions on Neural Networks, 10(6):1291–1304, Novem-
ber 1999.

[11] Adam Kalai and Santosh Vempala. Efficient algorithms
for online decision problems. Journal of Computer and
System Sciences, 71(3):291–307, 2005.

[12] Jyrki Kivinen and Manfred K. Warmuth. Exponenti-
ated gradient versus gradient descent for linear predic-
tors. Inf. Comput., 132(1):1–63, 1997.

[13] Nick Littlestone and Manfred K. Warmuth. The
weighted majority algorithm. Information and Com-
putation, 108(2):212–261, 1994.

[14] H. Brendan McMahan and Avrim Blum. Online ge-
ometric optimization in the bandit setting against an
adaptive adversary. In COLT, pages 109–123, 2004.

[15] A.S. Nemirovskii. Interior point polynomial time meth-
ods in convex programming, 2004. Lecture Notes.

[16] Y. E. Nesterov and A. S. Nemirovskii. Interior
Point Polynomial Algorithms in Convex Programming.
SIAM, Philadelphia, 1994.

[17] Satish Rao. Lecure notes: Cs 270, graduate algorithms.
2006.

[18] Herbert Robbins. Some aspects of the sequential design
of experiments. Bull. Amer. Math. Soc., 58(5):527–535,
1952.

[19] Shai Shalev-Shwartz and Yoram Singer. A primal-
dual perspective of online learning algorithms. Mach.
Learn., 69(2-3):115–142, 2007.

[20] Eiji Takimoto and Manfred K. Warmuth. Path ker-
nels and multiplicative updates. J. Mach. Learn. Res.,
4:773–818, 2003.

[21] Martin Zinkevich. Online convex programming and
generalized infinitesimal gradient ascent. In ICML,
pages 928–936, 2003.

A Proofs
Proof: [Lemma 2]

Since the argmin is in the set, ∇Φt−1(xt) = 0 and

DΦt−1(u,xt) = Φt−1(u)− Φt−1(xt).

Moreover,
Φt(u) = Φt−1(u) + ηf̃ T

t u.

Combining the above,

ηf̃ T

t u = DΦt(u,xt+1) + Φt(xt+1)− Φt−1(u)

and

ηf̃ T

t xt = DΦt(xt,xt+1) + Φt(xt+1)− Φt−1(xt).

Thus,

ηf̃ T

t (xt−u) = DΦt(xt,xt+1)+DΦt−1(u,xt)−DΦt(u,xt+1).

Summing over t = 1 . . . T ,

η

T∑
t=1

f̃ T

t (xt − u) = DΦ0(u,x1)−DΦT
(u,xT+1)

+
T∑

t=1

DΦt(xt,xt+1)

≤ DΦ0(u,x1) +
T∑

t=1

DΦt(xt,xt+1)

By definition, xt satisfies
∑t−1

s=1 f̃s +∇R(xt) = 0 and xt+1

satisfies
∑t

s=1 f̃s +∇R(xt+1) = 0. Subtracting,

∇R(xt)−∇R(xt+1) = ηf̃t. (12)

Now we realize that

DR(xt,xt+1) ≤ DR(xt,xt+1) + DR(xt+1,xt)
= −∇R(xt+1)(xt − xt+1)
−∇R(xt)(xt+1 − xt)

= ηf̃ T

t (xt − xt+1).

Lemma 8 For any point x ∈ K, it holds that

min
y∈Kδ

‖x − y‖ ≤ δ.

Proof: Consider the point on the segment [x1,x] which in-
tersects the boundary of Kδ , denote it z By definition, we
have

‖z − x1‖
‖x − x1‖

=
1

1 + δ
.

As x,x1, zt are on the same line

‖z−x‖ = ‖x−x1‖−‖z−x1‖ = ‖x−x1‖·(1−
1

1 + δ
) ≤ δ.

The last inequality holds by our assumption that the diameter
of K is bounded by one. The lemma follows.

