
6.883: Online Methods in Machine Learning
Alexander Rakhlin

LECTURE 11

0.1 Continued: Binary prediction with indicator loss and no side information

Recall that we are considering here the simplest possible online scenario

For t = 1, . . . , n

Predict ŷt ∈ {±1}

Observe outcome yt ∈ {±1}

and we employ a randomized strategy defined by the choice of the mean qt(y1, . . . , yt−1) ∈
[−1,1] of the distribution for ŷt.

The optimization of

1

n

n

∑
t=1

1{ŷt ≠ yt} (1)

cannot be done for all sequences, and so we choose a function φ ∶ {±1}n → R which tells us
which sequences we care about. The goal, once again, is to find an algorithm such that

∀y1, . . . , yn, E [
1

n

n

∑
t=1

1{ŷt ≠ yt}] ≤ φ(y1, . . . , yn). (2)

We already presented a closed-form strategy for this in Lecture 1, but it appeared out of
thin air. We now present a derivation of this strategy. We also write the optimization
problem in a minimax form that will be important for the rest of the course.

First, we write (2) as a telescoping sum

∀y1, . . . , yn, E [
1

n

n

∑
t=1

1{ŷt ≠ yt}] ≤
n

∑
t=1

Relt−1(y1∶t−1) −Relt(y1∶t) (3)

with some yet to be determined functions Relt, satisfying

Reln = −φ and Rel0(∅) ≤ 0. (4)

At this point we have not lost any generality by going from (2) to (3), since all the functions
telescope.

Let us drop the subscript on Rel, e.g. by defining Rel to be a function ∪nt=1{±1}t → R.
Suppose y1, . . . , yn−1 have been revealed, and we are about to predict the last bit. The

goal (3) can be phrased as: there exists a way to choose a randomized strategy qn such that
for any yn (3) holds. Translating these quantifiers into minima and maxima (something we
will do all the time from now on), leads to

min
qn

max
yn

{E [
1

n

n

∑
t=1

1{ŷt ≠ yt}] −
n

∑
t=1

[Rel(y1∶t−1) −Rel(y1∶t)]} ≤ 0 (5)

1



Once again, the expectations are with respect to the randomizations of the algorithm. Now
observe that the terms 1 ∶ n−1 are not involved in the minimization/maximization, and the
last-step optimization problem is

min
qn

max
yn

{E [
1

n
1{ŷn ≠ yn}] +Rel(y1∶n)} (6)

Recall that we are free to define Rel(y1∶n−1). We could simply define it as the value of the
above objective function. More generally, Rel(y1∶n−1) will be an upper bound on it:

min
qn

max
yn

{E [
1

n
1{ŷn ≠ yn}] +Rel(y1∶n)} ≤Rel(y1∶n−1). (7)

The inequality (7) is key and will appear for the rest of the course, so it’s good to understand
how it came about.

Since ŷn, yn ∈ {±1}, we write

E [1{ŷn ≠ yn}] = E [
1

2
(1 − ŷnyn)] =

1

2
−

1

2
qnyn (8)

since qn is precisely the mean of ŷn. Then

min
qn

max
yn

{E [
1

n
1{ŷn ≠ yn}] +Rel(y1∶n)} (9)

= min
qn

max{−
1

2n
qn +Rel(y1∶n−1,+1),

1

2n
qn +Rel(y1∶n−1,−1)} +

1

2n
(10)

The minimum over qn ∈ [−1,1] of two linear functions with opposite slopes will occur
when they are equal, given that the minimum belongs to the interval [−1,1]. The latter
requirement will be guaranteed by the smoothness assumption on φ once we get a closed
form for Rel. We have

qn(y1∶n−1) = n(Rel(y1∶n−1,+1) −Rel(y1∶n−1,−1)).

Plugging this solution into the minimax expression,

min
qn

max
yn

{E [
1

n
1{ŷn ≠ yn}] +Rel(y1, . . . , yn)} (11)

=
1

2
(Rel(y1∶n−1,+1) +Rel(y1∶n−1,−1)) +

1

2n
(12)

= EεnRel(y1∶n−1, εn) +
1

2n
(13)

= −Eεnφ(y1∶n−1, εn) +
1

2n
(14)

≜Rel(y1∶n−1) (15)

where the last step is now a definition. We have verified (7) and came up with a definition
to ensure it; smoothness of φ also played a role in certifying a solution for the minimum.
The requirement (5) now reads

E [
1

n

n−1
∑
t=1

1{ŷt ≠ yt}] −
n−1
∑
t=1

[Rel(y1∶t−1) −Rel(y1∶t)] ≤ 0 (16)

2



and we may now proceed to analyse step n−1. This is certainly the same step as in Lecture
1, but we have explicitly derived the solution qn for the last step. Applying the operators
minqn−1 maxyn−1 to (16) gives

E [
1

n

n−2
∑
t=1

1{ŷt ≠ yt}] −
n−2
∑
t=1

[Rel(y1∶t−1) −Rel(y1∶t)] ≤ 0. (17)

and so on. We see that for step t

Rel(y1∶t) = −Eεt+1∶nφ(y1∶t, εt+1∶n) +
n − t

2n
(18)

and the requirement that Rel(∅) ≤ 0 is

Rel(∅) = −Eφ(ε1∶n) +
1

2
≤ 0,

which is precisely the assumption on φ.

Remark 1. We note that the requirement Rel0 ≤ 0 in (4) may be dropped. In this case,
if we define Reln = −φ, the final bound in (3) will be φ +Rel0, a constant shift of φ. This
small variation will be convenient later when the potential is known only up to a constant
shift. In particular, if we use dH(y, F ) as the potential, we simply take Reln = −dH(y, F )

and then observe that Rel0 = Cn, yielding the final bound of dH(y, F ) +Cn.

We have achieved several goals here: first, we proved that Eφ ≥ 1
2 is a sufficient (and

necessary) condition; second, we derived the strategy by solving a minimax expression from
inside out (t = n to t = 1); third, we phrased the problem of Lecture 1 in the language of
Rel, which we shall later call relaxations. The function Rel may also be called a potential
function, and the key inequality (7) may be interpreted as: on a given round, the change in
the potential is at least the size of the expected mistake.

0.2 Example: Prediction on Graphs

Consider the following setting. There is a known connected graph G = (V,E), with n = ∣V ∣.
At each time step, we are pointed to a vertex and required to predict its label. We do not
come back to the same vertex twice, and so the time horizon n is equal to the number of
vertices. Suppose that the order in which the vertices appear is known to us (below, we
will argue that this knowledge is not needed).

We would like to make a small number of mistakes, and the prior information we would
like to use is that neighbors tend to have same labels. This feature of networks, called
homophily, may be encoded in a probabilistic manner via a generative process, but here we
are encoding the assumption in the function φ. Given a sequence y1, . . . , yn, how can we
tell if it adheres to the homophily assumption? Well, we can measure how often neighbors
disagree under this labeling. Let y(v) stand for the label given by y = (y1, . . . , yn) to the
vertex v ∈ V . Then the number of times neighbors disagree is simply

1

4
∑

(u,v)∈E
(y(v) − y(u))2

This quadratic form may be written as

∑
(u,v)∈E

(y(v) − y(u))2 = yTLy,

3



where L = D − A is the graph Laplacian, defined as a difference of a degree matrix D
(diagonal elements corresponding to degrees) and an adjacency matrix A. Each labeling y
defines a cut – all the edges with disagreeing labels at the ends. We will thus refer to the
above quadratic form as the size of the cut induced by y.

More generally, if the graph is weighted, with a weight w(u,v) on the edge (u, v),

∑
(u,v)∈E

w(u,v)(y(v) − y(u))2 = yTLy.

We now have a way to decide which sequences are more important to us, given the homophily
assumption. Here are two approaches that come to mind (think about finding others!)

• first is to define a “nice” set

FK = {f ∈ {±1}n ∶ fTLf ≤K} (19)

for some parameter K and take

φ(y) = dH(y, F ) +Cn, Cn =
1

2n
Emax

f∈F
⟨f, ε⟩ (20)

• second approach is to define φ(y) directly as some function of the value yTLy, say

φ(y) = any
TLy (21)

for n-dependent an

The first approach satisfies all the conditions required for the existence of a strategy, as it
fits squarely in the development of the previous section. By construction, the function is
smooth and its expected value is above 1/2.

The second approach, on the other hand, is not in the form of a normalized Hamming
distance. In fact, as we now show, the function in (21) cannot be made to satisfy both
conditions. What happens to the size of the cut as we change one label? The cut can
change by at most the degree of the vertex. So, assuming that G has degree at most d, we
need to take an ≤

1
dn . On the other hand, the expected size of a cut for a random labeling

is ∣E∣/2 (prove this), and thus

an
∣E∣

2
≥

1

2
.

Yet, there are methods in the literature that guarantee that the number of mistakes is
bounded by (a scaling of) cut size. There is no contradiction here, as Cover’s equivalence
was only holding under the assumption that the function is smooth. Trivially, a function
φ(y) = 1{y ≠ 1} is one such nonsmooth function that admits a prediction strategy with a
bound (2) (predict 1 on every round).

To get a sense of how the two approaches may differ on a particular example, consider a
star graph, made by taking a center node and connecting it to n−1 other vertices. Consider
the labeling y that assigns −1 to the center and +1 to the other nodes. The size of the cut is
n− 1, and the algorithm is allowed to make that many mistakes on the sequence. However,
for any K < n − 1, the set FK contains two labelings (all −1 and all +1), and the sequence
y described above is 1-Hamming distance away from FK . Hence, the average number of
mistakes guaranteed for the algorithm is 1

n +
c√
n

(c can be computed as Rademacher average

of two point class).

4


