
6.883: Online Methods in Machine Learning
Alexander Rakhlin

LECTURE 10

In the last lecture, we showed how uniform deviations allow us to compare the performance
of methods minimizing empirical vs expected objectives. We also mentioned that for hinge
loss and linear functions, an upper bound on uniform deviations is of the same order as the
very convergence of SGD. Let us sketch the argument here.

0.1 Understanding uniform deviations for linear prediction with hinge loss

Through a technique called symmetrization, it is possible to prove that uniform deviations

E sup
∥w∥≤B

{E`(⟨w,X⟩ , Y) − 1

n

n

∑
i=1

`(⟨w,Xi⟩ , Yi)} (1)

are upper bounded by

2E sup
∥w∥≤B

1

n

n

∑
i=1

εi`(⟨w,Xi⟩ , Yi) (2)

where the expectation is over the data and over the independent Rademacher random vari-
ables ε1, . . . , εn. Recall from Lecture 1 that these are just ±1 unbiased coin flips. Incidentally,
the expression in (2) is called the Rademacher averages of the function class

{x↦ `(⟨w,x⟩ , y) ∶ ∥w∥ ≤ B}

The next step, which we also shove under the rug, is that (2) is upper bounded by

2E sup
∥w∥≤B

1

n

n

∑
i=1

εi ⟨w,Xi⟩ , (3)

the Rademacher averages of the function class

{x↦ ⟨w,x⟩ ∶ ∥w∥ ≤ B}.

At this point we might want to recall (or prove) that for the Euclidean norm

sup
∥w∥≤1

⟨w, z⟩ = ∥z∥.

Hence, by linearity

2E sup
∥w∥≤B

1

n

n

∑
i=1

εi ⟨w,Xi⟩ = 2E sup
∥w∥≤B

⟨w, 1

n

n

∑
i=1

εiXi⟩ = 2B ×E∥ 1

n

n

∑
i=1

εiXi∥ (4)

1

Finally,

E∥
n

∑
i=1

εiXi∥ = E

¿
ÁÁÀ∥

n

∑
i=1

εiXi∥
2

≤

¿
ÁÁÀE∥

n

∑
i=1

εiXi∥
2

=

¿
ÁÁÀ

n

∑
i=1

E ∥Xi∥2 ≤ G
√
n (5)

where G2 ≥ E ∥X∥2. Putting it all together gives the desired bound

2 × BG√
n

on uniform deviations over the Euclidean ball of radius B.
One may ask whether uniform deviations have the same rate as gradient descent only

for the case of Euclidean ball {w ∶ ∥w∥ ≤ B}. Consider, as another example, a probability
simplex ∆ = {w ∶ ∑d

j=1wj = 1,wj ≥ 0}. Rather than gradient descent, one should be using
Mirror Descent in this situation (an algorithm we will cover later). The rate of Mirror
Descent (equivalently, exponential weights) is

c

√
log d

n
.

How about uniform deviations? We have

E sup
w∈∆

{f(w) − f̂(w)} ≤ 2E∥ 1

n

n

∑
i=1

εiXi∥
∞

≤ c′
√

log d

n

using basically the same argument as for the Euclidean ball, but then noting that the `∞
norm is a maximum of d random variables with variance O(1/n). Once again, the result
coincides with the rate of GD.

As mentioned before, the fact that uniform deviations have the same rate as gradient
descent with n iterations is not a coincidence and comes about from a certain connection
between uniform convergence for i.i.d. data and for martingales. Since some stochastic pro-
cesses need to be introduced to understand the connection, we will postpone this treatment
towards the end of the course.

0.2 Training error, test error, and overfitting

A typical approach to training a machine learning algorithm is to split the data into a
training and testing set (and, possibly, a validation set). The training set is used, well, for
fitting the data (e.g. SVM, SGD, or whatever your method is). The test error is supposed to
be used once at the very end to assess the performance of the procedure, and the validation
set is used to check a variety of parameters and choose the best model. When running an
iterative optimization procedure, such as stochastic gradient descent, one often monitors
the training error (which should hopefully go down) and the test error. If the model is
flexible enough, one will typically see that the training error keeps going down, but the test
error starts to increase at some point.

Strictly speaking, this process of monitoring the test error is not kosher, as one stops
the optimization method when the test error is small enough. This introduces a bias. One
can use a separate subset of data (validation set) to decide when to stop, but the final
assessment of the quality of the solution should be made on a separate set of data, only
used once. In practice, however, it is impossible to require that a set of data is used once.

2

What is overfitting? There is no precise definition, but, roughly speaking, it is the point
in the training process when the training error becomes “significantly smaller” than the
error on a fresh never-used-before sample. If the algorithm outputs a hypothesis ŵ that
does not depend on data, the central limit theorem guarantees that the average fit to data
f̂(ŵ) is close (to within O(1/

√
n)) to the expected error f(ŵ). As the algorithm starts to

depend more and more on the data, the difference

f(ŵ) − f̂(ŵ)

between its empirical fit to data and expected loss is only controlled by uniform deviations,
which may be too large if the model is large (see figure from last lecture). For instance, for
a fixed w that does not depend on data, f(w) − f̂(w) is on the order of O(1/

√
n) for the

example of minimization on the simplex discussed earlier; however, uniform deviations scale
with the dimension of the problem. In general, uniform deviations might be significantly
worse than what is given by the central limit theorem.

In summary, one needs to be very careful reusing data for tuning parameters, for selecting
a model, for monitoring performance. Most importantly, the final reported error of the
method should be made on a fresh hold out sample.

We remark that the overfitting issues discussed here arise from our definition of the
learning target E`(w, (X,Y)), phrased in terms of an unknown distribution PX×Y . All
methods in this model of learning are indirect : the optimize some empirical objective in the
hope of optimizing an expected objective. There is, however, a different model of learning
(called ‘online learning’) that is more direct. Here, we will optimize the actual target of
interest, rather than some indirect quantity. We will, however, have to make the protocol
online.

1. ONLINE LEARNING

In the next few lectures we consider the supervised online learning problem, where the data
comes in pairs (x1, y1), . . . , (xn, yn), as before. 1

The supervised online learning protocol is:

For t = 1, . . . , n

Observe xt ∈ X
Predict ŷt ∈ R
Observe outcome yt ∈ R

Let `(ŷt, yt) measure the quality of prediction ŷt with respect to the actual outcome yt.
The goal is to develop methods that have small loss

1

n

n

∑
t=1

`(ŷt, yt). (6)

The average loss (6) cannot be small for all sequences. The goal is to decide which sequences
we care about, and have the algorithm focus on them. The choice of sequences we care about
will be done implicitly, so we do not need to worry about enumerating them one by one.

To start, let us go back to Lecture 1:

1A related commonly studied setting is that of Online Convex Optimization (OCO); contrary to a popular
opinion, OCO does not subsume supervised online learning.

3

1.1 Binary prediction with indicator loss and no side information

We proved in Lecture 1 that there exists a randomized algorithm that attains

∀y1, . . . , yn ∈ {±1}, E [1

n

n

∑
t=1

1{ŷt ≠ yt}] ≤ φ(y1, . . . , yn) (7)

if and only if Eφ(ε1, . . . , εn) ≥ 1/2. Here we only consider φ ∶ {±1}n → R such that

∣φ(. . . ,+1, . . .) − φ(. . . ,−1, . . .)∣ ≤ 1/n. (8)

As discussed in the first lecture, φ encodes the prior knowledge about what sequences we
might encounter. One way to define it is by choosing a subset F ⊆ {±1}n of the hypercube
and setting

φ(y) = φ(y1, . . . , yn) = dH(y, F) ≜ min
f∈F

1

n

n

∑
i=1

1{fi ≠ yi} , (9)

the normalized Hamming distance between y and F . That is, we are insisting that the
number of mistakes made by our algorithm is 0 on sequences in F , and degrades linearly
with the distance to the set. This goal will be unattainable, but something very close to it
will be possible.

First, we check that condition (8) holds for the normalized Hamming distance. Second,
we need to verify Eφ(ε) ≥ 1/2. This condition fails, since expected distance from a random
point on the hypercube to a nonempty F is less than 1/2. But it cannot be too much smaller
than 1/2 if F is not too large. Let’s see:

Emin
f∈F

1

n

n

∑
i=1

1{fi ≠ εi} = Emin
f∈F

1

n

n

∑
i=1

1

2
(1 − fiεi) =

1

2
− 1

2
Emax

f∈F

1

n

n

∑
i=1

fiεi (10)

So, while Hamming distance does not pass the test, the function

φ(y) = dH(y, F) + 1

2n
Emax

f∈F
⟨f, ε⟩ (11)

does. Note that the amount by which we need to increase the Hamming distance to F so
that the expected value is at least 1/2 is precisely (half of) the Rademacher averages of the
set F .

Recall from Lecture 1 that there is a closed-form solution that guarantees (7), whenever
Eφ ≥ 1/2. The solution is

qt(y1, . . . , yt−1) ≜ n(Eφ(y1∶t−1,−1, εt+1∶n) −Eφ(y1∶t−1,+1, εt+1∶n)) (12)

where the expectation is over the suffix εt+1∶n of independent Rademacher random variables.
The value qt is the mean of the distribution on {−1,+1} from which the algorithm should
draw the prediction ŷt.

We can further go to double randomization: at time t, draw coin flips εt+1∶n and define

q̂t(y1, . . . , yt−1, εt+1∶n) ≜ n(φ(y1∶t−1,−1, εt+1∶n) − φ(y1∶t−1,+1, εt+1∶n)) (13)

One may check that whenever qt in (12) satisfies (7), the double randomization strategy
(13) also satisfies (7).

4

