
6.883: Online Methods in Machine Learning
Alexander Rakhlin

LECTURE 5

This lecture is partly based on chapter 17 in [SSBD14].

1. MULTICLASS AND MULTILABEL PROBLEMS

Today we will talk about an extension of binary classification to multi-class and multi-label
cases. In multiclass problems, examples are of the form (xi, yi) with yi ∈ {1, . . . , k}. That
is, there are k classes, and one of them is “correct” for the given example. In the multi-
label setup, each xi may be thought as belonging simultaneously to several classes. This
is summarized by a vector yi ∈ {0,1}k, with yi(j) = 1 if xi is labeled as belonging to class
j. For instance, in classifying hand-written digits, we might be interested in a multi-class
formulation, while classifying a topic of a news article naturally leads to a multi-label setup.

1.1 Multiclass

Recall that for binary classification we studied linear classifiers ⟨w,x⟩ and the hinge loss

`(w, (x, y)) = max{0,1 − y ⟨w,x⟩}.
Should we change the form of the classifier, the loss function, or both?

The main issue is that linear classifiers ⟨w,x⟩ are naturally suited to binary problems, not
to multi-class. Two standard approaches (one-vs-all and all-pairs) use binary classification
as a subroutine. One-vs-all trains a collection of k binary classifiers. The all-pairs approach
requires even more computational power, as it tries to discriminate between each pair of
classes and then combine this information in some way to produce a single class label. Both
of these methods disregard the multiclass nature of the problem and try to reduce it to
binary classification.

Another approach is to change the form of the classifier and the loss function. Observe
that sign(⟨w,x⟩) can be written as

argmax
y∈{±1}

⟨w,yx⟩ .

Let’s think of yx as a transformation of x that aligns well with some w∗ if y is the “correct”
class for x, and does not align well otherwise. This formulation generalizes to multi-class
quite naturally. Take Ψ(x, y) to be some mapping, and consider

argmax
y∈{1,...,k}

⟨w,Ψ(x, y)⟩ (1)

to be a prediction of class for the given x. It would be nice if we could find Ψ that aligns
well with some w∗ when x is of class y and does not align well otherwise.

An even more general formulation is to replace ⟨w,Ψ(x, y)⟩ with some potentially non-
linear score function s(x, y). We will only study the linear score function, and, in addition,
start with a linear representation for Ψ. The next section is devoted to this scenario.
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1.1.1 Linear multiclass formulation with hinge loss

If x ∈ Rd, think of Ψ as a k × d vector Ψ(x, y) = [. . .0 . . . , xT, . . .0 . . .]T composed of zeros on
all d-length segments, except the y-th, and let w be a k×d-dimensional vector. Alternatively,
we may think of w as a k × d matrix W , and (1) is written as

argmax
y∈{1,...,k}

⟨Wy, x⟩ , (2)

the largest product of x and a row of the matrix W .
In binary classification, the predictors were associated with hyperplanes; now they are

associated with k × d matrices W . Let

ŷ = argmax
i∈{1,...,k}

⟨Wi, x⟩ (3)

be the multiclass prediction, given a matrix W . For an example (x, y), the indicator loss
is, as before,

1{ŷ ≠ y} ≤ max
j

{1{j ≠ y} + ⟨Wj , x⟩ − ⟨Wy, x⟩} . (4)

Let’s convince ourselves of this fact. If ŷ = y, the left-hand side is zero while the right-hand
side is at least zero (verify this by taking j = ŷ). Same argument holds for the case ŷ ≠ y.
The loss function

`(W, (x, y)) = max
j

{1{j ≠ y} + ⟨Wj , x⟩ − ⟨Wy, x⟩} (5)

will be called multi-class hinge loss.
Both the left and the right-hand side of (4) are zero if

1 + ⟨Wj , x⟩ ≤ ⟨Wy, x⟩

for any j ≠ y. That is, no mistake is incurred if the correct class has a margin of 1 with
respect to all other classes. For a class j to (erroneously) become the winner in the max,
the associated product ⟨Wj , x⟩ needs to be at least ⟨Wy, x⟩ − 1.

Verify that the binary hinge loss is a special case by taking W to be a 2×d matrix with
rows W1 = −W2 = 1

2w. (convince yourself of the rest of the argument)

Given data (x1, y1), . . . , (xn, yn) with values in Rd × {1, . . . , k}, we aim to minimize the
average of multi-class hinge losses

f(W ) = 1

n

n

∑
i=1

`(W, (xi, yi)), (6)

or the multi-class SVM version

f(W ) = 1

n

n

∑
i=1

`(W, (xi, yi)) +
λ

2
∥W ∥2. (7)

The norm in the regularization term is the Frobenius norm (which is the Euclidean norm
of the matrix stretched into a vector form).

To define SGD for the multiclass SVM it remains to find subgradients of each component
loss. By our earlier argument, to find an element of the subdifferential set ∂`(W, (xi, yi)),
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we only need to find a subdifferential of the function for j∗ that achieves the maximum in
(5). That is, if

j∗ ∈ argmax
j

{1{j ≠ yi} + ⟨Wj , xi⟩ − ⟨Wyi , xi⟩} , (8)

then a subgradient (with respect to W ) is computed as follows. If j∗ ≠ yi
∇i = [. . .0 . . . , xi, . . . ,0 . . . ,−xi, . . .0]T, (9)

a matrix whose j∗-th row is xi and yi-th row is −xi. If j∗ = yi, the subgradient ∇i is
identically zero.

Algorithm 1 SGD for multiclass SVM

Input: λ > 0 (regularization parameter)
Init: W1 = 0
for t=1,. . . ,T do

Set ηt = 1
λt

Sample i ∼ Unif[n]
Find j∗ ∈ argmax

j
{1{j ≠ yi} + ⟨Wj , xi⟩ − ⟨Wyi , xi⟩}

if j∗ ≠ yi then
Wt+1 =Wt − ηt∇i − ηtλWt

else
Wt+1 =Wt − ηtλWt

end if
end for

1.1.2 General formulation

We have considered a linear form for the function Ψ, and we now come back to the more
general definition (1). Let ∆(y, y′) ∈ [0,1] be the cost of predicting y when the true label
is y′, with ∆(y, y) = 0. Suppose the prediction ŷ is given by (1). The analogue of (4) for a
general score function s(x, y)

∆(ŷ, y) ≤ max
j

{∆(j, y) + s(x, j) − s(x, y)} . (10)

Multiclass hinge loss is sometimes written as a further upper bound on the right-hand side:

max
j

{∆(j, y) + s(x, j) − s(x, y)} = max
j≠y

max{0,∆(j, y) + s(x, j) − s(x, y)} (11)

≤∑
j≠y

max{0,∆(j, y) + s(x, j) − s(x, y)} (12)

For the linear case with indicator loss, this version of multiclass hinge becomes

∑
j≠y

max{0,1 + ⟨Wj , x⟩ − ⟨Wy, x⟩} (13)

Homework: derive the SGD update for this form of the loss.
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