
6.883: Online Methods in Machine Learning
Alexander Rakhlin

LECTURE 3

To recap, we talked about Perceptron in the separable case, and introduced a surrogate hinge
loss function for the nonseparable case. We sketched the connection to gradient descent,
which we shall make precise today. One curious outcome of the Perceptron mistake bound
is that the dimension of the space does not enter the bound, while we feel that the problem
should be harder in high dimension. The dimension, however, enters implicitly in the margin
assumption. In high dimensions, the magnitude of w∗ that separates the data with margin
of 1 might need to be quite large.

0.1 Review of convex optimization

A function f ∶ Rd → R is convex if

f(αu + (1 − α)v) ≤ αf(u) + (1 − α)f(v)

for any α ∈ [0,1] and u, v ∈ Rd (or restricted to a convex set). For a differentiable function,
convexity is equivalent to monotonicity

⟨∇f(u) − ∇f(v), u − v⟩ ≥ 0. (1)

where

∇f(u) = (∂f(u)
∂u1

, . . . ,
∂f(u)
∂ud

)

It holds that for a convex differentiable function

f(u) ≥ f(v) + ⟨∇f(v), u − v⟩ . (2)

A subdifferential set is defined (for a given v) precisely as the set of all vectors ∇ such that

f(u) ≥ f(v) + ⟨∇, u − v⟩ . (3)

for all u. The subdifferential set is denoted by ∂f(v). A subdifferential will often substitute
the gradient, even if we don’t specify it.

If f(v) = maxi fi(v) for convex differentiable fi, then, for a given v, whenever i ∈
argmax

i
fi(v), it holds that

∇fi(v) ∈ ∂f(v).

(Prove it!) We conclude that the subdifferential of the hinge loss max{0,1−yt ⟨w,xt⟩} with
respect to w is

−ytxt ⋅ 1{yt ⟨w,xt⟩ < 1} . (4)

1



A function f is L-Lipschitz over a set S with respect to a norm ∥ ⋅ ∥ if

∥f(u) − f(v)∥ ≤ L ∥u − v∥

for all u, v ∈ S. A function f is β-smooth if its gradient maps are Lipschitz

∥∇f(v) − ∇f(u)∥ ≤ β ∥u − v∥ ,

which implies

f(u) ≤ f(v) + ⟨∇f(v), u − v⟩ + β
2
∥u − v∥2 .

(Prove that the other implication also holds.) The dual notion to smoothness is that of
strong convexity. A function f is σ-strongly convex if

f(αu + (1 − α)v) ≤ αf(u) + (1 − α)f(v) − σ
2
α(1 − α) ∥u − v∥2 ,

which means
f(u) ≥ f(v) + ⟨u − v,∇f(v)⟩ + σ

2
∥u − v∥2 .

0.2 Gradient Descent

Gradient descent in its most basic form is the following iterative procedure.

Algorithm 1 Gradient Descent

Input: η > 0
Init: w1 = 0
for t=1,. . . ,T do
wt+1 = wt − η∇f(wt).

end for

The gradient may be substituted with any subgradient if ∂f(wt) is not a singleton.
There are various motivations for this update. One that will be used later again follows by
re-writing the update as an optimization problem

argmin
w

η [f(wt) + ⟨∇f(wt),w −wt⟩] +
1

2
∥w −wt∥2 (5)

which gives an interpretation of minimizing a linear approximation but also staying close
to previous solution.

Showing convergence of this method for a Lipschitz function f is very easy. Suppose we
run gradient descent for T steps. Define the average of the trajectory

ŵ = 1

T

T

∑
t=1
wt. (6)

Next, we use convexity and linearize the function:

f(ŵ) − f(w∗) ≤ 1

T

T

∑
t=1

[f(wt) − f(w∗)] ≤ 1

T

T

∑
t=1

⟨∇f(wt),wt −w∗⟩ (7)

2



We unwind the recursion

∥wt+1 −w∗∥2 = ∥wt − η∇f(wt) −w∗∥2 (8)

= ∥wt −w∗∥2 − 2η ⟨∇f(wt),wt −w∗⟩ + η2∥∇f(wt)∥2 (9)

Rearranging and summing over t = 1, . . . , T ,

T

∑
t=1

⟨∇f(wt),wt −w∗⟩ = 1

2η

T

∑
t=1

[∥wt −w∗∥2 − ∥wt+1 −w∗∥2] + η
2

T

∑
t=1

∥∇f(wt)∥2 (10)

≤ 1

2η
∥w∗∥2 + η

2

T

∑
t=1

∥∇f(wt)∥2. (11)

Lemma 1. Suppose f is convex and L-Lipschitz, and w∗ ∈ argmin
w

f(w). By running

gradient descent with η for T steps, we find ŵ = 1
T ∑

T
t=1wt such that

f(ŵ) − f(w∗) ≤ 1

2ηT
∥w∗∥2 + ηL

2

2
. (12)

If B ≥ ∥w∗∥ is known and T is pre-specified, we may choose η = B

L
√
T

and then

f(ŵ) − f(w∗) ≤ BL√
T
. (13)

In the lemma we used the simple fact that f is L-Lipschitz iff the norm of any subgradient
is bounded by L.

Remark 1. We may replace wt = wt − η∇f(wt) with

wt = Proj(wt − η∇f(wt)),

where Proj is a Euclidean projection onto any convex set (e.g. Euclidean ball of radius B).
In this case, the performance of the method is measured with respect to the best solution w∗

within this set. Convince yourself that the analysis does not change, except (8) is replaced
with an inequality.

Instead of fixing T and giving accuracy after T steps, we may fix target accuracy ε and
ask for the number of steps required. Lemma 1 then says

B2L2

ε2
. (14)

You may ask whether this gives us the Perceptron bound when the problem is realizable,
especially since (check!) L = max ∥xi∥ in that case. Unfortunately, we need a small but
clever modification of the lemma to make this conclusion, and we will do so later.

0.3 Stochastic Gradient Descent (SGD)

Suppose in the gradient descent step, we only have access to an unbiased estimate ∇t of
the gradient. That is, E[∇t∣wt] = ∇f(wt). Under mild conditions (almost sure boundedness
of ∥∇t∥, or boundedness of E∥∇t∥2), the GD proof goes through for SGD. Let’s convince
ourselves of this. Observe that (11) and the balancing of η hold true with ∇f(wt) replaced

3



by ∇t, conditionally on the random draws of the estimates ∇1, . . . ,∇T . Linearization (7)
also goes through since conditionally on ∇1∶t−1,

f(wt) − f(w∗) ≤ ⟨Et[∇t],wt −w∗⟩ .

Here Et denotes the conditional expectation. The result follows by the linearity of the
expectation and the tower property. So, SGD for convex Lipschitz functions guarantees
that

E[f(ŵ)] − f(w∗) ≤ BG√
T
,

where G2 ≥ maxiE∥∇i∥2 and B ≥ ∥w∗∥2.
On a lighter note, here is a tweet from ML hipster (aka Mark Reid):

References

4


