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Spontaneous firing is a ubiquitous property of neural activity in the brain. Recent literature
suggests that this baseline activity plays a key role in perception. However, it is not
known how the baseline activity contributes to neural coding and behavior. Here, by
recording from the single neurons in the inferior temporal cortex of monkeys performing
a visual categorization task, we thoroughly explored the relationship between baseline
activity, the evoked response, and behavior. Specifically we found that a low-frequency
(<8 Hz) oscillation in the spike train, prior and phase-locked to the stimulus onset, was
correlated with increased gamma power and neuronal baseline activity. This enhancement
of the baseline activity was then followed by an increase in the neural selectivity and the
response reliability and eventually a higher behavioral performance.
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INTRODUCTION
Neurons can spontaneously fire (Wurtz, 1969). This long-known
spontaneous or baseline activity in the brain is, by definition,
not explicitly associated with a sensory input or a motor output
(Ringach, 2009)—though it can show remarkable fluctuations
based on the level of attention or expectation when performing a
cognitive task (Luck et al., 1997; Kastner et al., 1999; Stokes et al.,
2009; van Ede et al., 2010).

The activity induced by an external stimulus interacts with the
ongoing baseline activity to evoke the response in the brain (Fox
et al., 2006; Liu et al., 2011). fMRI studies have reported that
the baseline activity accounts for the trial-to-trial variability in
the brain evoked responses (Fox et al., 2006; Becker et al., 2011;
Liu et al., 2011). There is also evidence from EEG and modeling
studies that the pre-stimulus oscillation interacts with the evoked
response (Rajagovindan and Ding, 2011). These findings suggest
the existence of a relationship between the baseline activity and
the evoked response. However, at the level of single neurons, the
underlying mechanisms for such relationship are not clear yet.

The baseline activity has attracted an increasing research inter-
est by the recent findings suggesting that it plays a key role in the
perception and behavior (Super et al., 2003). Based on EEG/MEG
studies, both power and phase of the “oscillatory” baseline activ-
ity are correlated with the perception (Romei et al., 2008; Busch
et al., 2009; Addante et al., 2011; Dugue et al., 2011). A large
body of fMRI experiments has also shown that the “level” of

baseline activity predicts the behavioral performance (Ress et al.,
2000; Fox et al., 2007; Hesselmann et al., 2008; Scholvinck et al.,
2012). The results of these electrophysiological and neuroimaging
studies have changed the traditional view in which the baseline
activity was considered noise. However, these human studies do
not provide any direct information about the correlation of the
baseline activity of single neurons and the behavior. Furthermore,
it is not clear how the “oscillation” and the “level” of the neural
baseline activity are related to each other. This relationship could
integrate numerous earlier electrophysiological (EEG/MEG) and
imaging (fMRI) studies that have explored these two phenomena
separately.

We addressed these questions by recording from single neu-
rons in inferior temporal (IT) cortex of monkeys performing a
visual categorization task. IT neurons show strong selectivity to
visual object categories such as faces and bodies (Desimone et al.,
1984; Kiani et al., 2007). The activity of these neurons also has
a causal influence on the categorical perception, as shown by the
microstimulation technique in our previous study (Afraz et al.,
2006). The IT cortex, as the final stage of the ventral visual path-
way (Logothetis, 1998), is strongly modulated by “top-down”
signals involved in attention and expectation (Hochstein and
Ahissar, 2002). Since the baseline activity may fluctuate with these
top-down feedback signals, the IT cortex can be an ideal choice to
investigate the role of baseline activity in the behavior during a
complex cognitive task.
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MATERIALS AND METHODS
SUBJECTS
Two male adult macaque monkeys (Macaca mulatta), were used
in this study. Monkey 1 and monkey 2 were 9 and 8 years old,
respectively. Head restraints and recording chambers were stereo-
taxically implanted under aseptic conditions on the dorsal surface
of the skull of the monkeys while the animals were anesthetized
with sodium pentobarbital. All experimental procedures were in
accordance with the National Institutes of Health guide for the
care and use of laboratory animals. They were also approved by
the animal care and use committee of Institute for Research in
Fundamental Sciences (IPM).

STIMULI
The stimuli (7◦ × 7◦ in size) were grayscale photographs of bod-
ies (including human, monkey and four-leg) and non-bodies
(including planes, cars and chairs). There were 90 images for
each category (30 images per subcategory). Each stimulus was
presented in four different signal levels. Each signal level was
generated by assigning grayscale levels randomly chosen from a
uniform distribution to X% of image pixels, where 100-X was the
absolute signal level and had one of the values of 90, 70, 55 or
40. These 720 noisy stimuli (180 × 4) and 90 full noise images
(0% visual signal) were randomly presented to the monkey, with-
out repetition. Images were repeated across the sessions. In all of
the recording sessions (n = 61; monkey 1 = 31, monkey 2 = 30)
monkeys completed at least half of the trials (minimum = 450,
median = 810, mean ± s.e.m. = 791 ± 14). The stimuli were pre-
sented on a 19-inch CRT monitor placed 57 cm in front of the
monkey seated in a primate chair.

TASK
Monkeys were trained to perform a two-alternative forced-choice
body/non-body categorization task. The monkey initiated a trial
by fixating on a fixation point within a 2.4◦ × 2.4◦ window at
the center of the screen for one of the three variable durations
(350, 400 or 450 ms). The fixation time was chosen to be variable,
to make the situation more similar to the natural environment
in which the appearance of a behaviorally relevant sensory stim-
ulus is usually unpredictable. After this fixation period, a noisy
image was presented for 70 ms. After a 500-ms blank interval, two
small response targets were presented 10◦ to the left and right
of the screen center. The left and right targets represented body
and non-body responses, respectively for one monkey and the
opposite for the other one. The monkeys were required to make a
saccade to the correct target no later than 300 ms after the onset
of targets and keep their gaze within 2.4◦ × 2.4◦ window on sac-
cade point for 150 ms. The eye position was monitored using an
infra-red eye-tracking system. Whenever, the monkey performed
the task correctly, a drop of apple juice was delivered into its
mouth. For full-noise stimuli (0% visual signal), the monkey was
rewarded randomly with a probability of 0.5.

RECORDING
Extracellular single-neuron recordings were made on an evenly
spaced grid, with 1-mm intervals between penetrations over a
wide region of the lower bank of STS, TEp, and TEa cortices

(12–18 and 13–20 mm anterior to interauricular line in mon-
key 1 and monkey 2, respectively). The recording positions were
determined stereotaxically by referring to magnetic resonance
images acquired before the surgery. Unit responses were recorded
through tungsten microelectrodes (FHC Inc.). Spiking activity
of 123 visually-responsive single units in IT cortex was recorded
from behaving monkeys, during 61 recording sessions (n = 49
in monkey 1 and n = 74 in monkey 2). Visual responsiveness
was defined as significantly larger evoked responses relative to the
baseline activity following the presentation of body or non-body
images (t-test, alpha = 0.05).

DATA ANALYSIS
• Based on the similar trend of monkeys’ behavior and other

results, data from two monkeys were combined in all of the
analyses.

• Before running any parametric tests, the normality of the
distributions was confirmed by Kolmogorov–Smirnov test
(alpha = 0.05).

• The variance equality of each two groups that were statistically
compared, was confirmed by F-test (alpha = 0.05).

• All of the t-tests were paired t-test, unless otherwise men-
tioned.

• Trials were always aligned to the onset of stimulus presentation,
and all of the times mentioned in the manuscript represent the
time relative to the stimulus onset.

• For the baseline analysis, −200–0 ms relative to the stimulus
onset was used, unless otherwise mentioned. The window used
for the analyses of the evoked response was 150–350 ms after
the stimulus onset.

• PSTHs were smoothed by convolving with a 15-ms Gaussian
kernel.

• For a given neuron, “high baseline trials” (HBT) and “low base-
line trials” (LBT) were defined as trials with higher and lower
baseline firing rate than the mean baseline activity, respectively.

Selectivity Index (SI)
The degree of category selectivity of each neuron for body vs.
non-body images was measured by SI:

SI = μ(B) − μ(O)

μ(B) + μ(O)
× 100

μ(B) and μ(O) were the mean evoked response of each neu-
ron (within 150–350 ms after the stimulus onset) to body and
non-body images, respectively. In each neuron, SI values were
measured in correct trials of each signal level. Then SI values were
averaged across all signal levels. Neurons with SI values larger than
zero were considered as “body-selective.”

Correct/Wrong Index (CWI)
As a normalized index of rate modulation between correct and
wrong trials, we measured CWI:

CWI = μ(C) − μ(W)

μ(C) + μ(W)
× 100
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μ(C) and μ(W) were the mean response of each neuron in a spe-
cific time window in correct and wrong trials, respectively. In each
neuron, the CWI values were averaged across all signal levels. CWI
values shown in Figures 2, 5 were measured in trials were body
images were presented.

Auto-covariation and fast Fourier transform (FFT)
For this analysis, the mean-removed auto-correlation (the auto-
covariance) was calculated in each trial of spiking data in 1 ms
time bins with this formula:

Ck = 1

N − k

N − k∑
t = 1

(xt − x) (xt + k − x)

Where Ck was an unbiased estimate of the auto-covariance coef-
ficient at lag k. N was the number of points in a time series, and x
was the overall mean.

For a given condition (e.g., HBT in body neurons), the auto-
covariation functions were then averaged across all trials and
all neurons. The amplitude spectrum of the averaged auto-
covariation function was obtained using the FFT. We did a
permutation test to assess the significance of the deviation of
the frequency difference in HBT vs. LBT from chance. Trials of
HBT and LBT in each neuron were randomly assigned, while
the proportion of each condition was maintained. We calculated
the auto-covariation and fast Fourier transform in HBT and LBT
for 1000 such permutations. The Amplitude of each frequency
in LBT was subtracted from HBT, which resulted in a distribu-
tion of amplitude difference. The real difference of amplitudes
in our neural population was compared to this distribution. The
proportion of the distribution that exceeded the real value was
determined as the P-value.

Time-frequency analysis
We tested whether the spectral power of baseline spiking activ-
ity was different between HBT and LBT. In a given neuron, after
smoothing the spike train of single trials with a 5-ms Gaussian
filter, the power spectrum was obtained using a time-frequency
transform (wavelets; EEGLAB software under Matlab) (Dugue
et al., 2011). Function of “timefreq” was used with parameters
“cycles” and “freqs” set to [1, 5] and [3, 30], respectively. These
parameters produce frequencies that increase linearly from 3 to
30 Hz, while the length of the filter increases linearly from 1 to 5
cycles. A 5-ms Gaussian smoothing would have a minimal effect
on the frequencies tested here. A 300-ms zero-padding was used
to enhance the frequency resolution in our measurements. To
plot the mean power spectrum in each condition, after averag-
ing the power spectrum of the trials of one neuron, the mean
was measured across the population of body neurons. The dif-
ference of the power spectrum in HBT vs. LBT was measured
by subtracting the averaged power spectrum of the population
of body neurons in LBT from the same in HBT. The significancy
of this difference was tested using a permutation test. The power
spectrum was measured after the association between trials and
conditions (HBT or LBT) in each neuron was randomly assigned,
while keeping the number of trials in each condition constant. A
distribution of the spectral power difference was obtained after

1000 such permutations. The experimentally observed difference
in the power spectrum of HBT vs. LBT was compared to this dis-
tribution to evaluate its deviation from chance. The proportion
of the randomized generated values that exceeded the experimen-
tally obtained difference was determined as the P-value (Dugue
et al., 2011).

Phase locking
We tested the difference of the phase locking between HBT and
LBT. In each neuron, phase information in HBT and LBT con-
ditions was obtained using the time-frequency transform, as
described in the time-frequency analysis. The level of phase con-
centration across trials was quantified by the phase-locking factor
(PLF) or inter-trial coherency (ITC) (Busch et al., 2009). PLF is a
measure of event-related phase consistency of neuronal responses
and was measured with this formula:

PLF = 1

n

⎛
⎝
√√√√( n∑

i = 1

cos θi

)2

+
(

n∑
i = 1

sin θi

)2
⎞
⎠

Where n is the number of trials and θi is the phase angle at
the ith trial. PLF takes values between 0 and 1, representing the
amount of synchronization across trials between the spike train
and a specific event. For this analysis, the amplitude of each fre-
quency in single trials was measured during −300–100 ms relative
to the stimulus onset (Figures 4A,B). In each neuron, the oscilla-
tory trials with amplitude above the 25th percentile were selected
in HBTs and LBTs for the phase analysis. PLF was measured at
each frequency and time point. By subtracting the phase locking
values in LBT from HBT, we calculated the difference of phase
locking between these two conditions. Our results did not depend
on the selected window or the percentile. We did a permutation
test to assess the significance of the deviation of the PLF in HBT
vs. LBT from chance. Phases of high and low baseline trials in
each frequency and time bin were randomly assigned, while the
proportion of each condition was maintained. We calculated the
phase locking difference in HBT vs. LBT for 1000 such permuta-
tions. The real phase locking difference in our data was compared
to this distribution. The proportion of the randomized gener-
ated distribution that exceeded the data-driven difference was
determined as the P-value.

Coupling of theta oscillation with spike probability and gamma
power
First, we performed the time-frequency analysis and the phase
calculation for the theta rhythm (3–7 Hz), as described above.
Here we included the peri-stimulus period of all the trials (HBT
and LBT) in the analysis. The theta troughs were identified as
a time-point where the phase value was larger than the phase
value of its following time-point by more than 5 radians (287
degrees or 1.6π) (Canolty et al., 2006). 200-ms epochs, centered
on the time-points of theta troughs, were extracted from the spike
trains, and the mean spike probability was calculated. To measure
gamma power, after smoothing the spike train of single trials with
a 5-ms Gaussian filter, the power spectrum was obtained using
a time-frequency transform (wavelets; EEGLAB software under
Matlab) (Dugue et al., 2011). Function of “timefreq” was used
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with parameters “cycles” and “freqs” set to [5, 15] and [30, 90],
respectively. These parameters produce frequencies that increase
linearly from 30 to 90 Hz, while the length of the filter increases
linearly from 5 to 15 cycles. To explore the coupling between the
theta rhythm and the gamma power, 300-ms epochs centered on
the time-points of theta troughs were extracted from the power
spectrum of gamma rhythm, and the mean gamma power was
calculated.

Fano factor (FF)
Fano factor was used as an index of response variability:

FF = σ 2

μ

σ2 and μ were the variance and mean of the spike count, respec-
tively. The FF was measured in 100-ms windows with 1-ms steps.
First and last windows were centered at 150 ms and 350 ms after
the stimulus onset. The number of spikes was calculated in each
window in each trial. Then the FF within each window was com-
puted as the ratio of variance in spike counts to mean spike count
across all trials. For rate matching among HBT and LBT con-
ditions in each neuron, the most common firing rate across all
windows in both conditions was selected as the matching rate.
The FFs of all windows with firing rates ±10% of the selected rate
were averaged in each condition. At least 10 such windows were
needed for each neuron to be included in the analysis. 65 body
neurons met these criteria and were included in the FF analysis.

Classifier
A linear “support vector machine” was used to assess the neural
performance. For a given condition (e.g., HBT in body neurons),
the evoked response of neurons (within 150–350 ms after the
stimulus onset) to body and non-body images across signal levels
was used as an input to the classifier. In each round of classifica-
tion, we randomly selected the 75% of trials from every neuron
for training the classifier. The classification performance of the
neural population was tested on the remaining 25% of trials. In
all of the neurons, equal numbers of HBT and LBT trials were
pseudorandomly selected from the pool of trials in each condi-
tion. This procedure was repeated for 1000 rounds to evaluate the
statistical difference in performance between conditions.

Behavioral dprime
To assess monkeys’ behavioral performance, we calculated the
behavioral dprime:

dprime = Z(hit) − Z(false alarm)

Z(hit) and Z(false alarm) were the z-transforms of “hit rate”
and “false alarm,” respectively. “Hits” and “false alarms” were
trials that the monkey categorized the presented image as body
correctly and incorrectly, respectively.

RESULTS
BEHAVIORAL TASK
Two macaque monkeys were trained to perform a two-alternative
forced-choice “body/non-body” categorization task (Figure 1A).

FIGURE 1 | Experimental paradigm and behavioral results. (A) Monkeys
were trained to perform a two-alternative forced-choice body/non-body
categorization task. The stimulus set contained 720 photographs of body
and non-body images, in four different signal levels, and 90 full-noise
stimuli. For illustration only, stimulus is depicted here with a relatively large
size compared to the monitor screen. Numbers represent the duration of
each epoch. (B) Monkeys’ performance. Images on the X-axis are examples
of noisy stimuli in different signal levels. The error bars represent the ±1
standard error of the mean (s.e.m.) across recording sessions (n = 61). (C)

Sagittal section of the MRI at the anteroposterior level of 16 in monkey 1.
Red lines depict the boundaries of recording area (lower bank of STS and
TE). White vertical line schematically represents the inserted electrode.

In this task, monkeys initiated the trials by fixating a central fix-
ation point for ∼400 ms. This pre-stimulus phase was followed
by a brief (70 ms) presentation of an image. The image was cho-
sen pseudo-randomly from a set of pictures of body or non-body
images that were degraded by noise (Emadi and Esteky, 2013).
We used different noise levels to create a range of task difficulties
and to obtain psychometric functions. After a delay of 500 ms,
two targets (saccade points) were presented, and the monkey was
required to make a saccadic eye movement to one of the targets to
indicate whether the image was a body or a non-body. Each cor-
rect response (i.e., when the image was correctly categorized by
monkey) was rewarded by a drop of juice. For “full-noise” stimuli
(0% visual signal), the monkey was rewarded randomly in 50% of
the trials. These trials were excluded during the analysis of neural
data. The performance of monkeys in this categorization task was
plotted as the percentage of “body” choices for the various noisy
stimuli (Figure 1B). As expected, monkeys had a better perfor-
mance when categorizing less noisy stimuli. There was a minimal
bias toward non-body choices in both monkeys (performance at
full noise, mean ± s.e.m.: monkey 1 = 47.6 ± 0.6, monkey 2 =
48.3 ± 0.8). We observed better performance for body compared
to non-body images at 40% signal level in both monkeys. This
could be attributed to the smaller effect of the high-frequency
noise on image contours used in body detection (Downing et al.,

Frontiers in Systems Neuroscience www.frontiersin.org November 2014 | Volume 8 | Article 218 | 4

http://www.frontiersin.org/Systems_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Systems_Neuroscience/archive


Emadi et al. Baseline activity and object recognition

2001). It can also be due to a higher noise tolerance in detect-
ing bodies as a behaviorally important category (Downing et al.,
2006; Pitcher et al., 2012).

We recorded the spiking activity of 123 visually-responsive sin-
gle neurons in IT cortex (Figure 1C) (n = 49 in monkey 1 and
n = 74 in monkey 2). Using a selectivity index that indicates how
selectively the neurons responded to body images vs. non-body
images (see Experimental Procedures), 75 neurons were classified
as “body-selective” and were further analyzed (n = 35 in monkey
1 and n = 40 in monkey 2). These body neurons were all excited
by body presentation and not inhibited.

BASELINE FIRING RATE AND BEHAVIOR
To evaluate the relationship between the baseline activity and
the behavioral performance, we plotted the response of body
neurons to their preferred category (body images) in “correct”
and “wrong” conditions (Figures 2A,B). A 200-ms window just
before the stimulus onset was used for further analyses of the
baseline activity. The averaged firing rate in this window was
7.2 ± 0.7 Hz. The modulation of baseline firing rate in correct
vs. wrong trials, as defined by a “correct/wrong index” (abbre-
viated as CWI, see Experimental Procedures), was calculated in
each body neuron. For the population of neurons, this index
was significantly positive, meaning that baseline firing rate was
higher in correct compared to wrong trials (Figure 2C, CWI =
9.2 ± 2% [mean ± s.e.m.], t-test, P < 10−5). We also found
that baseline CWI was correlated with the selectivity index of
neurons (Figure 2D, Pearson correlation, r = 0.54, P < 10−5).
This result suggests that the relationship between the baseline
firing rate and the behavior was correlated with the category
selectivity of body neurons. Including both correct and wrong
trials to measure selectivity index did not change the results of
Figures 2C,D.

BASELINE SPIKING AND OSCILLATORY ACTIVITY
Next we asked whether this baseline rate modulation was part of
an ongoing oscillation in the neural spiking activity. To evaluate
the relationship between the baseline firing rate and the under-
lying oscillatory activity, we measured the auto-covariation func-
tion separately in “high baseline trials” (HBT) and “low baseline
trials” (LBT) (see Experimental Procedures). For a given neu-
ron, HBT and LBT were defined as trials with higher and lower
baseline firing rate than the mean baseline activity, respectively.
The averaged auto-covariation function of the baseline activity
demonstrated a low-frequency oscillation in HBT (Figure 3A).
This oscillation was virtually absent in LBT (Figure 3A). To
quantify this oscillatory activity, we did a fast Fourier trans-
form (FFT) on the auto-covariation functions of baseline activity
(Figure 3B). This analysis showed a larger amplitude in the low-
frequency rhythms, in HBT compared to LBT. To statistically
confirm this finding, we used a permutation test and found
significantly larger amplitude in 2–7 Hz, in HBT compared to
LBT (permutation test, P < 0.001). This frequency range over-
laps with the delta and theta bands. Since our monkeys were
not cued about the upcoming stimulus, such oscillatory activity
was also expected to happen prior to the presentation of stim-
uli from the non-preferred category. Our analyses confirmed the

FIGURE 2 | Modulation of baseline activity in correct vs. wrong trials.

(A,B) Normalized firing rate in correct and wrong trials, in a representative
body neuron (C36, selectivity index = 0.15) (A), and across all neurons (B).
In each neuron and each signal level, the peak response was measured
separately in correct and wrong trials. The larger peak was selected to
normalize both correct and wrong trials. Finally the normalized firing rates
were averaged across noise levels. The gray boxes represent periods of
baseline and evoked activity used for the further analysis. In (B) shaded
areas represent s.e.m. of correct and wrong responses across the
population. The line above the X-axis represents the significant difference
between correct and wrong responses, obtained by paired t-test in 50-ms
sliding windows with 1-ms steps, plotted at the middle of each bin (t-test,
alpha = 0.05). Stimuli were presented for 70 ms, represented by a black bar
on the X-axis. P-values represent the t-test results for comparing the firing
rates between correct and wrong trials during baseline or evoked windows.
“n” here and in all other figures represents the number of body neurons
included in the analysis. (C) Histogram of the CWI (correct/wrong index) in
the baseline period. The red data-point corresponds to the representative
neuron shown in panel a (C36). The red vertical line shows the line of no
difference (zero). The arrow represents the mean of the distribution. (D)

The relationship of baseline CWI with the selectivity index. Each data-point
corresponds to one neuron. Conventions as described in (C).

presence of a low-frequency oscillation in HBT, in trials in which
non-preferred stimuli were presented. Correspondingly the FFT
results revealed significantly larger amplitude in 2–7 Hz, in HBT
compared to LBT, in those trials (permutation test, P < 0.001).
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FIGURE 3 | Oscillation associated with different levels of baseline

activity. (A) The auto-covariation plot for high baseline trials (HBT) and low
baseline trials (LBT), measured during the baseline period (−300–0 ms).
Low auto-covariation within 2 ms of the central time bin reflects the
absolute refractory period of the isolated single units. (B) The FFT
amplitude of the auto-covariation in HBT and LBT.

These findings suggest a relationship between the firing rate and
the low-frequency (<8 Hz) oscillation of baseline activity.

To further explore the baseline oscillatory activity at each
frequency and time point, we performed a time-frequency anal-
ysis on the spike trains of HBT and LBT (see Experimental
Procedures). Consistent with the auto-covariation results, the
power of low-frequency oscillation (<8 Hz) was larger during the
baseline period, in HBT compared to LBT (Figures 4A,B,C, per-
mutation test, P < 0.001). This difference disappeared around
the onset time of the evoked response [∼100 ms after the stim-
ulus onset, corresponding to the latency of the evoked responses
in the IT cortex (Kiani et al., 2005)].

To test the level of synchronization at different frequencies
in HBT vs. LBT, we calculated the phase locking factor (PLF,
see Experimental Procedures). PLF is a measure of event-related
phase consistency of neuronal responses across trials (Tallon-
Baudry et al., 1997; Delorme and Makeig, 2004; Roach and
Mathalon, 2008; Busch et al., 2009). We found that, during the
baseline period (∼200 ms before the stimulus onset), PLF in
the low-frequency rhythms (<8 Hz) was larger in HBT com-
pared to LBT (Figure 4D, permutation test, P < 0.001). This
difference was also evident just before the evoked response. We
also found a desynchronization in the alpha and beta rhythms
(9–30 Hz) during the baseline period. This can be related to
the previously reported desynchronizing effects of attention on

these frequency bands (Capotosto et al., 2009; van Ede et al.,
2011).

The relationship between the observed low-frequency oscil-
lation and the spike probability was examined by aligning the
spikes relative to the troughs of the theta-frequency oscillation.
We included all trials (HBT and LBT) in this analysis. We found
a coupling between theta troughs and spike probability during
the baseline period (Figure 4E). This coupling was consistent
with the higher power of low-frequency rhythms in HBT vs.
LBT shown in Figure 4C. We observed several distinct peaks
in the spike probability plot, which could be an indication of
cross-frequency coupling between theta and gamma rhythms. We
tested this possibility by calculating the gamma power relative
to the troughs of the theta-frequency oscillation. This analy-
sis revealed a cross-frequency coupling between theta and low
gamma (<50 Hz) bands (Figure 4F). By performing the FFT
analysis on the auto-covariation functions of baseline activity,
we also found a larger amplitude in the gamma band, in HBT
compared to LBT (permutation test, P < 0.001). We further per-
formed a time-frequency analysis on the spike trains of HBT
and LBT in the gamma band (30–90 Hz). Consistent with the
auto-covariation results, the power of gamma oscillation was
larger during the baseline period, in HBT compared to LBT
(permutation test, P < 0.001).

CORRELATION OF BASELINE AND EVOKED RESPONSES
So far our findings suggest that in trials with a synchronized low-
frequency (<8 Hz) oscillation, a higher number of spikes occur
before the stimulus onset. We also showed that a higher baseline
activity was correlated with an improved behavioral performance.
Since the behavioral choice is immediately preceded by the evoked
response, we asked whether the evoked firing rate was also cor-
related with the behavior. Figure 2B shows a difference between
the evoked firing rate in correct and wrong trials. A 200-ms win-
dow from 150 to 350 ms after the stimulus onset was selected
for the further analyses of the evoked response (ratec > ratew in
this time window, t-test, P = 0.00009). The CWI was measured
in this window of the evoked response, in each body neuron.
For the population of neurons, this index was significantly pos-
itive, meaning that the evoked firing rate was higher in correct
trials compared to wrong trials (Figure 5A, CWI = 8.4 ± 1.7%,
t-test, P < 10−5). The evoked CWI was not significantly differ-
ent from the baseline CWI in the population of body neurons
(t-test, P = 0.37). We also found a positive correlation between
the evoked CWI and the selectivity index of neurons (Figure 5B,
Pearson correlation, r = 0.36, P = 0.0006). Including both cor-
rect and wrong trials to measure selectivity index did not change
the results of Figures 5A,B. Thus, similar to the baseline activity,
the relationship between the evoked response and the behav-
ior was correlated with the category selectivity of body neurons.
This similarity suggests that the baseline activity and the evoked
response may be correlated on a trial-by-trial basis. To confirm
this, we measured the correlation between baseline and evoked
firing rates in each neuron, across trials. We found significant pos-
itive correlation in 44% of body neurons (Pearson correlation,
r > 0, P < 0.05). We also observed a correlation between base-
line and evoked responses across the population with an average
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FIGURE 4 | Spectral power and phase associated with different levels of

baseline activity. (A,B) The averaged spectral power of the population of
body neurons in HBT (A), and LBT (B). (C) The difference of the spectral

power in HBT vs. LBT. (D) The difference of the phase locking in HBT
compared to LBT. (E) Coupling between the theta troughs and the spike
probability. (F) Coupling between the theta troughs and the gamma power.

correlation coefficient of 0.124 ± 0.0173 that was significantly
larger than zero (Figure 5C, t-test, P < 10−5). The correlation
between the baseline activity and the responses evoked by the
non-preferred category was also positive and significant (average
r = 0.123 ± 0.0174, t-test, P < 10−5). All these results suggest
that trials with higher baseline activity also show higher evoked
responses.

RELATIONSHIP BETWEEN BASELINE ACTIVITY AND SELECTIVITY OF
THE EVOKED RESPONSE
Based on the observed correlation between the baseline activ-
ity and the evoked response, we hypothesized that the baseline
activity interacts with the evoked response to influence the neu-
ral coding and eventually the behavioral performance. This idea
was supported when we compared different aspects of the evoked
responses in HBT and LBT. We first measured the “neural dis-
criminability” (as defined by the differential response to body
vs. non-body images) in HBT and LBT. This metric was signifi-
cantly higher in HBT than LBT across the population (Figure 6A,
�responseHBT − �responseLBT = 0.027 ± 0.014, t-test, P =

0.03). This finding suggests that despite a rate enhancement
in HBT for both preferred and non-preferred categories (pos-
itive correlation of baseline and evoked firing rates for both
categories), the magnitude of this effect was still larger for the
preferred category. This could result in better discrimination
of preferred vs. non-preferred categories. The enhanced neural
discriminability in the evoked responses of HBT suggests a mul-
tiplicative response gain modulation in these trials (McAdams
and Maunsell, 1999; Treue and Martinez Trujillo, 1999; VanRullen
et al., 2006).

RELATIONSHIP BETWEEN BASELINE ACTIVITY AND VARIABILITY OF
THE EVOKED RESPONSE
In addition to the response amplitude for preferred vs. non-
preferred categories, the variability of the evoked response within
each category could also affect the category selectivity of neu-
rons. It has been reported that visual attention decreases the
variability of the stimulus-evoked response (Mitchell et al.,
2007). However, the relationship between the modulation of
baseline activity and the variability of evoked response is not
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FIGURE 5 | Modulation of the evoked response in correct vs. wrong

trials; correlation of baseline and evoked responses. (A) Histogram of the
CWI of the evoked response. (B) The relationship of the evoked CWI with the

selectivity index. (C) The histogram representing the correlation of baseline
and evoked firing rate. Each data point shows the correlation coefficient value
for one body neuron. Conventions as described in Figure 2.

FIGURE 6 | Contribution of the baseline activity to the evoked

response, neural and behavioral performance. (A) The histogram
showing the modulation of the differential neural responses in HBT vs. LBT.
This differential response (?response) was obtained by subtracting the
normalized evoked response to non-body images from the normalized
evoked response to body images. One data point (X = 0.91) was larger
than the X-axis limit and is not shown here (B) The modulation of the
rate-matched Fano factor in HBT vs. LBT. (C) The performance of a neural
classifier in HBT and LBT. Error bars indicate the s.e.m. over 1000
repetitions of the classification in each condition. (D) The modulation of the
behavioral dprime (d′) in HBT vs. LBT. Conventions as described in Figure 2.

known. To address this issue, we measured the response vari-
ability using rate-matched Fano factor (FF, see Experimental
Procedures). Interestingly, we found that the rate-matched FF was
lower in HBT than LBT, for the preferred category (Figure 6B,
�FF FFHBT − FFLBT = −0.06 ± 0.02, t-test, P = 0.01). A sim-
ilar trend was also observed for the non-preferred category
(�FF FFHBT–FFLBT = −0.04 ± 0.029, t-test, P = 0.06). Lower
response variability for both preferred and non-preferred cate-
gories could enhance the differentiation between the two response
distributions. Thus, unlike the firing rate which was selectively

modulated, the response reliability was increased independent of
which category was presented. This suggests the possibility of
two different mechanisms, one selectively affecting the response
amplitude and the other non-selectively changing the response
variability, both acting to maximize the category selectivity of
neurons.

RELATIONSHIP BETWEEN BASELINE ACTIVITY AND
NEURAL/BEHAVIORAL PERFORMANCE
Given an enhancement in neural discriminability and response
reliability in HBT, we predicted an improved neural and behav-
ioral performance in HBT compared to LBT. The neural per-
formance, assessed by a linear classifier trained on the popu-
lation of neurons to discriminate body and non-body images
(see Experimental Procedures), was higher in HBT [Figure 6C;
�performance (performanceHBT − performanceLBT) = 3.5 ±
0.6%, P < 10−5]. The behavioral performance, quantified by
dprime index (see Experimental Procedures), was also signifi-
cantly higher in HBT [Figure 6D; �d′ (d′

HBT − d′
LBT) = 0.04 ±

0.02, t-test, P = 0.016]. All these results suggest that an improved
response selectivity and reliability, which happened in trials with
a stronger low-frequency oscillation and a higher baseline fir-
ing rate, has resulted in more efficient neural coding and better
behavioral performance.

The baseline activity in a given trial could be potentially mod-
ulated by various events in a preceding trial. To test this, trials
were divided into two groups based on a particular event in
the preceding trial, then the baseline firing rates in these two
groups were compared. We did this analysis for the following
conditions: (1) the image in the preceding trial was a body or a
non-body (Figure 7A, t-test, P = 0.7), (2) the image in the pre-
ceding trial was a low-noise image (90 or 70% noise levels) or
a high-noise image (55 or 40% noise levels) (Figure 7B, t-test,
P = 0.2), (3) the monkey’s choice in the preceding trial was a
body choice or a non-body choice (Figure 7C, t-test, P = 0.16),
(4) the monkey’s response in the preceding trial was a correct
response (“reward” condition) or a wrong response (“no reward”
condition) (Figure 7D, t-test, P = 0.4). The results showed no
significant modulation of the baseline firing rate by different
events in the preceding trial.
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FIGURE 7 | Relationship between different events in the preceding

trial and the baseline airing rate in the following trial. The baseline
firing rates were compared between different conditions of the last trial:
a body or a non-body image was presented (A), a high-noise (90 and

70%) or low-noise (55 and 40%) image was presented (B), a body or a
non-body choice was made by the monkey (C), a correct or a wrong
choice was made by the monkey (D). Each data point shows the one
body neuron.

During the baseline period, monkeys maintained their fixation
on the fixation point, within a fixation window. However, small
eye movements (microsaccades) within that window were possi-
ble. We explored the spectral pattern of eye movements during
the baseline period and compared in HBT vs. LBT to rule out any
potential effects on our results. For this, the power spectrum of
horizontal (X) and vertical (Y) eye positions was computed for
the baseline period, in HBT and LBT (Figure 8). There was no
difference in the power spectra of eye data between HBT and LBT
(permutation test, P > 0.05). The incidence of small eye move-
ments was also measured for the baseline period, in HBT and LBT
(HBT = 1.29 ± 0.59, LBT = 1.33 ± 0.50). Again we found no dif-
ference in the number of small eye movements between HBT and
LBT (t-test, P = 0.67).

DISCUSSION
By recording from the single neurons in the IT cortex of mon-
keys performing a visual categorization task, we found a chain of
neural events that linked the baseline activity to cortical sensory
processing and perception: (1) emergence of oscillatory activity
in a low-frequency range (<8 Hz) during the baseline period,

(2) phase locking of this oscillation to the stimulus onset, (3)
coupling of low- and high-frequency rhythms, which was accom-
panied by a “baseline shift” in a critical time window just before
the stimulus onset, (4) consequent improvement in the selectiv-
ity and reliability of neuronal evoked responses, and (5) correct
behavioral choice.

Using a schematic model, we have summarized our findings
to describe how a correct choice is made during the catego-
rization task (Figure 9). A synchronous oscillation of baseline
activity occurs across a population of IT neurons. The strength
of such synchronous oscillatory activity can vary across trials,
based on the level of cognitive factors such as attention and
motivation. In trials with a strong low-frequency (<8 Hz) oscil-
lation, that is coupled with the gamma band and phase-locked
to the stimulus onset, a peak of the oscillation can effectively
occur before the stimulus presentation; a situation that results
in an apparent “baseline shift.” Another peak of the oscilla-
tion can also occur around the stimulus presentation, which
would enhance the neural responsiveness and produce an ele-
vated evoked response. The enhanced baseline and evoked activ-
ity in these oscillatory/HBT trials subsequently increases neural
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FIGURE 8 | Monkeys’ eye movements in HBT and LBT. The power
spectrum of the monkeys’ horizontal (X) and vertical (Y) eye positions in
single trials, during baseline period (−300–0 ms), is shown. To test if the
results were different between HBT and LBT we performed a permutation
test, separately for horizontal and vertical positions. In the permutation test,
the trials were randomly assigned to HBT and LBT while keeping the
number of trials in each condition unchanged. We compared the
experimental spectral power difference with the distribution of spectral
power differences obtained from 1000 such permutations. The results
showed that the difference between the spectral power of HBT vs. the
spectral power of LBT, for the horizontal or vertical positions, was not
significant (P > 0.05).

selectivity and reduces response variability (two signatures of
an improved neural performance (Treue and Martinez Trujillo,
1999; Mitchell et al., 2007). A higher neural performance would
eventually lead to an increased probability of correct choices
(Figure 9A). Consistent with this model, the response of body
neurons in correct trials of our experiment shows a rhythmic
baseline shift, a higher response selectivity and reliability, and
subsequently a larger difference between the evoked responses to
the preferred and non-preferred categories (Figure 9B). On the
other hand, in trials lacking the synchronized oscillatory activ-
ity, the baseline activity is constantly low. Stimuli presented in
this state evoke low-amplitude responses, with less selectivity and
reliability, followed by wrong choices (Figure 9C). The response
of body neurons in wrong trials of our experiment is consistent
with this model (Figure 9D). The model predicts that, for deci-
sion making about the stimulus, a decision boundary could be
set efficiently in HBT as a result of higher response discriminabil-
ity and lower response variability. In contrast in LBT, responses
to different categories are mixed and no clear decision boundary
would exist. Both predictions are consistent with our data.

Various cognitive factors can modulate the baseline activ-
ity in the brain. Previous electrophysiological (Chelazzi et al.,
1993; Fries et al., 2008) and fMRI (Puri et al., 2009) studies
have reported that spatial attention, feature-based attention, and
expectation/anticipation of a task-related stimulus can modu-
late the baseline activity in many cortical areas. This task-related
modification of spontaneous neuronal activity is thought to be
implemented by top-down control mechanisms (Chawla et al.,
1999; Kastner et al., 1999). Some studies have suggested that
these top-down effects on the pre-stimulus activity are mediated
through an enhanced firing rate (Luck et al., 1997; Super et al.,
2003), whereas other studies have reported an enhancement of
ongoing theta and alpha oscillations (Busch and VanRullen, 2010;

FIGURE 9 | Neural events following baseline modulation during a

categorization task. (A) Schematic diagram of the mean response of a
model body neuron responding to body and non-body images in “correct”
trials. The impact of rhythmic baseline modulation on the neural response
and behavior is illustrated. X-axis as in (B). (B) Plot of normalized averaged
firing rate of body neurons in correct trials. In each neuron and each signal
level, the firing rates were normalized by the peak response, and then the
normalized firing rates were averaged. (C) Schematic diagram of the mean
response of a model body neuron responding to body and non-body images
in “wrong” trials. The impact of no baseline activity on the neural response
and behavior is illustrated. X-axis as in (D). (D) Plot of normalized averaged
firing rate of body neurons in wrong trials. Normalization was done
similar to (B).

Mo et al., 2011). Consistent but complementary to those findings,
our results showed an enhancement of oscillatory spiking activity,
in a low-frequency range (<8 Hz), during the preparatory state.

The coupling of synchronized oscillations across different cor-
tices could be a mechanism for the cognitive roles of the neural
oscillatory activity. It has been shown that theta-coupling between

Frontiers in Systems Neuroscience www.frontiersin.org November 2014 | Volume 8 | Article 218 | 10

http://www.frontiersin.org/Systems_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Systems_Neuroscience/archive


Emadi et al. Baseline activity and object recognition

area V4 and the prefrontal cortex predicts the behavioral perfor-
mance in a visual memory task (Liebe et al., 2012). It is possible
that in our task, the observed oscillatory activity in the IT cortex is
coupled with the oscillatory activity in a downstream area such as
prefrontal cortex. This coupling could coordinate action poten-
tial communication between these areas and facilitate the relay
of visual information to the areas that are more involved in con-
scious perception (Dehaene and Changeux, 2005; Libedinsky and
Livingstone, 2011). This hypothesis needs simultaneous record-
ing from IT and prefrontal cortex to be confirmed.

We found a coupling between the ongoing low-frequency
oscillation and the spike probability. It has been proposed that
specific phases of neural oscillations could create periodic win-
dows of modulated neural excitability (Bishop, 1932; Lee et al.,
2005; VanRullen et al., 2005; Haider and McCormick, 2009; Busch
and VanRullen, 2010; Haegens et al., 2011). In primary visual
cortex, the phase of low-frequency oscillations is realigned by
attention, and consequently the attended events occur during the
high-excitability phase of the oscillations (Lakatos et al., 2008).
Analogously in our experiment, low-frequency (<8 Hz) oscilla-
tions were observed before and locked to the stimulus onset (note
that long cycles of low-frequency rhythms could cover the 100-
ms jitter in the fixation duration). The fact that our effect was
observed in the range of delta (<4 Hz) and theta (4–7 Hz) indi-
cates that these two oscillation bands could contribute to similar
cognitive functions in the brain. These oscillations provided a
precise temporal structure for the modulation of baseline spiking
activity and the responses evoked by the stimulus.

The potential impact of rate on the observed power of oscilla-
tory activity might be a concern. However, the relation between
firing rate magnitude and power of oscillation has not been com-
pletely understood. In fact, for different oscillation frequencies
there is no, positive or negative correlation between firing rate
and oscillation power. For example, it has been shown that spik-
ing activity is negatively and positively correlated with the power
of low and high gamma range, respectively (Ray and Maunsell,
2011). Please note that the large difference observed in the ampli-
tude of oscillation in different frequencies within a very short
frequency range (for example, compare the power at 3 and 5 Hz
in Figure 3) is not expected merely based on the correlation of
oscillation power with firing rate. Additionally, our finding of sig-
nificant phase locking difference between LBT and HBT does not
dependent on the power of the low frequency oscillations in these
two conditions. This finding independently validates separation
of trials into high and low rate.

We found a cross-frequency coupling between the low-
frequency rhythms and the gamma oscillation. The coupling
between low- and high-frequency bands has been reported for the
ongoing activity in the human brain (Canolty et al., 2006). This
coupling coordinates activity in distributed cortical areas provid-
ing a more efficient communication among these areas during the
cognitive tasks. In our task, the cross-frequency coupling could
enhance the neuronal synchronization at the gamma band, which
can improve the behavioral performance (Womelsdorf et al.,
2006). It has been shown that attention increases the gamma-
band synchrony between prefrontal cortex and the visual areas
(Gregoriou et al., 2009). Such synchrony might enhance the

postsynaptic impact of spikes and improve cross-area communi-
cation and neuronal interactions (Womelsdorf et al., 2007).

How could the baseline activity interact with the stimulus-
evoked response? At the cellar level, occurrence of few spikes
just before the arrival of evoked synaptic activity could increase
neural membrane conductance and lead to an enhanced neu-
ronal responsiveness (Haider et al., 2007). At the network level,
a rhythmic baseline activity, reflecting a synchronized response of
neuron assemblies, could provide a precise temporal window for
an efficient integration of synaptic inputs (Volgushev et al., 1998;
Schroeder and Lakatos, 2009). This network effect would again
increase the likelihood of driving postsynaptic target neurons
(Salinas and Sejnowski, 2001; Azouz and Gray, 2003).

The correlation between the baseline activity and detection
performance has been reported in other cortices as well (Ress
et al., 2000; Super et al., 2003; Addante et al., 2011; Carnevale
et al., 2012; Bennett et al., 2013; Spaak et al., 2014). Thus, it is
conceivable that the internal state of visual cortex affects sensory
processing and behavioral performance in a wide range of cogni-
tive tasks and brain areas. With development of new techniques
such as optogenetics, it would be possible to alter the rhythmic
background activity of neurons in specific time windows and test
the “causal” role of such activity in perception and performance.

Numerous studies have shown that neural oscillation is used
to coordinate and synchronize the activity of “population of neu-
rons” with similar or related stimulus-response profile, thereby
resulting in perceptual enhancement and improved behavioral
performance (Gray et al., 1989; Engel et al., 2001). In trials with
high baseline activity, the low-frequency (<8 Hz) rhythms in
spiking activity were phase-locked across all trials, cells and ses-
sions. However, this synchrony may not be the only mechanism
of signal-to-noise improvement in our task. Here we propose an
additional mechanism for the enhancement of neural code and
behavioral performance at the level of “single neurons”: if the
rhythmic spiking activity happens in a specific time relative to the
stimulus onset, it would enhance the responsiveness of single neu-
rons. As a result of such exact timing in all trials and sessions, a
synchrony could be also observed at the population level.

Our study provides a single-neuron report on the correlation
of the baseline activity in a high-level visual area with the evoked
response (its selectivity and variability) and also the behavior.
Our findings fill the gap between studies reporting the role of the
“brain state” during the pre-stimulus time and studies reporting
the role of the “cognitive state” (such as attentional effects) dur-
ing the evoked response. Furthermore, it is important to note that
many electrophysiological studies have largely ignored the role
of baseline activity in neural and behavioral effects, mainly by
excluding it from the analysis through a “baseline adjustment.”
Such a crucial role for the baseline activity could have a profound
impact on the way the previous results have been interpreted and
also on the future studies.
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