Fast Best Subset Selection: Coordinate Descent and Local
Combinatorial Optimization Algorithms

Hussein Hazimeh * and Rahul Mazumder T

Massachusetts Institute of Technology

March, 2018

Abstract

We consider the canonical Ly-regularized least squares problem (aka best subsets) which is
generally perceived as a ‘gold-standard’ for many sparse learning regimes. In spite of worst-case
computational intractability results, recent work has shown that advances in mixed integer op-
timization can be used to obtain near-optimal solutions to this problem for instances where the
number of features p ~ 103. While these methods lead to estimators with excellent statistical
properties, often there is a price to pay in terms of a steep increase in computation times, es-
pecially when compared to highly efficient popular algorithms for sparse learning (e.g., based
on Lj-regularization) that scale to much larger problem sizes. Bridging this gap is a main goal
of this paper. We study the computational aspects of a family of Ly-regularized least squares
problems with additional convex penalties. We propose a hierarchy of necessary optimality con-
ditions for these problems. We develop new algorithms, based on coordinate descent and local
combinatorial optimization schemes, and study their convergence properties. We demonstrate
that the choice of an algorithm determines the quality of solutions obtained; and local combina-
torial optimization-based algorithms generally result in solutions of superior quality. We show
empirically that our proposed framework is relatively fast for problem instances with p ~ 108 and
works well, in terms of both optimization and statistical properties (e.g., prediction, estimation,
and variable selection), compared to simpler heuristic algorithms. A version of our algorithm
reaches up to a three-fold speedup (with p up to 10%) when compared to state-of-the-art schemes
for sparse learning such as glmnet and ncvreg.

1 Introduction

We consider the usual linear regression setup with response y € R™, model matrix X € R"*P,
and regression coeflicients € RP. We will assume that the columns of X are mean-centered and
standardized to have unit f3-norm and y is centered. In the high-dimensional learning framework
with p > n, it is desirable to estimate S under the assumption that it is sparse, i.e., 8 has few
nonzero entries [§, [I8]. With least squares as the data-fidelity term, this leads to the well-known
best-subset selection problem [25] in constrained form:

~ 1
Bro € argmin iHy — X813 st Blo <k, (1)
BERP

“H. Hazimeh’s research was partially supported by ONR-N000141512342. email: hazimeh@mit.edu
fR. Mazumder’s research was partially supported by NSF-IIS-1718258 and ONR-N000141512342 . email:
rahulmaz@mit.edu

where, ||8]lo £ > icpp) L[Bi # 0] denotes the Ly pseudo-norm of 3 and k controls the model size.

The statistical properties of BLO are well-understood, see for example [13] [14], 30, B7] (and references
therein), and this estimator is widely considered as a ‘gold-standard’ for sparse regression (assuming
it can be computed). Suppose data is generated from a true linear model y = X3° + ¢ where 3°

is sparse and ¢; id N(0,02). It is well-known that BLO has excellent statistical properties (variable
selection, estimation and prediction error) when the signal-to-noise ratio (SNR)H is high. Indeed,
in several regimes, S has superior statistical properties compared to computationally friendlier
schemes (e.g., based on Lj-regularization) [5, 38, [4]. However, when the SNR becomes low, S
suffers from over-fitting—its performance deteriorates in terms of variable selection and prediction
error [24, 12]. Recently [24] [I7] explored the relatively less-known characteristic of Bro in the
low SNR regime, wherein continuous-shrinkage based estimators like the ridge/Lasso are found
to deliver better predictive models compared to ELO. [24] propose to circumvent this unfavorable
behavior of 19 by considering a regularized variant of the form:

o1 2
min Sy = XBI3+AIBl, st (Bl <k 2)

where ||8||q, ¢ € {1,2} is the L, norm of 3, and A controls the amount of shrinkage. [24] demonstrate
(theoretically and empirically) that estimator has superior or comparable predictive accuracy
compared to Lasso/ridge, and it often leads to solutions with much fewer nonzeros. Thusly mo-
tivated, in this paper, we consider a penalized versionﬂ of regularized subset-selection estimators
introduced above:

min F(B) = £(8) + XollBllo (3)

BERP

where, Ao > 0 and f(f3) is the least squares term with additional convex penalties:

f(ﬁ)dzefE\Iy—XﬁllzﬂLAlllﬁlll+/\2||ﬁ||§7 (4)
and Aq, Ao > 0 are a-priori known tuning parameters that control the amount of continuous shrink-
age. In this paper, we will set at least one of the tuning parameters Ai, A2 to zero, and focus on
the following cases: (i) Ay = 0 and A2 > 0, with Problem denoted as (LgLs) (ii) Ay > 0 and
A2 = 0, with denoted as (LoL1) and (iii) Ay = A2 = 0, with denoted as (Lo).

Current computational landscape: We discuss a key aspect of Problem : its computational
properties. Computing fr is known to be NP-hard [26] — in fact, the well-known R package leaps
can compute solutions to Problem for n > p ~ 30. Recently, [5] have shown that significant
computational advances in mixed integer optimization (MIO) can be leveraged to compute near-
optimal solutions to Problem for instances much larger than what was considered possible
in the wider statistics community since [I1]. [5] demonstrated that for problem instances with
p =~ 1000, high-quality solutions can be obtained for the best-subset problem within a few minutes
with Gurobi’s (commercial-grade) MIO solver, when initialized with good warm-starts available
from discrete first order algorithms similar to iterative hard thresholding (IHT)EL What sets this
MIO-based framework apart from other heuristic approaches is its ability to deliver certificates of
(approximate) optimality via dual bounds, at the cost of longer computation times. [24] adapt the
approach of [5] to Problem (2). [4] propose an impressive cutting plane method (using Gurobi)

'For a linear model with y; = p; + €;,4 € {1,...,n} we define SNR=Var(u1)/Var(e).

2The penalized version is chosen primarily from a computational viewpoint.

3Usually, Gurobi can take anywhere between 5-30 minutes to get a near-optimal solution for a particular subset
size when warm-started with a solution obtained via the discrete first order methods

for subset selection that works well with mild sample correlations and a sufficiently large n. [22]
demonstrate the use of MIO in the context of an Lg-variant of the Dantzig Selector. Sophisticated
mathematical optimization-based techniques such as MIO seem to be useful for applications where
near real-time training is not of primary importance, but being able to obtain high quality solutions
with optimality-certificates is of foremost importance. On the other end, the extremely efficient
and optimized implementations of solvers for Li-regularization (Lasso) (e.g., glmnet [10]) can
compute an entire regularization path (with a hundred values of the tuning parameter) in usually
less than a second. Indeed, it seems that there is a steep price to pay in terms of computation
time for using best-subsets [5] versus popular learning schemes like Lasso. As pointed out by [17],
the increased computation time might discourage practitioners from adopting global optimization-
based solvers for Problem for daily data-analysis purposes. However, it is well known [20), 5] [38],
23, [32] that there is a significant gap in the statistical quality of solutions that can be achieved via
Lasso (and its variants) and near-optimal solutions to nonconvex subset-selection type procedures.
Furthermore, as we explore in this paper, the choice of an algorithm can significantly affect the
quality of solutions obtained: on many instances, algorithms that perform a better job in optimizing
the nonconvex subset-selection criterion result in superior-quality statistical estimators (for
example, in terms of support recovery). In our experiments, we observed that when the underlying
statistical problem is difficult, almost all state-of-the-art algorithms for sparse learning (Lasso,
iterative hard thresholding, stepwise regression, MCP penalized regression, etc), as implemented in
popular packages, fail to recover the support of 3°. However, a better optimization of Problem ,
using local combinatorial optimization methods we develop herein, seems to ameliorate this problem
— in comparable run times.

Our contributions: The above discussion suggests that it is critical to develop an algorithmic
framework for subset-selection type problems, leading to near-optimal solutions for problems with
p ~ 103-10%, in times that are comparable to fast coordinate-wise algorithms for Lasso/nonconvex
(MCP) penalized regression, for example. To this end, we revisit popular heuristic approaches for
Problem that rely on greedy stepwise methods [16] and/or iterative hard thresholding (IHT)
methods [6l [5]. We then ask the following questions: (i) Can we use more advanced techniques
from computational mathematical optimization to develop efficient algorithms for Problem with
associated optimality properties, suitably defined? (ii) Can the algorithms be made comparable in
speed with efficient algorithms for Lasso, for example? Addressing these questions is the primary
goal of this paper.

We draw inspiration from the efficiency of coordinate descent (CD) based algorithms popularly
used in the context of sparse regression [7, 23], 10, 27]. However, unlike convex problems like
Lasso, Problem is nonconvex, and therefore, investigating the quality of solutions is more
delicate. Since we seek to create algorithms with run times comparable to glmnet and ncvreg
(for example), it seems that the notion of global optimality, which is closely linked to the global-
optimization based MIO framework, is practically unrealistic. We will thus need to investigate
weaker notions of optimality. To this end, conditions necessary for a solution 5 to be optimal for
Problem motivate various notions of stationarity or local optimality (as we define in this paper).
Indeed, as we discuss in this paper, the notion of a stationary solution is closely linked to the type
of algorithm used to obtain solutions to Problem . In other words, the quality of a solution
depends upon the algorithm used for Problem . For example (see Section , it Sc{1,2,...,p}
then min{f(8) | B; = 0,i ¢ S} leads to a stationary solution for Problem (3). However, as we show,
it is possible to obtain better (in terms of smaller objective value) solutions with more advanced
optimization routines. Since Problem is the sum of a smooth convex loss and a non-smooth
regularizer, which is separable across the coordinates of 3, one can apply IHT-type methods [24. [6];

and even coordinate-wise algorithms [29] to get good solutions to Problem . The fixed points
of these algorithms correspond to restricted notions of stationary solutions for Problem — fixed
points associated with an IHT-type algorithms always include the fixed points associated with
coordinate-wise algorithms (see Section[2). In fact, the class of coordinate-wise stationary solutions
are sensitive to whether we perform a complete minimization for every coordinate or not. One
can obtain even more refined classes of stationary solutions by drawing inspiration from local
combinatorial optimization algorithms. To this end, we introduce the notion of swap inescapable
minima (Section|2)) — in words, these are stationary solutions that cannot be improved by (locally)
perturbing the current support of a stationary solution and optimizing over the new support.
This introduces a hierarchy of necessary optimality conditions for Problem and inspires new
algorithms for Problem . We demonstrate that as one moves up the hierarchy, it is possible to
obtain (i) better solutions for Problem (3)) with marginally increasing run times and (ii) estimators
with superior statistical properties, when compared to several other sparse regularization techniques
with similar computational scalability and run times.

We summarize our contributions below:

1. We introduce a family of necessary optimality conditions for Problem , leading to a hi-
erarchy of classes of stationary solutions. Classes higher up in the hierarchy are of higher
quality and include stationary solutions that cannot be improved by local perturbations to
the support of the current solution.

2. We develop an algorithmic framework, relying on cyclic CD and local combinatorial opti-
mization that enables us to attain these classes of stationary solutions. We explore how the
choice of an optimization algorithm for Problem affects the quality of solutions obtained.
We establish a novel convergence analysis of a variant of a coordinate-wise algorithm that
performs full optimization per coordinate. Our local combinatorial optimization algorithms
are based on highly structured MIO formulations that can run in the order of seconds to
minutes when p is in the order of 10% to 10°.

3. We provide an open-source and extensible C++ toolkit LOLearn with an R interfaceﬂ imple-
menting the algorithms in this paper. Our implementation pays careful attention to several
delicate computational details and exploits problem-structure to achieve run times that are
often faster than efficient implementations of Lasso (glmnet), nonconvex penalized regres-
sion (ncvreg). Typical speedups of a version of our algorithm on real and synthetic datasets
are between 25% to 300% for p up to 10% and n ~ 103.

4. In a series of experiments on real and synthetic datasets, we demonstrate that the algorithms
proposed herein, do a better job at optimizing Problem and achieve superior statistical
performance in terms of estimation, prediction, and variable selection accuracy compared to
popularly used state-of-the-art methods for sparse learning. The quality of solutions obtained
by our algorithms is empirically found to be similar to those available via MIO on the full
problem [5], but with significantly smaller and practical run times.

1.1 Related work

There is a large literature on algorithms for sparse linear regression — see for example [5, [1], for
an overview. A popular heuristic for best-subset selection (i.e., Problem (1)) is (greedy) stepwise

4Available at http://github.com/hazimehh/LOLearn

http://github.com/hazimehh/L0Learn

regression [I7, [I6] — however, this becomes prohibitively expensive as soon as the number of features
is of the order of tens of thousands. IHT or proximal gradient type algorithms [0, 5] are also a
popular choice for Problem and its Lagrangian version. However, IHT-type methods require
full gradient evaluations at every iteration making it computationally less appealing than coordi-
nate descent (CD)-type methods—we have also experienced a similar observation for Problem .
Indeed, in the case of Lasso, CD-type algorithms are computationally more attractive compared to
proximal gradient methods [10, 27]. Furthermore, we show in Section [2| that stationary solutions
associated with IHT-type algorithms strictly contain those associated with CD-type algorithms.
Similar observations on IHT and CD-type algorithms have also been made by [1] for Problem
and [29]. Moreover, for the least squares loss [23], [7] propose efficient cyclic CD algorithms for con-
tinuous (nonconvex) regularizers (like MCP, SCAD), adapting the framework of [35], which uses
full minimization in every coordinate block. We note that the objective function in Problem is
not quasiconvex in every coordinate, and hence the convergence of CD with complete minimization
cannot be guaranteed [35]. [29] have used random CD for the penalized version of Problem (/1)) with
a conservative step size. The conservative step size and the random choice of coordinates facilitate
the convergence analysis of the algorithms. However, a conservative step size leads to a class of
stationary solutions containing that generated by complete minimization (see Section . More-
over, based on our empirical evidence, a (partially greedy) cyclic CD with complete minimization
for every coordinate is found to be superior to random CD methods with a conservative step-size
in both solution quality and running time. Due to its competitive performance, we use a (par-
tially greedy) cyclic CD algorithm to obtain coordinate-wise stationary solutions for Problem .
However, proving the convergence of this algorithm to a coordinate-wise stationary solution is not
straightforward — rigorously establishing convergence is an important contribution of our work. We
note that [2] advocates the use of a cyclic CD rule over randomized CD for convex problems due to
their faster convergence. Furthermore, in the context of random CD algorithm, calls to the random
number generator for large-scale problems can become a computational burden [27].

An important aspect of our work that makes it different from earlier works on CD-like algorithms
for best-subset selection [I], [29] is the exploration of local combinatorial optimization schemes to
define finer classes of stationary solutions. A special case of this, in the form of single coordinate-
swaps, was proposed by by [I] for Problem — however, there are important differences in our
approaches as we consider much smaller classes of stationary solutions, described via (local) com-
binatorial optimization schemes. In addition, our work carefully considers computational efficiency
and scalability to large problems, an aspect which has not been explored previously by similar
algorithms (see the discussion in Sections [2| and .

1.2 Notation and Preliminaries

We make use of the following notation in this paper. We denote the set {1,2,...,p} by [p], the
canonical basis for RP by eq,...,ep, and the standard ¢ Euclidean norm by || - ||. For g € RP,
Supp(fB) denotes its support, i.e., the indices with non-zero entries. For S C [p], Bs € RI®l denotes
the subvector of 8 with indices in S. Similarly, X g denotes the submatrix of X with column indices
S. U® denotes a p x p matrix whose ith row being e; if i € S and zero otherwise. Thus, for any

BERP (USR); =B ifi € S and (UB); =0ifi¢gS.

We use the shorthands: (i) LoLg to denote Problem with \; = 0 and A\ > 0; (ii) LoL; to
denote Problem with Ay > 0 and Ag; and (iii) Ly to denote Problem with \1 = Xy = 0.
Furthermore, for Problem we assume that Ag > 0.

2 Necessary Optimality Conditions

We study different notions of necessary optimality conditions for Problem . We start with
the basic notion of stationary solutions, and we subsequently refine this notion in Sections

and 2.3

2.1 Stationary Solutions

For a function g : RP — R and a vector d € RP, we denote the (lower) directional derivative[3] [35]
of g at 8 in the direction d by:

¢ (B;d) £ liminf <

9(B+ ad) — 9(5)) ‘
al0

(0}

Directional derivatives play an important role in describing necessary optimality conditions for
optimization problems [3]. For example, let us consider the unconstrained minimization of g when
it is continuously differentiable. Here, the well-known first-order stationarity condition, Vg(53) = 0
follows from imposing ¢'(8;d) = Vg(B8)Td > 0 for any d. Note that 8 — f(B3) is convex with
any subgradient denoted by Vf(5) € RP. If 5 has support S, then, the function ug — f(ug) is
differentiable at Ss. Thus, Vg f(8) € RI®! is the gradient of f(ug) at fBs.

Although the objective F(8) (of Problem (3])) is not continuous, it is insightful to use the notion
of a directional derivative to arrive at a basic definition of stationarity for Problem
Definition 1. (Stationary Solution) A vector 8 € RP is a stationary solution for Problem (3) if
for every direction vector d € RP, the lower directional derivative satisfies: F'(S;d) > 0.

The next lemma gives a more explicit characterization of F’(f;d) being non-negative.

Lemma 1. Let § € RP have support S. Then, B is a stationary solution of Problem iff
Vsf(B)=0.

Proof. For any d € R, we will show that F'(3;d) is given by:

(Vsf(B),ds) if dse =0

o0 O.W.

F'(3;d) = {

Let d be an arbitrary vector in RP. Then,

F(B+ad)—F(B)}

o

F (5;d) = hrgfonf{

_ hminf{ f(B+ad) — f(B) Y |5i+04;1i”0 —1 Hozw;zjno}

0 o
o ieS ¢S

Term 1
Term II Term III

First we note that lim, o Term II = 0 since for any i € S, ||3; + ad;||o = 1 for sufficiently small a.
Suppose dge = 0. Then, the continuity of f implies that lim, o Term I = f'(Bs; ds) = (Vsf(B),ds),
where the second equality follows by observing that Ss — f(Bs) is continuously differentiable (in
the neighborhood of Bg). Also, Term IIT = 0. Therefore, we have:

F'(B;d) = liirolTerm I+ liﬁ)lTerm II = (Vgsf(B),ds).

6

We now consider the case when dge # 0. In this case, lim, o Term III = oo; and since the limit of
Term I is bounded, we have F' /(6 ;d) = 0o. Thus, we have shown that holds. From , we have
F'(B;d) > 0 for all d iff Vgf(3) = 0. O

Note that V;f(8) = 0 for every i € Supp(83) can be equivalently written as:

~ 1Bl = A -
5= sin(B) A and (3|5, forall s € Sup(3), ©

where, @ o (y — Z#i X;Bj, Xi). Characterization @ suggests that a stationary solution 3, does
not depend on the regularization parameter A\g. Moreover, @ does not impose any condition on
the coordinates outside the support of 8. In the next remark, we show that a stationary solution
is also a local minimum for Problem .

Remark 1. We note that a stationary solution B8* is a local minimum for Problem . We present
a proof of this result below.

By the continuity of f, there exists a positive scalar § and a non-empty ball R = {5 € R? | ||f*—p]| <

0} such that for every B € R, we have |f(8*) — f(B)| < Xo. Let S = Supp(B*). We assume w.l.o0.g.
that ¢ is small enough so that if i € S, then for every 5 € R, we have i € Supp(3). For any B € R,
if Bi # 0 for some i ¢ S, we have (||8*|lo — ||8]lo) < —1. This implies

F(B") = F(B) = £(87) = f(B) + Ao([[87lo = 11Bllo) < [£(B7) = F(B) + Ao(=1) < Ao = Ao = 0.

Otherwise, if Supp(B) = S, then the stationarity of f* and convexity of f imply that f(8*) < f(B)
and consequently F'(5*) < F (). Therefore, for any € R, we have F(5*) < F(p).

We now introduce refinements of the class of stationary solutions introduced above.

2.2 Coordinate-wise Minima

We consider a class of stationary solutions inspired by coordinate-wise algorithms [35, [, B]. A
stationary point (3, is a coordinate-wise minimum for Problem if optimization with respect to
every individual coordinate cannot improve the objective. The definition is given below:

Definition 2. (Coordinate-wise (CW) Minimum) A vector 5* € RP is a CW minimum for Prob-
lem if for every i € [p], BF is a minimizer of F(5*) w.r.t. the ith coordinate (with others held

fized), i.e.,

Bz* S argminF(ﬁi‘,..., ;—bﬁhﬁ;—l—la"wﬁ;)' (7)

Bi€R

def

Let i € [p] and §3; be a scalar defined as 3; = (y — > j2i XjB7, Xi). As every column of X has unit
fo-norm, solutions to Problem are given by the following thresholding operator T:

7, emin (122 (5 B Vg |
T doo A) L argmin {222 (0= 55 + Ml +ollBi 20 @)

where, (tuning parameters) {\;}2 and EZ are all fixed, and T(El, A0, A1, A2) is set-valued. Lemma
provides an explicit characterization of T'(5;, Ao, A1, A2).

Lemma 2. (Univariate Minimization) Let T be the thresholding operator defined in (@ Then,

. Py Ei—/\ |Bi| =X 2\
{Slgn(ﬁi)‘plQ,\;} if 1+|2)\21 \V Tr2is
~ o~ A >\
T(Bi, Ao, A1, A2) = € {0} if |f+|2x; </ 1-%;&2

oA Bil=M o 1Bil=M [2xg
{O’Slgn(ﬁl) T12xs f Timg, =\ i

Proof. Let g(u) denote the objective function minimized in (8)), i.e.,

142X B; >2
= — A Aol 0].
9(u) 1= =5 (u =) Maful £ dolfu £ 0
If |3;] > A1, then min, .o g(u) is attained by u = sﬁ;fg (1B:] — A1) (this is the well-known soft-
‘Bz‘_>\1 2)\0

thresholding operator). Now, g(u) < ¢(0) is equivalent to > Hence, u is the

|Bi] =M1

1429
2)\0 “~ LI : |Bz‘ >\1 _ 2)\0
> \/ T52%,; - Both @ and 0 are minimizers of g(u) if ‘55 = /355 -

142X "

minimizer of g(u) when

1+2X2
Finally, when ‘fi;;; L < \/E , the function g(u) is minimized at v = 0. This completes the
proof. O

Lemma 2] and Definition [2] provide an explicit characterization of CW minima in Lemma 3]

Lemma 3. Let 8* € RP and define Ez = (y — Z#i Xjﬂ;f,Xi) for all i € [p]. Then, B* is a CW
minimum iff

. 3N B A ;
B = sign(B) PIRY and |82 /3%, for cvery i € Supp(5")
i~ ‘
and |f+|2)\21 S 133\2(;\2 fOT’ every v ¢ Supp(ﬁ*)

Comparing @[} to characterization (@ of stationary solutions, we see that the class of stationary
solutions contains the class of CW minima, and the containment is strict for a general X.

2.3 Swap Inescapable Minima

We now consider stationary solutions that further refine the class of CW minima, using notions
from local combinatorial optimization. Given a CW minimum £*, one might consider obtaining
another candidate solution with a lower objective by a “swapping” operation described as follows:
We set some non-zeros in 5* to zero and some entries from outside the support of 8* to non-zero.
Then, we optimize over the new support using one of the following rules:

e Partial Optimization: Here we optimize only w.r.t the coordinates added from outside the
support—this leads to Partial Swap Inescapable Minima, as described in Sectio

e Full Optimization: Here we optimize w.r.t all the coordinates in the new support—this leads
to Full Swap Inescapable Minima, as described in Section [2.3.2]

If the resulting solution leads to a lower objective compared to 5*, then we have successfully escaped
from * to a better solution. If 8* cannot be improved via the above strategy, we call it a Swap
Inescapable minimum. Our proposed notion is inspired by the work of [1I] who introduced an inter-
esting special case of swap inescapable minima for the cardinality-constrained problem, where their

swapping operation is done with respect to single coordinates using partial optimization. However,
the problem studied herein, i.e., Problem is different — we consider an Lg-penalized version and
f(B) is non-smooth. Furthermore, our classes of swap inescapable minima allow for multiple coor-
dinates to be swapped. We also allow for partial and full optimization for the subproblems.

2.3.1 Partial Swap Inescapable (PSI) Minima

We formally introduce Partial Swap Inescapable (PSI) minima. In words, these stationary solutions
(or minima) cannot be escaped by swapping any two subsets of coordinates (from inside and outside
the support) and performing partial optimization over the new support (i.e., we optimize only w.r.t
the new coordinates added to the support). We recall that for any L C [p], the notation UZp
denotes a vector with ith coordinate (U*B); = B; if i € L and (U*B); =0if i ¢ L.

Definition 3. (PSI Minima) Let k be a positive integer. A vector 8* with support S is a Partial
Swap Inescapable minimum of order k, denoted by PSI(k), if it is a stationary solution and for
every S1 C S and Sy C S, such that |S1| < k and |S2| < k, the following holds

F(8*) < mingg F(8* — U B* +U>p).

The following lemma characterizes a PSI minima of order 1, aka PSI(1).
Lemma 4. A vector 5* € RP is a PSI(1) minimum iff

* : ey ~z —A * ~i' —A y *
B = sign(p;) |f+|2)\21 and |5} > max {1 / 1i§&27j¢§1€1&}§5*) Vii\w\; }’ for i € Supp(B*)
Bi| =X .
and e < Vi for i ¢ Supp(8*)
where B; = (y — >_,.; X;B85, Xa) and Bij = (y — 3212 ; X181, Xj)-

Proof. The result can be readily derived from Lemma [2] and Definition O

Lemmas [3| and [4] suggest that PSI(1) minima, when compared to CW minima, impose additional
restrictions on the magnitude of nonzero coefficients. We also note that the class of CW minima
contains PSI minima for any k. Furthermore, as k increases, the class of PSI(k) minima becomes
smaller — till it coincides with the class of global minimizers of Problem . Section introduces
an algorithm that combines coordinate descent and local combinatorial optimization based on MIO
to achieve PSI(k) minima for any given k € [p].

2.3.2 Full Swap Inescapable (FSI) Minima

We define Full Swap Inescapable (FSI) minima — they differ from PSI minima in that a full opti-
mization is allowed on the new support after swapping the coordinates.

Definition 4. (F'SI Minima) Let k be a positive integer. A wvector 8* with support S is a FSI
minimum of order k, denoted by FSI(k), if for every S1 C S and Sy C S¢, such that |S1]| < k and
|So| < Kk, the following holds

F(f*)< min F(B"— USllﬁ* + U(S\Sl)U52B)_

~ Bs\sq)usy

We note that for a fixed k, the class of FSI(k) minima is contained inside the class of PSI(k) minima
(this is a consequence of the definition). As k increases, the class of FSI(k) minima becomes smaller
till it coincides with the set of global minimizers of Problem . Sectionintroduces an algorithm
that combines coordinate descent with MIO to generate FSI(k) minima.

2.4 Stationarity Motivated by Iterative Hard Thresholding (IHT)

Proximal-gradient type algorithms such as IHT are popularly used for Lg-constrained and Lg-
penalized least squares problems [6]. It is insightful to consider the class of stationary solutions
associated with IHT and study how they compare to CW minima. Let fy(3) := 3lly — XB||* +
A2||B]|?. The gradient of f4(8), i.e., Vf4(B) is Lipschitz with parameter L (say), i.e., |V fa(8) —
Via(a)|| < L||B — «af for all 8, € RP. Then it follows that [28]

Quiia) = ZU8 — a3+ (Vfula). 5 —0) + fule) > J(B) VB € R

If 3% denotes the value of 3 at the kth iteration, then, to obtain the (k4 1)th iterate, IHT minimizes
an upper bound to Problem (B]) of the form: Q1 (8; %)+ A1|8]l1+Mol|B]/o- This leads to the following
sequence of updates:

61 € angmin { 1116 - (8% — VLB + A3l + a3l . (10)
BERP T

where, 7 > 0 is a fixed step size. We say that o € RP is a fixed point of update if B* = a leads
to BFt1 = . This also defines another notion of stationarity for Problem , which is different
from the CW minima described previously. To this end, we consider the following theorem which
establishes the convergence of 5* to a fixed point of update .

Theorem 1. Let L be defined as above. The sequence {B*} defined in (10) converges to a fized
point B* of update for any T < % Note that 5* is a fixed point iff

Br = sign(B;) 2120 and |87 > v2hor for i € Supp(B*)

~i - A . *
and T < mrn for i ¢ Supp(8")

(11)

where B; = (y — 22 X85 Xi).

We do not provide a proof of the above theorem as it is similar to the proof of [24, [5] (which considers
the cardinality constrained version of Problem (3])) — see also [21] for a proof of IHT for a cardinal-
ity constrained optimization problems when the objective is differentiable. Characterization
suggests a class of minimizers inspired by IHT as defined below.

Definition 5. A wvector 5* is an IHT minimum for Problem if it satisfies forT < %

The following remark shows that the class of IHT minima contains the family of CW minima.

Remark 2. Let M be the largest eigenvalue of XT X and take L = M+2X\. By Theorem any T <
ﬁ ensures the convergence of updates . Moreover, since the columns of X are normalized,
we have M > 1. Comparing characterization (of IHT minima) to characterization @D (of CW
minima) we see that the class of IHT minima includes the class of CW minima. Indeed, typically
for high-dimensional problems, M is much larger than 1, making the class of IHT minima much
larger than CW minima (See Sectionfor numerical examples).

10

Below we summarize a hierarchy of classes of stationary solutions introduced in this section.

FSI(k) c PSI(k) c CW c IHT c Stationary

Minima = Minima = Minima =~ Minima ~ Solutions

HIERARCHY (12)

Finally, we note that when £ is large, the classes of FSI(k) minima and PSI(k) minima coincide with
the global minimizers of Problem . Section [2] introduced a hierarchical class of stationary con-
ditions for Problem . We now discuss optimization algorithms that converge to these stationary
classes: CW minima, PSI minima and FSI minima. Section [3| discusses coordinate-wise algorithms
that guarantee convergence to CW minima; and Section [4] discusses local combinatorial optimiza-
tion algorithms that reach stationary points corresponding to FSI(k)/PSI(k) minima.

3 Cyclic Coordinate Descent: Algorithmic Convergence

In this section, we introduce a variant of cyclic CD that performs a full minimization for every coor-
dinate [3]. We analyze its convergence behavior—in particular, we prove a new result establishing
convergence to a unique CW minimum (which depends upon the initialization) and an asymptotic
linear rate of convergence. We note that if we avoid complete minimization and use a conservative
step size, the proofs of convergence become straightforward by virtue of a sufficient decrease of the
objective value after every coordinate updateﬂ However, using CD with a conservative step size
for Problem [3| has a detrimental effect on the solution quality. Indeed, by characterizing the fixed
points, it can be shown that a sub-optimal step size leads to a class of stationary solutions that
contains CW minima. While cyclic CD has been studied before with continuous regularizers [23, [7]
with a least-squares data fidelity term, to our knowledge, the study of cyclic CD (with associated
convergence analysis) for Problem is novel.

Recall that cyclic CD updates coordinates in the order dictated by a a-priori specified permutation
of {1,2,...,p}. Before diving into a formal treatment of our algorithm, we briefly discuss why CD,
and in particular cyclic CD, seems to be well-suited for our problem — especially in the light of its
excellent computational performance in our experiments.

Why Cyclic CD? Cyclic CD has been practically shown to be among the fastest algorithms
for Lasso [10] and continuous nonconvex regularizers (such as MCP, SCAD, etc) [23| [7]. The
coordinate updates in cyclic CD have low cost and can exploit sparsity—specifically, through sparse
residual updates and active set convergence[I0]. This makes it well-suited for high-dimensional
problems with n < p and p of the order of tens-of-thousands to million(s). On the other hand, for
problem instances with a similar size, methods that require the evaluation of the full gradient (e.g.,
proximal gradient descent, greedy coordinate descent, etc) are computationally more expensive.
For example, proximal gradient descent methods do not exploit sparsity-based structure as well as
CD-based methods [10, 27]. We also note that based on our empirical experiments, random CD
seems to exhibit slower convergence in practice, (see Section [6.2))-see also related discussions by [2]
for convex problems.

To complement the aforementioned computational advantages reported in earlier research, our
numerical experience suggests that cyclic CD has an edge over competing algorithms, both in
terms of optimization objective (Section and statistical performance (see Sections (6.3 and
[6.6). Solutions to the (Lg), (LoL1), and (LoL2) problems are generally expected to have fewer

®Such an observation appears in establishing convergence of IHT-type algorithms-see for example, [T}, 21, [5]

11

non-zeros than the Lasso. Since the speed of CD is sensitive to the number of non-zeros in the
solution, we expect CD-like algorithms for Problem to lead to faster run times—indeed this is
also validated in our experiments, where we observe up to a three-fold improvement in run time
compared to glmnet and ncvreg.

3.1 Convergence Analysis

We first present a formal description of our algorithm — it is essentially the cyclic CD algorithm,
with some additional tweaks for reasons we discuss shortly. With initialization 8°, we update the
first coordinate (with others fixed) to get 3!, and continue the updates as per a cyclic rule. Let
B* denote the iterate obtained after performing k coordinate updates. Then, f*t1 is obtained by
updating its ith coordinate (with others held fixed) via:

B§+1 S arﬂgI%iIlF(ﬁfa s 7/85—17/81'7/8?—&-17 s 7/35)7 (13)
AS

where i = (k + 1) mod p. Recall that the operator f(gi,)\o,/\l,)\g) (defined in ({8])) describes

|Bi| =M1 __ 2X0
1+2x2 V142X

case, we consistently choose one of these solutignﬁﬁ, namely the non-zero solution. Thus, we use
the new operator (note the use of T" instead of T'):

cINBl=AL e 1Bl 220
~ « | sien(B:) if >/
T(Bis Mo A1, Az) & CiBe T AP TV 2 (14)
0 if |Bi] =M1 < 2X0
TN T+2)s

for update . In addition to the above modification in the thresholding operator, we introduce
“spacer steps” that are occasionally performed during the course of the algorithm to stabilize
its behaviOIEFspacer steps are commonly used in the context of general nonlinear optimization
problems—see [3] for a discussion. Every spacer step is performed as follows. We keep track of
the supports encountered so far; and when a certain support S (say) appears for Cp-many times,
where C' is an a-priori fixed positive integer, we perform one pass of cyclic CD on f(8s). This
entails updating every coordinate in S via the operator: T'(5;,0, A1, A2) (See Subroutine 1).

solutions of Problem . Specifically, it returns two solutions when . In such a

Algorithm 1 summarizes the above procedure. Count[S] is an associative array that stores the
number of times support S appears—it takes S as a key and the number of times .S has appeared
so far as a value. Count[S] is initialized to 0 for all choices of S.

Note on Indexing: We make a remark regarding the indexing of ¥ used in Algorithm 1. If
B! is obtained after performing a spacer step, then 8!~1 corresponds to a non-spacer step—by this
time, a certain support has occurred for Cp times. Suppose, 8¥ denotes the current value of § in
Algorithm 1. If the next step is a non-spacer step, then $**! is obtained from $* by updating a
single coordinate. Otherwise, if the next step is a spacer step, then all the coordinates inside the
support of B¥ will be updated to get S**1.

Below we introduce several lemmas that describe the behavior of Algorithm [I] Finally, Theorem
establishes the convergence of Algorithm [I]to a CW minimum.

The following lemma states that Algorithm [1|is a descent algorithm.

5We note that this convention is used for a technical reason and is needed for our proof of Theorem
"The spacer steps are introduced for a technical reason; and our proof of convergence of CD relies on this to ensure
the stationarity of the algorithm’s limit points.

12

Algorithm 1: Coordinate Descent with Spacer Steps (CDSS)
Input : Initial Solution 3°, Positive Integer C
k+0
while Not Converged do
for i in 1 to p do

IBkJrl — ﬁk
BZEH < argming cg F(ﬁf, ey Biy e ,B{;) using // Non-spacer Step
k—k+1

Count[Supp(8¥)] < Count[Supp(8¥)] + 1
if Count[Supp(B*)] = Cp then

BF+1 < SpacerStep(3*) // Spacer Step
Count[Supp(s*)] = 0
k+—Ek+1

return (5)

Subroutine 1: SpacerStep([)
Input : 0
for i in Supp(B) do
Bi <= argming cg f(B1,---,Bi, ..., Bp) using (14) with \g =0
return (5)

Lemma 5. Algorithm is a descent algorithm and F(B*) | F* for some F* > 0.

Proof. If B* is a result of a non-spacer step then F(B*) < F(B*!) holds by definition. If g*
is obtained after a spacer step, then f(8¥) < f(8¥~!). Since a spacer step cannot increase the
support size of =1, this implies that ||3*|lo < ||8¥ !0, and thus F(8*) < F(p*~1). Since F(B")
is non-increasing and bounded below (by zero), it must converge to some F* > 0. O

For the remainder of the section, we will make the following minor assumptions towards showing
convergence to a unique limit for the (Lg) and (LoLj) problems. No such assumptions are needed
for the (LoL2) problem.

Assumption 1. Let m = min{n,p}. Every m columns in X are linearly independent.
Assumption 2. (Initialization) If p > n, we assume that the initial estimate B9 satisfies

e In the (Lo) problem: F(B%) < Aon.

e In the (LoLy) problem: F(8°) < f(8%) + An where f(8%) = ming 1|y — XB||% + A\ ||8]]1.-

The following remark demonstrates that Assumption 2 is rather minor.

Remark 3. Suppose p > n and Assumption 1 holds. For the (Lg) problem, let S C [p] such that
|S| = n. If BV is defined such that Bg is the least squares solution on the support S with Bgc =0y
then F(BY) = \on (with the least squares loss being zero). This satisfies Assumption 2. For the
(LoLy) problem, we note that there always exists an optimal lasso solution [such that ||B]] < n
(see, for e.g., [34)]). Therefore, 5 satisfies Assumption 2.

In what follows, we assume that Assumptions|l|and 2 hold for the (Lg) and (LoL1) problems, and
we make no assumptions for the (LoL2) problem.

13

The following lemma shows that in the (Lg) and (LgL;) problems, the support size of any g*
obtained by Algorithm [I| cannot exceed the minimum of n and p.

Lemma 6. For the (Lg) and (LoLy) problems, {8*} satisfies ||8*||o < min{n,p} for all k.

Proof. The result holds trivially if p < n. Suppose p > n. In the (Lg) problem, Assumption 2
states that F'(8°) < Agn. Since Algorithm 1 is a descent method (by Lemma we have F(3F) <
Aon for every k, which implies f(8%) 4+ Mo||B*[lo < Aon and hence, Xo||B¥|lo < Aon. Therefore,
18(lo < n for all k. Similarly, for the (LoL;) problem, Assumption 2 and the descent property
imply F(8*¥) < f(B8%) 4+ Aon which can be equivalently written as f(8%) — £(8%) < Xo(n — [|8¥]l0)-
But the optimality of the lasso solution implies f(3*) — f(3%) > 0, which leads to ||*]o <n. O

The following lemma shows that the sequence generated by Algorithm [I]is bounded.
Lemma 7. The sequence {*} is bounded.

Proof. For the (LoLi) and (LoLs) problems, for all k, ¥ belongs to the level set G = {8 €
RP | F(B) < F(B%)} where 8° is an initial solution. Since in both cases F(8) is coercive, G is
bounded and therefore, {3*} is bounded.

We now study the Ly problem. Firstly, if p < n, then the objective function for the (Lg) problem
is coercive (under Assumption [I)), and the previous argument used for (LoL1)/(LoL2) applies.
Otherwise, suppose that p > n. Recall that from Lemma @, we have ||3¥||o < n for all & > 0; and
from Assumption 2, we have F(3°) < Aopn. In addition, by Lemma [5, we have F(8*) < \gn for
every k. Therefore, it follows that 8¥ € A where,

1
A= |J As, and Ag={BeR"| Slly = XsBs||? < An, Bse = 0}.
SClpl.|S|<n

Note that in every Ag, the only components of 5 that might be non-zero are in 8g. By Assumption
the level set {Bs|3]ly — XsBs||> < An} C Rl is bounded, which implies that Ag is bounded.
Since A is the union of a finite number of bounded sets, it is also bounded.]

The next lemma characterizes the limit points of Algorithm [T} The proof is in Section [A]

Lemma 8. Let S be a support that is generated infinitely often by the non-spacer steps, and let
{B'1er be the sequence of spacer steps generated by S. Then, the following hold true:

1. There exists an integer N such that for alll € L and | > N we have Supp(3') = S.

2. There exists a subsequence of {B'Yicr, that converges to a stationary solution 3*, where, B%
is the unique minimizer of mingg f(Bs) and f§ = 0.

3. Bvery subsequence of {*}r>0 with support S converges to 3* (as in Part 2, above).

4. B* satisfies |ﬁj*| > 11’;&2 for every j in S.

Lemma@ shows that the support corresponding to any limit point of {3} appears infinitely often.

Lemma 9. Let B be a limit point of {#*} with Supp(B) = S, then Supp(B*) = S for infinitely
many k.

14

Proof. We prove this result by using a contradiction argument. To this end, suppose support S
occurs only finitely many times. Since there are only finitely many supports, there is a support
S’ with S’ # S; and a subsequence {8*'} of {¥} which satisfies: Supp(8¥) = S’ for all k’; and
8% — B as k' — co. However, this is not possible by Part 3 of Lemma O

Lemma [10]is technical and will be needed in the proof of convergence of Algorithm 1. The proof is
in Section [Al

Lemma 10. Let B and B@ be two limit points of the sequence {B*}, with supports S and S,
respectively. Suppose that Sy = S1U{j} for some j ¢ S1. Then, exactly one of the following holds:

1. If there exists an i € S such that (X;, X;) # 0, then]B | > 1_2:2‘&2.

2. Otherwise, if (X;, X;) =0 for alli € Sy, then |BJ(»2)] = 13_)‘2(/)\2. Furthermore, for any 6 € RP

with Supp(B) = Sa, we have |T(Ej,)\o, A1, A2)| = 1%&2.

The following establishes a lower bound on the decrease in objective value, when a non-zero coor-
dinate is set to zero during Algorithm 1.

Lemma 11. Let 8% be an iterate of Algorithm 1 with Bf #£ 0 for some j € [p]. Let BF1 correspond
to a non-spacer step which updates coordinate j to 0, i.e., B]’?“'H = 0. Then, the following holds:

2
F(8) - F(g+1) 2 TE22 (w’w— ?5&) | 1)

Proof. F(8¥) — F(B*1!) can be simplified by noting that 3F = ﬁf“ for all 4 # j and ﬁf“ =0:

F(8%) ~ P9 = B85 + 252285 4 g 1+ 018}
> _|BH18Y + ””2 (857 + Mo+ M|
z—wfmﬁﬂ—m P gy, (16)

where B]k = (y — Zi# Xjﬁf,Xj). Since BF*! is a non-spacer step which sets coordinate j to 0,

the definition of the thresholding operator implies | Eﬂ — A1 < v/2X0(1 4 2)2). Plugging this
bound into and factorizing, we arrive to the result of the lemma. O

Finally, the following theorem (for proof see Section |A]) establishes the convergence of Algorithm 1
to a unique CW minimum.

Theorem 2. The following holds for Algorithm 1:

1. The support of {B*} stabilizes after a finite number of iterations, i.e., there exists an integer
m and a support S such that Supp(B¥) = S for all k > m.

2. The sequence {B*} converges to a CW minimum B with Supp(B) = S.

15

3.2 Rate of Convergence

In this section, we will show that Algorithm [I] exhibits an asymptotic linear rate of convergence.
Theorem [2| implies that the support of the iterates stabilizes in a finite number of iterations. After
the support stabilizes to a support S (say), the spacer and non-spacer steps lead to the same
coordinate updates. Thus Algorithm 1 can be viewed as a cyclic CD (with full optlmlza‘mon per
coordinate), where we cyclically apply the operator: T(ﬂl, 0, A1, A2) defined in for every i € S.
We will use some new notation for the exposition of the theory in Section |3.2) Ethe term full cycle
will refer to a single pass of vanilla CD over all the coordinates in S. We use 8% to denote the
iterate generated after performing K full cycles of CD.

Theorem 3. Suppose the same assumptions of Theorem hold. Let {55} be the full-cycle iterates
generated by Algorithm 1) and B be the limit with support S. Let mg and Mg denote the smallest
and largest eigenvalues of XSTXS, respectively. Then, there is an integer N such that for all K > N
the following holds:
F(BE+Y — F(B 2
(554~ F(B) _, ms + 24 -

F(BK) — F(B) — 2(1+4 2)@)(1 + |S‘(%§22)2>

Proof. By Theorem we have 3% — B, and IM such that for all K > M, we have Supp(3%) = S
and Supp(B) = S. Therefore, there exists an integer N > M such that for K > N, sign(,BiK) =
sign(B;) for every i € S. For K > N, it can be readily seen that the iterates A% are the same as
those generated by minimizing the following objective

0(05) = 3ly— XsslP+ 2 Y Bi-d X Bt hlgsP, (18)

1€S5,B;>0 i€S,B; <0

using coordinate descent with step size ﬁ and starting from the initial solution 8. The function
Bs +— g(Bs) is continuously differentiable and its gradient is Lipschitz continuous with parameter
L = Mg+2X2. Moreover, it is strongly convex [28] with strong-convexity parameter og = mg+2Aa.
[2] (see Theorem 3.9) has proven a linear rate of convergence for cyclic CD when applied to strongly
convex and continuously differentiable functions. Applying [2]’s result in our context leads to the
conclusion of the theorem. O

4 Local Combinatorial Optimization Algorithms

Motivated by the classes of Swap Inescapable minima introduced in Section we present algo-
rithms to achieve solutions belonging to these classes.

4.1 Algorithms for PSI minima

We introduce an algorithm that leads to a PSI(k) minimum. In the ¢th iteration, the algorithm
performs two steps: 1) runs Algorithm [1] to get a CW minimum B¢, and 2) finds a ‘descent move’
by solving the following combinatorial optimization problem:

Jmin, F(BE = UM B +USB) st. 81 CS, Sy CS%|S1 <k, |So| <k (19)
301,02

16

where, S = Supp(ﬁg).A Note that if there exists a feasible solution B ‘to Problem satisfying
F(B) < F(BY, then § may not be a CW minimum. To this end, 8 can be used to initialize
Algorithm 1 to obtain a better solution for Problem . Otherwise, if E does not exist, then ¢
is a PSI(k) minimum since it satisfies Definition |3| Algorithm 2 (aka CD-PSI(k)) summarizes the
algorithm.

Algorithm 2: CD-PSI(k)
B
for /=0,1,... do
B+ Output of Algorithm [1] initialized with 3¢
if Problem has a feasible solution B satisfying F(B) < F(B") then
I/B\Z-‘rl V. B
else

Stop
return /'

Theorem 4. Let {3} be the sequence of iterates generated by Algorithm @ For the (Lg) and
(LoL1) problems, suppose that Assumptions and 2 hold. Then, Algorithm@ terminates in a finite
number of iterations and the output is a PSI(k) minimum.

Proof. Algorithm 2 leads to a sequence {3'}§ such that F (%) < F(3*!) < --- < F(8Y). Since
Bt a1, ..., B° are all outputs of Algorithm [I| they are all CW minima (by Theorem . Any
CW minimum on a support S, is stationary for the problem: ming, f(8g). By the convexity of
Bs — f(Bs), all stationary solutions on support S have the same objective (since they all correspond
to the minimum of ming, f(Bs)). Thus, we have Supp(5) # Supp(6’) for any i, j < ¢ such that
1 # j. Therefore, a support can appear at most once during the course of Algorithm 2. Since the
number of possible supports is finite, we conclude that Algorithm 2 terminates in a finite number
of iterations. Finally, we note that Algorithm 2 terminates iff there is no feasible solution B\ for
satisfying F(B\) < F(BY. This implies that 8¢ is a minimizer of and thus a PSI(k) minimum
(by Definition [3). O

We now discuss formulations and algorithms for computing a solution to the combinatorial opti-

mization Problem .
MIO formulation for Problem : Problem admits a mixed integer quadratic optimiza-

17

tion (MIQO) formulation given by:

gnin f(0)+ Xo Z 2 (20a)
e iclp)
st. 0=3"=) efi(l-z)+ Y ebs (20D)
ieS i€SC
— Mz < B < Mz, VielS© (20c)
d m<k (20d)
i€Se
>z =8|~k (20e)
€S
BiER, Viese (20f)
Zi € {07 1}7 Vie [p]? (20g)

where the optimization variables are § € RP, ;,i € S¢ and z € {0,1}P. In , S = Supp(BY),
where ¢ is fixed, and M is a Big-M parameter (a-priori specified) controlling the /s-norm of
Bse. Any sufficiently large value of M will lead to a solution for Problem ; however, a tight
choice for M affects the run time of the MIO solver—see [5] for additional details. We note that the
|0]]1 term included in f(#) can be expressed via linear inequalities using auxiliary variables. Thus,
Problem minimizes a quadratic objective with linear constraints — the optimization variables
include both integer and continuous variables.

We now explain the constraints in Problem and how they relate to Problem . To this end,
let S7 and S be subsets defined in . Let 8 = B¢ — U B¢ + U2 and this relation is expressed
in . Let us consider any binary variable z; where ¢ € S. If z; = 0 then Bf is removed from S,
and we have 6; = 0 (see) If z; =1, then 5f is not removed from 6, and we have §; = Bf #£0
(see (20D))). Note that |[S1] = >";cg(1—2;) = |S]|— >, 2i- The condition |S1| < k, is thus encoded
in the constraint Y, ¢ 2 > |S| — k in (20€)). Thus we have that ||fs]o = >, 2i-

Now consider any binary variable z; where ¢ € S¢. 1If z; = 1, then by we observe that
B; is free to vary in [-M, M]. This implies that 6; = §;. If z; = 0 then 6, = 5, = 0. Note
> icge zi = |S2], and the constraint |Sp| < k is expressed via >_;cge zi < k in (20d)). It also follows
that ||0sc[lo = > ;cge 2i- Finally, we note that the function appearing in the objective (20a)) is (),
since)\0 Zze[p] Z; =)\0”09”0

Remark 4. We note that the MIO problem has a much reduced (combinatorial) search space
compared to an MIO formulation for the full Problem . Thus, solving for small values of k
is usually much faster than Problem . Furthermore, note that we use the MIO framework
so that it can quickly deliver a feasible solution with a smaller objective than the current solution —
usually this is achieved within very short run times when compared to that taken towards establishing
optimality via matching dual bounds. To this end, if a feasible solution with smaller objective value
does not exist, the MIO-framework can certify the non-existence via dual bounds.

Section [6] presents examples where the MIO-framework above leads to higher quality solutions in
terms of the quality of solutions obtained — both from an optimization and statistical performance
viewpoint.

Section discusses a special case of the above MIO formulation with k& = 1, where we can derive
efficient algorithms for solving Problem .

18

4.1.1 An efficient algorithm for computing PSI(1) minima

Subroutine 2 presents an algorithm for Problem with &k = 1. That is, we search for a feasible
solution f of Problem satisfying F(B) < F(B°).

Subroutine 2: Naive Implementation of Problem with k = 1.
S + Supp(s")
for i € S do
for j € S¢ do
v} < argmin F(B° — et + ejv;) (21)
’UjGR
F; « F(B" — e + ejv)) (22)
¥ < argmin F; (23)
jese
if F; < F(p*) then
B B — e + eqv} (24)
BREAK

The two for loops in Subroutine 2 can run for a total of (p — [|3%]|0)||5|lo iterations, where every
iteration requires O(n) operations to perform the minimization in and evaluate the new ob-

jective in . Therefore, Subroutine 2 entails an overall cost of O(n(p — | ﬂEHO)HﬁEHO). However,
we show below that a careful implementation can reduce the cost by a factor of n; leading to a cost

of O((p - ||5£||0)||54H0)—many operations.

Note that a solution v} of Problem is given by

o (ANIBI=AL 181 =M1 2)q
sign(B; if >4/
’U* _ (.7) 14+2Xo 14+2Xo 1422 (25)

i : 1B51=A1 20
0 if on <Vien

Bj = <T+X1557X]> - <T7Xj>+<Xian>Bz'£7 (26)
and r = y — X B¢. We note that in Algorithm [2| solving in iteration £ — 1 is preceded by a call
to Algorithm [1)in iteration £ — 2. The quantities (r, X;) and (X;, X;) appearing to the right of
are already computed during the run time of Algorithm 1. By reusing these two stored quantities,
we can compute every [and consequently v} in O(1) arithmetic operations.

where

Furthermore, the following equivalences can be shown to hold

argmin I} <= argmax |v]| (27)
jese jese
Fi <F(8") <= [vi] > [BLl- (28)

Thus, we can avoid the computation of the objective F) in and replace with k <«
arg max;cge [vj[. Furthermore, we can replace Fy; < F/(3*) (before equation lb with |vf| > |8
We summarize these changes in Subroutine 3, which is the efficient counterpart of Subroutine 2.
Clearly, Subroutine 3 has a cost of O((p - HBlHO)HBng> operations.

19

Subroutine 3: Efficient Implementation of Problem with k£ = 1.

S < Supp(s)
for i € S do
for j € S do
Compute v} in O(1) using
¥ < arg max |v]|
jese
if [vf| > |3f| then
B B — eiff + ey
BREAK

Remark 5. Since CD-PSI(1) (Algorithm 2 with k = 1) is computationally efficient, in Algorithm|3
(with k > 1), CD-PSI(1) may be used to replace Algorithm[1 In our numerical experiments, this
is found to work well in terms of lower run times and also in obtaining higher-quality solutions (in
terms of objective values). This modification also guarantees convergence to a PSI(k) minimum (as
the proof of Theorem still applies to this modified version).

4.2 Algorithm for FSI minima
To obtain a FSI(k) minimum, Problem needs to be modified — we replace optimization w.r.t
the variable U2 by that of US\91)Y%2 3 This leads to the following problem:

Jmin F(B'—USB + UBIII%g) st S1CS, S CS%[S| <k, [So <k (20)
391,02

where, S = Supp(f!). Similarly, Algorithm [2 gets modified by considering Problem instead of
Problem . By the same argument used in the proof of Theorem |4} this modification guarantees
that Algorithm [2| converges in a finite number of iterations to a FSI(k) minimum.

Problem can be expressed as a MIQO problem. To this end, Problem needs to be modified
in lines ([20d)), and with the following constraints:

0 =p"— > ics el (1 — z) + Yicse €ilbi + D ics €ibi

—Mz; < B; < Mz, i€ SUS=p

B; € R, i€ SUSc=p
With the above modification, Problem can be expressed as the following MIQO problem:

min - f(6) + X > u (30a)
i€(p]
st =Mz <0, < Mz, Viep) (30b)
d <k (30c)
1€S5¢
> =8|~k (30d)
€S
2 € {0,1}, Vie [p] (30e)

20

In words, the above formulation removes variables indexed by S7 from the current support .S, adds
variables corresponding to indices So € S¢, and then optimizes over the new support (S\ S1) U S
— the selection of coordinates is expressed via the inequality constraints on the binary variables,
appearing in Problem . Problem has p binary variables and p continuous variables.

Remark 6. Formulation has a larger search space compared to formulation of PSI min-
ima, due to the additional number of continuous variables. This leads to increased running times

compared to formulation . However, we note that this formulation can be solved significantly
faster than an MIO formulation for Problem (for the same reasons discussed in Remark[{).

In Section we present experiments where we compare the quality of FSI(k) minima, for different
values of k, to the other classes of minima.

5 Efficient Computation of the Regularization Path

We designed LOLearn [} an extensible C++ toolkit with an R interface that implements all the
algorithms discussed in this paper. The toolkit achieves lower running timeeﬂ compared to other
popular sparse learning toolkits (e.g., glmnet and ncvreg) by utilizing a series of computational
tricks such as continuation, an adaptive choice of the grid of tuning parameters, active set updates,
(partially) greedy cyclic ordering of coordinates, correlation screening, and a careful accounting of
floating point operations exploiting the least-squares loss and sparsity in 8. We emphasize that in
our experience, the aforementioned computational heuristics are found to play a critical role-they
together influence the quality of solutions obtained and also result in fast run times. We note
that the toolkit utilizes the fast linear algebra library Armadillo [31] which makes direct calls to
the BLAS (Basic Linear Algebra Subprograms), leading to significant speedups for linear algebra
operations. Below we provide a more detailed account of the strategies mentioned above.

Continuation: From a statistical viewpoint, it is desirable to obtain solutions to Problem for
a grid of regularization parameters {\j}7*, for every choice of A1, A2. If the Ao values are sorted
as: A\§ > A% > -+ > A\, we use the solution obtained from A} to initialize the algorithms (both
Algorithms 1 and 2) for /\6+1. This helps in speeding up convergence of the algorithm and also
encourages the algorithm to avoid low-quality stationary solutions. We note that we do not use
continuation across Ai, \9; and restrict ourselves to continuation across Ag.

Adaptive Selection of Tuning Parameters: While using continuation, the selection of a good
grid of A\g values is very important. The chosen grid may depend upon the choice of A1, Ao, If
successive values of)\6 are far away, one might miss good solutions. On the other hand, if two
values of)\6 are too close, they may lead to identical solutions (due to the combinatorial nature
of the problem). To avoid this problem, we derive conditions (which to our knowledge are novel)
on the choice of \g values which ensure that Algorithm 1 leads to different solutions when using
continuation. To this end, we present the following lemma, wherein we assume that Ay, Ay are
a-priori fixed.

Lemma 12. Suppose B is the output of Algorithm 1 with Ao = M. Let S = Supp(BD), r =

Shttps://github.com/hazimehh/LOLearn
9We also note that Problem is expected to lead to solutions that are more sparse (fewer non-zeros) than those
available via Lasso and MCP penalized regression. This also contributes towards reduced run times.

21

https://github.com/hazimehh/L0Learn

y— X B9 denote the residual, and

M L (|0)~ 0 (31)

T 2(1+ 2)g) jese

Then, running Algorithm || for)\éﬂ <\ initialized at B9 leads to a solution BUTY satisfying:
BUHD £ B0 if XL < M and BUHY) = B 4f Nt € (M7 N)].

Proof. Let us consider the case where,)\6+1 < M*. Tt follows from that:

| [{r, X5)| — A1 205
2
S T 2e T Viraw (32)

which implies that 3 is not a CW minimum for the given)\éH (see @) By T heorem Algorithm
converges to a CW minimum. Therefore, Algorithm [1| initialized with 3 leads to S0+ £ g0,

We now consider the case where, A" € (M?, Aj]. Then (31)) implies

[1{r, X5)| = A 225 2
< . 33
o Ty A (A W [R (3)
Also, since) is a CW minimum for A =)}, we have for every j € S
7 i+1
|BJ ’_\/1+2)\2_ 1—|—2A27 ()

where, the second inequality follows from)\éﬂ < M. The condition Vgf (ﬂg)) = 0 along with
inequalities and imply that () is a CW minimum for Problem (3] at Ay = Aé“. Therefore,
B is a fixed point for Algorithm O
Lemma [12] suggests a simple scheme to compute the grid of tuning parameters {\}}. Suppose we
have computed the regularization path up to \g = /\6, then /\f)'H can be computed as)\6“ = aM?,
where « is a fixed scalar in (0,1). Moreover, we note that M (defined in) can be computed
without explicitly calculating (r, X;) for every ¢ € S¢, as these dot products can be maintained in
memory while running Algorithm |1| with A\g =)\6. Therefore, computing M?, and consequently
AitL, requires only O(]S¢|) operations.

(Partially) Greedy Cyclic Order: Suppose Algorithm [1|is initialized with a solution 3% and
let 70 = y — X%, Before running Algorithm [1 we sort the coordinates based on arranging the
quantities |(r%, X;)| for i € [p] in descending ordeﬂ We note that this ordering is performed once
before the start of Algorithm 1, making this different from greedy CD which requires finding the
maximum of |(r?, X;)| after every coordinate update.

This ordering of the coordinates encourages Algorithm 1 to give high priority to coordinates that
are highly correlated (in absolute value) with the residuals. Furthermore, we note that when
using continuation, the quantities |(r°, X;)| can be maintained in memory by Algorithm [I| when

98ince the columns of X have unit £2-norm, updating index arg max; [(r°, X;)| will lead to the maximal decrease
in the objective function.

22

computing the solution at the previous value of Ag (in the grid). Instead of fully sorting the p
values |(r%, X;)|,i € [p]; we have observed that it is computationally beneficial to perform a partial
sorting, in which only the top ¢ coordinates are sorted, while the rest maintain their initial order.

Partial sorting can be done in O<p log(t)> operations using a heap-based implementation. In our

experiments, we found that setting ¢ to 5% of p leads to results similar to that of full sorting, with
much reduced computation time. We call this scheme a (partially) greedy cyclic order.

In Section we compare Algorithm 1| with the aforementioned (partially) greedy cyclic order,
the vanilla version of Algorithm [1| (where we cycle across the p coordinates in an a-priori fixed
order), and random CD [29]. Our findings seem to indicate that the (partially) greedy cycling
rule proposed herein, has a significant advantage both in terms of running time and optimization
performance.

Correlation Screening: When using continuation, we perform screening [33] by restricting the
updates of Algorithm [I| to the support of the warm start in addition to a small portion (e.g., 5%)
of other coordinates that are highly correlated with the current residuals — these highly correlated
coordinates are readily available as a byproduct of the (partially) greedy cyclic ordering rule,
described above. After convergence on the screened support, we check if any of the coordinates
outside the support violates the conditions of a CW minimum. If there is a violation, we rerun the
algorithm from the current solution. Typically, the solution obtained from the screened set turns
out to be a CW minimum, and only one pass is done over all the coordinates—this is often found
to reduce the overall running time.

Active Set Updates: Empirically, we observe that the iterates generated by Algorithm [I| can
typically achieve support stabilization in less than 10 full cycleﬂ This is further supported by
Theorem [2] which guarantees that the support must stabilize in a finite number of iterations. If
the support does not change across multiple consecutive full cycles, then we restrict the subsequent
updates of Algorithm [I] to the current support. After convergence on the restricted support, we
check whether any of the coordinates from outside the support violates the conditions of a CW
minimum. If there is a violation, we run the algorithm once again initialized from the current
iterate—-this is continued until we reach a CW minimum. This heuristic turns out to be very
effective in reducing the computation times, especially when p > n.

Fast Coordinate Updates: Let 7% = y — Zje[p} Xjﬁ]’?’ be the residuals corresponding to the

current iterate B* of Algorithm 1. To update coordinate i in iteration k + 1, we need to compute
Bi = (r* + X; 8%, X;) = (r*, X;) + BF before applying the thresholding operator . Updating g;
can be done using either one of the following rules that exploit sparsity:

(i) Residual Updates: We maintain the residuals r* throughout the algorithm, and we compute
B = (rk, X;) + B¥ using O(n) operations. Once ﬁf“ is computed (upon updating the
ith coordinate), we update the residuals by: r*+1 « rF 4 X;(8F — gF*1) with cost O(n)
operations. Since 3* is sparse, many of the coordinates remain at zero during the algorithm,
ie., ﬁf = ﬁf“ = 0 implying that 7*+1 = 7k, Thus, updating the residuals for one full pass
costs O((p —t)n), where ¢ is the number of coordinates that stay at 0 during the full cycle —
note that p — ¢t ~ |S|, where S is the support obtained at the end of the full cycle.

(ii) Materialization Updates: We present another method to update B: that does not require
using the precomputed 7*. Note that Algorithm 1, at the start computes (y, X;) for all i € [p]
(this is done only once when using continuation). If a coordinate ¢ enters the support for the

' Recall, one full cycle refers to updating all the p coordinates in a cyclic order.

23

first time, we “materialize £” by computing and storing the quantity (X,, X;) for all j € [p].
Thus, in iteration k + 1, we compute §; by utilizing the sparsity of the support as follows:

Bi=(y, Xi) = > (Xi, X;) 85 (35)

§:8540
The update in costs O(||8¥||o) operations. This cost is smaller than the O(n) cost of
computing ; using rule (i), above; provided ||5*|lo < n. If Bf“ # 0 and coordinate i has
not been materialized before, then we materialize it with cost O(np) (stemming from dot-
product computations). Computing 3; for every i € [p| requires a cost of O(|S|p), where S is
the largest support encountered. In addition, there is a cost of O(|S|np) for computing the
dot-products arising from materializing new coordinates. However, these computations can
be stored during the algorithm and need not be repeated at every iteration.

Scheme (ii) is useful when the supports encountered by Algorithm 1 are small w.r.t to n. It is also
useful for an efficient implementation of the PSI(1) algorithm as it stores the dot products required
in . However, when the supports encountered by CD are relatively large compared to n (e.g.,
10% of n), then Scheme (i) can become significantly faster since the dot product computations can
be accelerated using calls to the BLAS library. We recommend keeping an option for both the
above schemes and selecting the one that can run faster.

6 Computational Experiments

In this section, we investigate both the optimization and statistical performance of our proposed
algorithms and compare them to other popular sparse learning algorithms. For convenience, we
provide a roadmap of this section.

Section[6.2] presents comparisons among our proposed algorithms and other variants of CD and THT.
Section [6.3] empirically studies the statistical properties of estimators available from our proposed
algorithms versus others with varying sample sizes. Section studies phase transitions as the
SNR varies. Section performs an in-depth investigation among the PSI(k)/FSI(k) algorithms,
for different values of k. Section presents empirical studies including timing comparisons for
some large-scale instances, including real-datasets.

6.1 Experimental Setup

Data generation: We consider a series of experiments on synthetic datasets for a wide range of
problem sizes and designs. We generate a multivariate Gaussian data matrix X, ~ MVN(0, X).

We generate 81 with kT non-zero entries with BZT € {0,1} and Bg =1 for k' equi-spaced indices in
[p]. We then generate the response vector y = X7 + ¢, where ¢; i N(0,02). We define the signal-
to-noise ratio (SNR) by SNR = @ We consider the following instances of ¥ := ((035)):

e Constant Correlation: We set 0;; = p for every i # j and o = 1 for all i € [p].

e Exponential Correlation: We set 0;; = p'i_j‘ for all 4, j, with the convention 0° = 1.

We select the tuning parameters by minimizing the prediction error on a separate validation set,
which is generated under the fixed design setting as y' = X 31 + ¢, where, €, i N(0, 02).

24

Competing algorithms and parameter tuning: In addition to our proposed algorithms, we
compare the following state-of-the-art methods in the experiments:

e Lasso: In the figures we denote it by “L1”.

e Relaxed Lasso: This is the version of relaxed Lasso considered in [I7]. Given the Lasso
solution ('25%°, the relaxed Lasso solution is defined as grelaxed = ~plasso 4 (1 _ 4)BLS where
the non-zero components of S5 are given by the least squares solution on the support of
B'ass0 and ~ € [0,1] is a tuning parameter. We use our own implementation for relaxed lasso
and denote it in the experiments by “L1Relaxed”.

e MCP: This is the MCP penalty of [36]. We use the coordinate descent-based implementation
provided by the R package “ncvreg” [7].

e Forward Stepwise Selection: We use the implementation provided by [17], and in the
experiments we denote it by “FStepwise”.

e THT: We use our implementation of IHT, and we select a constant step size, which is equal
to the reciprocal of the maximum eigenvalue of X7 X.

For all the methods involving one tuning parameter, we tune over a grid of 100 parameter values,
except for forward stepwise selection which we allow to run for up to 250 steps. For the methods
with two parameters, we tune over a 2-dimensional grid of 100 x 100 values. For our algorithms, the
tuning parameter)\ is generated as per Section [b| For the (LgL9) penalty, we sweep Ay between
0.0001 and 10 if SNR > 1 and 100 if SNR < 1. For the (LgL1) penalty, we sweep A1 from || X7 y|
down to 0.0001 x || XTy| . For Lasso, we sweep A1 from || X7y|/oo down to 0.0001 x || XTy||s. For
Relaxed Lasso, we use the same values of A1 as for the Lasso and we sweep v between 0 and 1. For
MCP, the range of the first parameter A is chosen by ncvreg, and we sweep the second parameter
~ between 1.5 and 25.

Performance Measures: We use the following metrics to evaluate the quality of a solution (B,
say) obtained by a method.

e Prediction Error: This is the same measure used in [5] and is defined by
Prediction Error = HXB— X612/ x 872

The prediction error of a perfect model is 0 and that of the null model (5 =0) is 1.
e Lo, Norm: This the Lo,-norm of the estimation error, i.e., ||B — B o-

e Full support recovery: We study if the support of Bt is completely recovered by S, i.e.,
1[Supp(B") = Supp(B3)], where, 1[-] is the indicator function — we look at the average value of
this quantity across multiple replications, leading to an estimate for probability of full support
recovery.

e True Positives: The number of common elements between the supports of B and BT.
e False Positives: The number of elements in the support of 3 but not in the support of 3.
e Support Size: The number of non-zeros in E

-~

e Objective: The value of the objective function F'(53).

25

6.2 Comparison among CD variants and IHT: Optimization performance

We investigate the optimization performances of the different algorithms. We study the objective
values of solutions obtained by IHT and the following variants of CD:

e Cyclic CD: This is Algorithm [I] with default cyclic order.

e Random CD: This is a randomized version of CD where, the coordinates to be updated are
chosen uniformly at random from [p]. This is the version considered in [29].

e Greedy Cyclic CD: This is our proposed Algorithm [I]with a partially greedy cyclic ordering
of coordinates, described in Section

We generated a dataset with Exponential Correlation, p = 0.5, n = 500, p = 2000, SNR = 10, and
a support size kT = 100. We generated 50 random initializations each with a support size of 100,
where the non-zero indices are selected uniformly at random from the range 1 to p and assigned
values that are drawn from Uniform(0,1). For every initial solution, we ran Cyclic CD, Greedy
Cyclic CD, and THT and recorded the value of the objective function of the solution along with the
number of iterations till convergence. For Random CD, we ran the algorithm 10 times for every
initialization and averaged the objective values and number of iterations. For all the algorithms
above, we declare convergence when the relative change in the objective is < 10~7. Figure
presents the results. Figure [1| shows that the objective values resulting from Greedy Cyclic CD

,
7

THT I—D—|] p—D—{ o
Random CD - I—D—| .)—|:|—{ o
Cyelic CD ot [}] HI o
Greedy Cyclic CD A |—D—| o] ’_D_{ ®

0.9 1.0 11 18 19 20 0 20 10 60 0 100
Objective x10* Number of Iterations

Figure 1: Box plots showing the distribution of the objective values and the number of iterations (here,
one full pass over all p coordinates is defined as one iteration) till convergence for different variants of CD
and THT, for each algorithm we used 50 random initializations (as described in the text). The ticks of the
box plots represent 1.5 times the interquartile range.

are significantly lower than the other methods; on average we have roughly a 12% improvement
in the objective from Random CD and 55% improvement over IHT. This finding can be partially
explained in the light of our discussion in Section [2.4] where, we observed that the Lipschitz constant
L controls the quality of the solutions returned by IHT. In this high-dimensional setting, L ~ 11
which is far from 1, and thus IHT can get stuck in relatively weak local minima. The number of
iterations till convergence is also in favor of Greedy Cyclic CD, which requires roughly 28% less
iterations than Random CD and 75% less iterations than THT.

6.3 Statistical Performance for Varying Number of Samples

In this section, we study how the different statistical metrics change with the number of samples,
with other factors (p, kT, SNR, ¥) remaining the same. We consider Algorithm and CD-PSI(1) for

26

the (Lo), (LoL1), and (LoL2) problems; in addition to Lasso, Relaxed Lasso, MCP, and Forward
Stepwise selection. In Experiments 1 and 2 (below), we sweep n between 100 and 1000 in increments
of 100. For every value of n, we generated 20 random training and validation datasets having
Exponential Correlation, p = 1000, k' = 25, and SNR=10.

6.3.1 Experiment 1: High Correlation

Here we select p = 0.9 — this is a difficult problem due to the high correlations among features in
the sample. Figure [2] summarizes the results. In the top panel of Figure 2 we show Algorithm [I] for
(Lo), CD-PSI(1) for (LoL2), and other competing algorithms. In the bottom panel, we present a
detailed comparison among the results available from Algorithm 1| and CD-PSI(1) for all the cases
(Lo), (L()Ll), and (LOL2>

From the top panel (Figure[2), we can see that CD-PSI(1) (LoLs) (i.e., algorithm CD-PSI(1) applied
to the (LoL2) problem) achieves the best performance in terms of all the considered measures and
for all values of n. The probability of full recovery for CD-PSI(1) (LgL2) increases steeply when
n is in the range of 200 and 300 and achieves a probability of 1 at n = 500 (which is half of p).
Note that for all values of n, Lasso and Relaxed Lasso never achieve full support recovery—and
the corresponding lines are aligned with the horizontal axis. Moreover, MCP and FStepwise have a
probability less than 0.5 even when n = p = 1000 — suggesting that they fail to do correct support
recovery in this regime. A similar phenomenon occurs for the prediction error and the Lo, norm

where CD-PSI(1) (LoL2) clearly dominates.

The bottom figure shows that CD-PSI(1) (L), CD-PSI(1) (LoL1), and CD-PSI(1) (LoL2) behave
similarly; and they significantly outperform their cousins that perform no swaps. It is clear that
the local combinatorial optimization schemes introduced herein, have an edge in performance. This
finding suggests that in the presence of highly correlated features, CD can get easily stuck in poor-
quality solutions, and hence a combinatorial searching scheme plays an important role in guiding
it towards better solutions. Swaps seem to help achieve the true underlying solution, even when
the underlying statistical problem becomes relatively difficult—with small values of n.

6.3.2 Experiment 2: Mild Correlation

In this experiment we keep exactly the same setup as the previous experiment, but we reduce the
correlation parameter p to 0.5. In Figure[3] we show the results for Algorithm [I|for (Lg), CD-PSI(1)
for (LgL2), and the other competing methods. We note that the results for the rest of our methods
have the same profiles as Algorithm [1f (Lg) and CD-PSI(1) (LoL2), however, we do not include the
plots for space constraints. Intuitively, this setup is relatively easier from a statistical perspective,
when compared to Experiment 1 where p = 0.9. Thus, we expect all the methods to perform
better (overall) and display a phase-transition at a smaller sample size (compared to Experiment
1). Indeed, as shown in Figure [3| Algorithm [1] (Lg) and CD-PSI(1) (LoL2) have roughly the same
profiles, and they outperform the other methods; they fully recover the true support using only
200 samples. The swap variants of our methods in this case do not seem to lead to significant
improvements over the non-swap variants, and this can be explained by our hypothesis: when the
statistical problem is easy, Algorithm [I]| is successful in recovering the true underlying signal —
swaps are not necessary. MCP and FStepwise also exhibit good performance, but their transition
occurs for much larger values of n and MCP does not seem to be robust. Lasso in this case never

27

Exponential Correlation, p = 0.9, p = 1000, kf = 25, SNR = 10

1.01

Recovery Probability

0.10

0.08 9\

4

o

I3
L

Prediction Error
o
5
'S

0.02 1

0.00

Support Size
ry
o

N
o
L

101

L, Norm

0 T T T T T T T T
100 200 300 400 500 600 700 800 900 1000

Number of Samples

—— CD-PSI1 (LOL2)

-4- CDSS (LO) -4~ FStepwise
1.0 4
2
= 0.8
a
©
Q
© 0.6
o .
>
@ 041 47
> Y
: 4. LT
x 0.2
0.0

Support Size

i

Figure 2: Performance measures as the number of samples n varies between 100 and 1000. The top figure
compares two of our methods (a) CDSS(L0) (i.e., Algorithm |1 for the (Ly) problem), (b) CD-PSI(1) for
the (LoL2) problem, and other state-of-the-art algorithms. The bottom figure compares Algorithm [If and

CD-PSI(1) for all

recovers the true support, and this property is inherited by Relaxed Lasso which requires at least

CDSS (LO)

0.10

0.0 T T T T T T T T
100 200 300 400 500 600 700 800 900 1000

Number of Samples

L1

—4— L1Relaxed

—— MCP

Prediction Error

N
o

L, Norm

0-r T T T T T T T T
100 200 300 400 500 600 700 800 900 1000

Number of Samples
—#— CD-PSI1 (LO) CDSS

three problems.

900 samples for full support recovery.

(LoL1) -4~

28

CDSS (LOL2)

0.0 T T T T T T T T
100 200 300 400 500 600 700 800 900 1000

Number of Samples
—4— CD-PSI1 (LOL1)

——— CD-PSI1 (LOL2)

Exponential Correlation, p = 0.5, p = 1000, kf = 25, SNR = 10

0.10
1.0 4 _]
// T
> T 0.08 -
=08 e
o o
8 &
0.06
Q06 c
o °
> -
| (S}
g 04 5 0.04
5 g
O a
& 02 0.02
0.0 - : 0.00 —
80 .
144\ |
70 4 \
1.24 |1
60 -
I 5 | 1o\ \|
2 £ oo\l
.0 1 \1
o 40 =2 !
g 301 4061
@
20 0.4 1
101 0.2

0 R T 0.0 S S S B!

100 200 300 400 500 600 700 800 900 1000 100 200 300 400 500 600 700 800 900 1000
Number of Samples Number of Samples

-4- CDSS (LO) FStepwise —&— CD-PSI1 (LOL2) L1 —&— L1Relaxed —— MCP

Figure 3: Performance measures as the number of samples n varies between 100 and 1000. The figure
compares two of our methods (a) CDSS(LO) (i.e., Algorithm [I] for the (Lo) problem), (b) CD-PSI(1) for the
(LoL2) problem, and other state-of-the-art algorithms.

6.4 Statistical Performance for Varying SNR

We performed two experiments to study the effect of varying the SNR on the different performance
measures. In every experiment, we swept the SNR between 0.1 and 100 for 10 values equi-spaced
on the logarithmic scale. For every SNR value, we generated 20 random datasets over which
we averaged the results. We observed that for low SNR values, ridge regression seems to work
extremely well in terms of prediction performance. Thus, we include ridge regression (L2) in our
results.

6.4.1 Experiment 1: Constant Correlation

We generated datasets with constant correlation, p = 0.4, n = 1000, p = 2000, and k£ = 50.
We report the results for Algorithm (1| (Lg), CD-PSI(1) (LoL2), and all the other state-of-the-art
algorithms in Figure [

Figure [5| suggests that: CD-PSI(1) (LoL2) clearly dominates all the other methods in terms of full
recovery, prediction error, and Ly, norm for the whole range of SNR. For low SNR, its prediction
error is close to that of L2 which is observed to be very effective in low SNR settings. At SNR = 100,
CD-PSI(1) (LoL2) fully recovers the support while Algorithm [I| (Ly) has a recovery probability ~
0.4. However, none of the other considered methods does full recovery even for high SNR. By

29

Constant Correlation, p = 0.4, n = 1000, p = 2000, k' = 50

0.14
1.0 1
0.12
>
= 0.8 o
Qa S 0.10
© fe
o) o]
© 0.6 1 = 0.08 1
a 2
E O 0.06
0.4 4 o
>
S E 0.04 4
9]
o 02
0.02
0.0 e e e 0.00
250
o
N
7 :
£ o
15} =4
S 8
S ~l
0
SNR SNR
-4-- CDSS (LO) FStepwise —4— CD-PSI1 (LOL2) L1 —4— L1Relaxed —— MCP L2

Figure 4: Performance measures as the signal-to-noise ratio (SNR) is varied between 0.1 and 100. The
figure compares two of our methods (a) CDSS(LO0) (i.e., Algorithm (1] for the (Lg) problem), (b) CD-PSI(1)
for the (LoL2) problem, and other state-of-the-art algorithms.

inspecting the L., norm, we can see that Lasso, Relaxed Lasso, and MCP exhibit very similar
behavior, although they are optimizing for different objectives.

6.4.2 Experiment 2: Exponential Correlation

We generated datasets having exponential correlation with p = 0.5, n = 1000, p = 5000, and
k' = 50. We report the results for Algorithm (Lo), CD-PSI(1) (LoL2), and all the other competing
algorithms in Figure

It seems that the optimization tasks in this experiment are relatively easier than the experiment in
Section [6.4.1] as the correlation between the variables decays exponentially. Thus, we observe less
significant differences among the algorithms, when compared to the first experiment — see Figure
CD-PSI(1) (LoL2) again dominates with respect to all measures and for all SNR values. Also
Algorithm (1| (Lg) performs better than FStepwise, especially in terms of selection probability. We
note that even in this relatively easy case, Lasso never fully recovers the support. MCP also seems
to suffer in terms of full recovery.

6.5 Comparisons among PSI(k)/FSI(k)
Here, we examine the differences among the various classes of minima introduced in the paper: CW,

PSI(k) and FSI(k) minima. To understand the differences, we consider a relatively difficult setting
with Constant Correlation where p = 0.9, n = 250, p = 1000, and the support size is kT = 25. We

30

Exponential Correlation, p = 0.5, n = 1000, p = 5000, k = 50

1.0
1.0 1
>
0.8
=08 .
Ko o
2 5
0.6 1
O 0.6 c
a o
fa 0
g 0.4 S 0.4
o g
g o
< 0.2 0.2
0.0 —— 0.0 —
300 .
1.4 \
\
250 1 \
o
& 2004
4 £
£ o
IS} =4
g 8
S ~
%)

' 102 ‘107 10° 10t 102
SNR SNR
-4-- CDSS (LO) FStepwise —— CD-PSI1 (LOL2) L1 —&— L1Relaxed —— MCP L2

Figure 5: Performance measures as the signal-to-noise ratio (SNR) is varied between 0.1 and 100. The
figure compares two of our methods (a) CDSS(LO0) (i.e., Algorithm (1] for the (Lg) problem), (b) CD-PSI(1)
for the (LoL2) problem, and other state-of-the-art algorithms.

set SNR= 300 to allow for full support recovery. We generated 10 random training datasets under
this setting and ran Algorithm (1| and the PSI and FSI variants of Algorithm 2 for k& € {1,2,5}
using the (L) penalty. All algorithms were initialized with a vector of zeros. For Algorithm 2 we
used Gurobi (v7.5) to solve the MIQO subproblems and when k > 1.

Figure [6] presents box plots showing the distribution of objective values, true positives, and false
positives recorded for each of the algorithms and 10 datasets. PSI(1) and FSI(1) minima lead
to a significant reduction in the objective, when compared to Algorithm 1 (which results in CW
minima). We do observe further reductions as k increases, but the gains are less pronounced. In
this case, CW minima contains on average a large number of false positives (> 35) and few true
positives — this is perhaps due to high correlations among all features, which makes the optimization
task arguably very challenging. Both PSI and FSI minima increase the number of true positives
significantly. A closer inspection of the number of false positives shows that FSI minima do a better
job in having fewer false positives, when compared to PSI minima. This of course comes at the
cost of solving relatively more difficult optimization problems.

In Figure [7, we show the evolution of solutions when running the FSI(5) variant of Algorithm
for the same dataset. The algorithm starts from a CW minimum and iterates between running
CD-PSI(1) and finding a swap that improves the objective by solving optimization problem
using MIO. The PSI(1) minima obtained from running CD-PSI(1) are marked by red circles and
the results obtained by solving problem using MIO are denoted by blue squares.

Figure|7|shows that running CD-PSI(1) on top of the solutions obtained by MIO leads to important
gains in terms of better objective values, for most of the cases. This also confirms our intuition that

31

Constant Correlation, p = 0.9, n = 250, p = 1000, kT = 25, SNR = 300

700 I::E_l 40
15 ”
2
£ 600 3 @ £ 30
- 0 0
§ g 10 ;l k;
e 3 ‘
© 500 g %20
g 5 <]
10
pHeas 0 = Ho
LD O @ @ O B LD O @ D O @ NS
(ORGSR NN N (O NIE A AP NE (O NIE A A NE
ST &S FTHFTH &S ST HFTE &S

Figure 6: Box plots showing the distribution of objective values, number of true positives, and number of
false positives for the different classes of local minima.

750

IS
b

IS
S

7001 % 161 v ...

Objective
o o
3 &
8 3
.
|]
»
W w
g 8

w
@
S

True Positives
b

False Positives
[T
S B

114 o

o
=]
S

)

[
-
&

IS
G
o
-
1)
®
-
-
=)

.
¢
.
©
*
°
[8
&

0 2 4 6 8 0 12 14 0 2 4 6 8 0 12 1 0 2 4 6 8 0 12 1
Number of Iterations Number of Iterations Number of Iterations

* CW e PSI(1) = 5-swap

Figure 7: Evolution of solutions during the course of a variant of Algorithm 2 where we successively run
CD-PSI(1) and solve combinatorial problem to generate an FSI(5) minimum.

MIO can lead to solutions that are not available via PSI(1). From the plot of true positives and
false positives, we can see that CD-PSI(1) improves the solution by increasing the true positives
whereas MIO improves the solution by removing false positives. This observation confirms the
behavior we noticed in Figure @ where PSI(1) minima were successful in obtaining a good number
of true positives, but suffered in terms of false positives.

6.6 Large High-dimensional Experiments
Synthetic experiments: Here, we investigate the performance of the different algorithms when
p > n: We ran two experiments with a large number of features under the following settings:
e Setting 1: Exponential Correlation, p = 0.5, n = 1000, p = 10°/2, k = 100, and SNR = 10
e Setting 2: Constant Correlation, p = 0.3, n = 1000, p = 10°, k = 50, and SNR = 100

Every experiment is performed with 10 replications, and the results are averaged. We report the
results for Settings 1 and 2 in Table (I)). In Table [I] Algorithm [1] with the (LoL1) and (LoLs)
penalties fully recovers the true support and attains the lowest prediction error. None of the
other methods were able to do full support recovery; Lasso and Relaxed Lasso capture most of

32

Setting 1 Setting 2

Method I1B1lo TP FP PEx10? | [|Bllo TP FP PEx10°
Alg 2 (Lo) 160+24 79+9 81433 5+1.6 69+18 47+3 22422 1.6+1

Algll|(LoLy) 100+£0 100+0 0+0 0.97+005| 50+0 50+0 0+0 0.5+0.02
Alg[l|(LoL;) 100+£0 100+0 0+0 1+0.05 500 50+0 0+0 0.54+0.02
L1 808+7 9541 71247 7.9+40.17 | 478411 504+0 428+11 4.7+0.1
LiRelaxed 602440 9541 508+41 7.940.19 | 385+12 50+0.2 335+13 44+0.2
MCP 102+1 100+0 23+1 097+005| 653 50+0 15+3 3.5+0.13
FStepwise 216+ 17 64+7 152423 89413 7542 50+0 25+2 1.14+0.07

Table 1: Performance measures for the different algorithms under Settings 1 and 2. TP, FP, and PE denote
the True Positives, False Positives, and Prediction Error, respectively. The standard error of the mean is
reported next to every value.

the true positives but include a very large number of false positives. MCP comes in the middle
between (LoL1)/(LoL2) and Lasso — it captures all the true positives and adds few more false
positives. We also note that in such high SNR settings, we do not expect shrinkage (arising from
the Ly /Lo penalties) to lead to major statistical improvements. Thus, the difference in performance
between (Lg) and (LoL1)/(LoL2) might be explained by the fact that, the continuous regularizers
aid Algorithm 1 in getting better solutions for Problem .

Timings and out-of-sample performance: We ran Algorithm 1 using our toolkit LOLearn and
compared the running time and predictive performance versus glmnet and ncvreg, on a variety
of real and synthetic datasets. We note that LOLearn, glmnet and ncvreg are solving different
optimization problems—the run times provided herein are meant to demonstrate that a main
workhorse for our proposed algorithm is competitive when compared to efficient state-of-the-art
implementations for sparse learning. Below we provide some details about the datasets:

e House Prices: p = 104,000 and n = 200. We used a second order polynomial expansion on
the popular Boston House Prices dataset [I5] to get 104 features. Then, we added random
“probes” (aka noisy features) by appending to the data matrix 1000 random permutations of
every column. The validation and testing sets have 100 and 206 samples, respectively.

e Amazon Reviews: p = 17,580 and n = 2500. We used the Amazon Grocery and Gourmet
Food dataset [19] to predict the helpfulness of every review (based on its text). Specifically,
we calculated the helpfulness of every review as the ratio of the number of up votes to that of
down votes, and we obtained X by using Scikit-learn’s TF-IDF transformer (while removing
stopwords). The validation and testing sets have 500 and 1868 samples, respectively. We also
created an augmented version of this dataset where we added random probes by appending
to the data matrix 9 random permutations of every column to get p = 174, 755.

e US Census: p = 55,537 and n = 5000. We used 37 features extracted from the 2016
US Census Planning Database to predict the mail-return rate[T_Z] [9]. We appended the data
matrix with 1500 random permutations of every column, and we randomly sampled 15,000
rows, evenly distributed between the training, testing, and validation sets.

e Gaussian 1M: p = 10% and n = 200. We generated a synthetic dataset with independent
standard normal entries. We set kT = 20, SNR=10, and performed validation and testing as

12\e thank Dr. Emanuel Ben David, US Census Bureau for help on preparing this dataset.

33

described in Section [6.1]

For all real datasets, we tuned and tested on separate validation and testing sets. The timings
were performed on a machine with an i7-4800MQ CPU and 16GB RAM running Ubuntu 16.04 and
OpenBLAS 0.2.20. For all methods, we report the training time required to obtain a grid of 100
solutions. For (LoLs), (LoL1), and MCP, we provide the time for a fixed Aa, A1, and =, respectively
(these parameters have been set to the optimal values obtained via validation set tuning over 10
values of the tuning parameter). Table [2| presents run times for all the four methods — each method
computes solutions on a grid of 100-tuning parameters.

The results presented in Table [2| show the following: LOLearn is faster than glmnet and ncvreg
on all the considered datasets, e.g., more than twice as fast on the Amazon Reviews dataset. The
speed-ups can be attributed to the careful design of LOLearn (as described in Section |5 and due
to the nature of Ly regularization which generally selects sparser supports than those obtained by
L; or MCP regularization. Moreover, LOLearn, for both the (LoL2) and (LoL;) problems, provides
much sparser supports and competitive testing MSE compared to the other toolkits. Finally, we
note that prediction errors for our methods can be potentially improved by using Algorithm 2, at
the cost of slightly increased computation times.

Amazon Reviews Amazon Reviews (+Probes)
(p = 17,580, n = 2500) (p = 174,755, n = 2500)
Toolkit Time MSExi02 ||Blo Toolkit Time MSEx102 ||B]o
glmnet (L1) 7.3 4.82 542 glmnet (L1) 494 5.11 256
LOLearn (LoL2) 3.3 4.77 159 LOLearn (LoLe) 31.7 5.18 37
LOLearn (LoLy) 2.8 4.79 173 LOLearn (LoL1) 29.5 5.20 36

ncvreg (MCP) 10.9 6.71 1484 ncvreg (MCP) 67.3 5.33 318

US Census House Prices
(p = 55,537, n = 5000) (p = 104,000, n = 200)
Toolkit Time MSE ||5]o Toolkit Time MSE ||3]o
glmnet (L1) 287 613 222 glmnet (L1) 2.3 100 112
LOLearn (LgLe) 19.6 60.7 15 LOLearn (LoLo) 1.8 94 59
LOLearn (LoL;) 19.5 60.8 11 LOLearn (LoL;) 1.8 104 74
ncvreg (MCP) 327 62.02 16 ncvreg (MCP) 3.9 102 140

Gaussian 1M
(p = 10%, n = 200)

Toolkit Time(s) MSE |Blo

glmnet (L1) 22.5 4.55 185
LOLearn (LoL2) 16.5 4.64 11
LOLearn (LoL;) 16.7 5.12 15
ncvreg (MCP) 36.5 4.85 147

Table 2: Training time (in seconds), out-of-sample MSE, and the support sizes for a variety of high-
dimensional datasets. The training time is for obtaining a regularization path with 100 solutions.

34

A Appendix: Proofs and Technical Details

A.1 Proof of Lemma

Proof. Part 1.) Since the spacer steps optimize only over the coordinates in S, no element from
outside S can be added to the support by the spacer step. Thus, for every [€ L we have Supp(s') C
S. We now show that strict containment is not possible using the method of contradiction. To this
end, suppose Supp(f!) C S occurs infinitely often; and let us consider some I € L at which this
occurs. By Algorithm the previous iterate 8~1 has a support S, which implies |30 — || 8!(jo >
1. Moreover, from the definition of the spacer step we have f(3') < f(8"~1). Therefore, we get

F(B™1) = F(8') = f(871) = £(8) +2(|B o = [18"llo) = Ao.

>0

Ix<

Thus, every time the event Supp(ﬁl) C S occurs, the objective F' decreases by at least A\g. This
contradicts the fact that F' is lower bounded by 0, which establishes the result.

Part 2.) First, we introduce some additional notation for the proof. Fix some [€ L. By Algo-
rithm 1, 8!~! has a support S which we assume (without loss of generality) to be S = {1,2,...,J}.
We recall that to obtain £ from ‘!, Algorithm 1 performs a spacer step-i.e, it starts from B'~!
and updates every coordinate in S via T'(-,0, A1, A2). We denote the intermediate iterates generated
sequentially by the spacer step as: g1, 642, ..., B4/ where pb/ = gt

Since the support S occurs infinitely often, we consider the infinite sequence {3"'};cr (i.e., the
sequence of intermediate spacer steps where coordinate 1 is updated). By Lemma [7, {"'}icr
is bounded and therefore, there exists a further subsequence {Bl/’l}l/e 1 that converges to a limit
point §* (say). We assume that for every I’ € L' we have I’ > N, which implies that g1
gét g2 o BYY all have the support S (this follows from Part 1 of this lemma). Next, we will
show that 3“2 also converges to (*.

Fix some I’ € L. Then, we have:

(B~ F(8") = F(851) — 1(85%) > 22

(Bt — Bh2)? (36)

where the last inequality follows by replacing 55’2 with the expression given by the thresholding
map in and simplifying. By Lemma {F(B*)} converges; so taking the limit as I’ — oo in
we get, 0 > limlqoo(ﬁg’l - ﬁg’2)2; ie., ﬁg’l - ﬂg’Z — 0 as I’ = co. Since B! — B*, we conclude
that Bg’z — (35. Therefore, B2 — B*. The same argument applies to 8¢ and 8"*! for every
i€{2,3,...,J —1}. Therefore, we conclude that for every i € {1,2,...,J} we have Bl Bx.
Now, by the definition of the spacer step, for every i € [J] and every I' € L'; we have:

1BY] — M

Ui a & ~l"
/Bi - T(/B’Lv 07)\17 >\2) Slgn(IBl) 1 + 2A2 (37)

where, BZ' = (Y — D Xjﬁél’i,Xl) and \Bf/\ > A;. Taking I — oo, we get B;* = limy_ o EZZ’ =
(y — > XjBj, Xi) where |Bl*| > A;. Therefore, for every i € [J], we have

(2

/6: — lim 61” _ 5 1422 (38)
if Ay =0

sign(B)BIM g 8 S 0

where we used the continuity of the sign function at Ef (note, \52*| > A1) in the case of A\; > 0.
Therefore, using characterization @, we observe that 8* is a stationary solution. Finally, Lemma
[6| and Assumption [1] for the (Lo) and (LoL1) problems imply that Bg — f(Bs) is strongly convex
and has a unique minimizer — hence 8* is unique.

Part 3.) By Part 2, there exists a subsequence {/Bl'}l/e 1 converging to 8*. By Part 1, for every
' > N we have F(B") = f(B") + Xo|S|. Taking I’ — co and using the continuity of f(j3) we get:

Jim F(8") = f(87) + XolS|.

Now, consider any subsequence {/3 /} wer, where K' C {0, 1, 2,...}, such that the non-spacer steps
in K" have a support S. We will establish convergence of {p* } k' ck via the method of contradiction.
To this end, suppose {p* }k’e k¢ has a limit point ﬂ which is not equal to 8*. Then, there exists a
subsequence {8* }prcrn (with K” C K’) which converges to 3. Then, for every k” > N, we have
F(B*") = f(B*") + Xo|S|. Taking the limit as k” — co we get:

Jim F(8*) = f(B) + holS|-
From Lemma (5 we have limy ;o F(B") = limpr_o F(B¥"). This implies f(3*) = f(B) and in
particular, f(8%) = f(8s) (since the supports of both limits points are a subset of S). However, by
Part 2, we know that 3% is the unique minimizer of ming, f(8s)—which leads to a contradiction.
Hence, we conclude that 8 — 8* as k' — oo.

Part 4.) Let [; and I3 be the indices of any two consecutive spacer steps generated by the support
S. Recall from Algorithm [I] that C > 1; and the support S must appear in Cp non-spacer steps
between 1 and l5. Fix some i € S . We will show that there exists a non-spacer step with index &’

such that I; < k' < s, Supp(,Bk/) =S5, and]ﬁf/| > 1_?_)‘2&2. We proceed by contradiction. To this
end, suppose that such an index does not exist — i.e., every non-spacer step that updates coordinate
1 thresholds it to 0. Let ki denote the iteration index of the first non-spacer step between [; and Iy
that updates coordinate 7. In the p coordinate updates after /1, coordinate ¢ must be updated once,
which implies k1 — [; < p. Since at iteration ki, coordinate ¢ is set to 0, the support .S can appear
at most p — 1 times between [; and k1. Moreover, between ki and ls, S appears 0 times — this is
because, coordinate ¢ never gets thresholded to a non-zero value by a non-spacer step. Therefore,
S appears for at most p — 1 times between [y and [— this contradicts the fact that lo is the index

after which S appears in Cp non-spacer steps. Therefore, we conclude that there exists an index

K such that Iy < I < Iy, Supp(8¥) = S, and [8F'| > /12%.

Let us now fix some 7 € S. By considering the infinite sequence of spacer steps generated by S and
applying the result we proved above to every two consecutive spacer steps, we can see that there
exists an infinite subsequence {3} of non-spacer iterates where, for every k', we have Supp(3*') =

S and | ﬂf,] > /20 By Part 3 of this lemma, {8*'} converges to the stationary solution §*.

142X
Taking the limit k& — oo in inequality: |8F| > 1_%2&2, we conclude that |5;| > ,/%. O

A.2 Proof of Lemma [10]

)
k *
this lemma. By Lemma F(B") converges to a ﬁnlte nonnegative limit F*. Lemmas |8 and |§| imply

Proof. We first derive an useful expression for B(, which will help us establish parts 1 and 2 of

36

that there is a subsequence {8* }p g that converges to B(1) and satisfies Supp(8*) = S for every
K. As k — oo, we get: F* = f(BW) 48| = F(BW). Similarly, for B® we have F* = F(B®).
Therefore, F(BW) = F(B®), which is equivalent to

FBE) + 2l BE o = F(BE) + 2o BE llo.

Since HBéQZ)Ho = HB(I)HO + 1, we can simplify the above to obtain:

1 2
J(BS) = £(B) = h. (39)
The term f () can be rewritten as follows (using elementary algebraic manipulations)

2) 2
F(BY) = ,”y Xo, BOI + MIB@ 1 + 22l B3
2
||y X5, B — X;BP |12+ MBS 1+ MIBE | + x| BS |13+ Ao (BP)?

(2) (2)
- (5||y ~ X5, BEIP + MBS +)\2|!le 'I3)

2)

2 1
— (= X5, B, X0 B + J1XGIPBY + ;B + (B’

= f(BS) — (y — X5, B, X;)BY + fHX IP(B)? + A1 BY | + Ma(BP)2. (40)

From Lemma we know that B®) is a stationary solution. Using the characterization of stationary
solutions in @ and rearranging the terms, we get:

(y—Xs,BS . X;) = (1+2x)B? + Aisign((y — Xs,BY, X))

@) (41)
(y — X5, Bg» Xj)| > A
Multiplying the first equation in the above by B](-z) and using that the fact (y — Xg, Bgl), X;) and
B](-Q) have the same sign (which is evident from the system above), we arrive at
2 2 2 2
(y — X5, BS), X;)BY = (14 22)(BP)? + \[B, (42)

Plugging in the above expression in the second term on the r.h.s of and using the fact that
1X;]12 =1 we get
2 2 142X
JBE) = 1(BG) - —

Substituting into equation and rearranging terms, we arrive at

@ _ [2N 2 (2) (1)
N A D) (a4

(B&)2. (43)

Part 1.) We consider Part 1, where there exists an i € Sy such that (X;, X;) # 0. By Lemma
(1)

we have that B is a stationary solution. Thus, By’ € argming 5 f(Bs,), and the following holds

F(BY) < 1(BY). (45)

37

We will show the inequality above is strict. To this end, suppose that holds with equality.
Lemma |§| implies that S; appears in the sequence of iterates. But the function f(8s,) is strongly
convex (this is trivial for (LoL2) and holds due to Assumption [I] and Lemma [6] for the (Lo) and

(LoL1) problems). Thus, B(l) is the unique minimizer of f(fs,). Therefore, it must be the case

that B() = BéQ), and in particular B() = Bi(2). By the characterization of stationary solutions in
@ we have

>0
. (1) |< XS1\{Z}Bg1)\{ b >| - A1
sign((y XS1\{@}le\{Z}a i) 1+ 2) (16)
2)
- X B! X=X
i (2) [= Xooviiy By oy Ko !
= sign((y — Xg,\(iy Bg,\ iy X)) 15 20\
>0
Observing that the two sign terms in are equal, we can simplify the above to:
(1) (2
W= Xsn@Bs)\p X =0 = Xso@y By oy X0 (47)
_ (2) 2
={y = X;B;” — Xsi\(iy Bs)\ iy Xi)
where, the second line in (47) follows by noting Xg,\ }Bé)\{Z} =X; B()+ Xsl\{Z}Bé)\{z} Substi-

tuting B() = Béll) in and simplifying, we get (X;, X;) = 0, which contradicts the assumption
in Part 1 Thus, we have established that inequality (45 . is strict. Using this result in , we

conclude that: |B |> 1_%;&2.

Part 2.) We now consider the case where (X;, X;) = 0 for all ¢ € S;. In this case, the optimization

problem mingg f (Bs,) separates into optimization w.r.t the variables g, and f;. Note that B()

and Bfgll) are both minimizers of ming, f(8s,); and hence f(BéQ1)= f(B (1)) Thus, from ([{44) we

get]Bj(g)\ = 13‘3\2. Finally, we note that for any 8 € RP such that Supp(f3) = Ss, we have that

T(gj, A0, AL, A2) = Bj(?). This completes the proof. O

A.3 Proof of Theorem [2

Proof. Let B be a limit point of {3¥} with the largest support size and denote its support by S.
We will show that 8% — B as k — oo.

Part 1.) By Lemma@ there is a subsequence {3"},cr of {#*} which satisfies: Supp(3") = S for
all r and " — B (as r — 00). By Lemma [8] there exists an integer N such that for every r > N,
if 7 + 1 is a spacer step then Supp(3"™!) = Supp(3”). In what follows, we assume that r > N. Let
J be any element in S. We will show that there exists an integer N; such that for every r > N;, we
have j € Supp(B8"!). We show this by contradiction. To this end, let j ¢ Supp(87+!) for infinitely
many values of 7. Hence, there is a further subsequence {£" },sep of {"}rer (with R’ C R) such
that Supp(8”'+1) = S\ {j}. For every ' € R, note that ' + 1 is a non-spacer step (since r’ > N).
Therefore, applying Lemma [11| with & =/, we get:

2
F(§) - F(g+) 2 =52 (W‘r— ?20&). (18)

38

Taking ' — oo in and using the convergence of {F(5*)} (by Lemma |5)), we conclude

220
142X\

|B| = lim |5}| = (49)
"' —00

Since Supp(8” 1) = S\ {j} for every 7/, Lemma implies that {BTIH} converges to a limit point,

which we denote by B. If (X5, Xj) = 0 for all i € S\ {j}, then Lemma (part 2) implies

j € Supp(ﬂT/Jrl), which contradicts the definition of {5’"'}T,ER,, Thus, it must be the case that

there exists an index i € S\ {j} such that (X;, X;) # 0. Applying Lemma |10 (part 1) to B and

B we have that |Bj| > 2X0_ — this contradicts l) Therefore, there exists an integer IV; such

1429
that for every r > Nj;, we have j € Supp(B"+1).

The above argument says that no j in the support of B can be dropped infinitely often in the
sequence {fx}. Since S has the largest support size, no coordinate can be added to S infinitely
often in the sequence {fx}. This concludes the proof of Part 1.

Part 2.) Finally, we show that the limit of {*} is a CW minimum. To this end, note that the
results of Part 1 (above) and Lemma |§] (Parts 3 and 4) imply that 8* converges to the limit B,
which satisfies Supp(B) = S, and for every i € S, we have:

N 20
B; = sign(B) 2" and By >/ .
sign(B;) 1+2xn 8 |Bi 1+ 2) (50)

Fix some j ¢ Supp(B) and let { Bk/} i cx be the sequence of non-spacer iterates at which coordinate
j is updated. For every k' after support stabilization, the algorithm maintains:

’EJkl| _)\1 < 2/\0
142X 142\

where Bf' =(y— Ei# Xiﬁf/, X;). Taking k" — oo in the above, we have:

1Bj| — M ~ 2

. o1
T+2X = V142N (51)

and together imply that B is a CW minimum (by definition). O

39

References

[1]

A. Beck and Y. C. Eldar. Sparsity constrained nonlinear optimization: Optimality conditions and
algorithms. SIAM Journal on Optimization, 23(3):1480-1509, 2013. doi: 10.1137/120869778. URL
https://doi.org/10.1137/120869778.

A. Beck and L. Tetruashvili. On the convergence of block coordinate descent type methods. SIAM
Journal on Optimization, 23(4):2037-2060, 2013. doi: 10.1137/120887679. URL http://dx.doi.org/
10.1137/120887679.

D. Bertsekas. Nonlinear Programming. Athena scientific optimization and computation series. Athena
Scientific, 2016. ISBN 9781886529052. URL https://books.google.com/books?id=TwOujgEACAAJ.
D. Bertsimas and B. Van Parys. Sparse high-dimensional regression: Exact scalable algorithms and
phase transitions. arXiv preprint arXiv:1709.10029, 2017.

D. Bertsimas, A. King, and R. Mazumder. Best subset selection via a modern optimization lens. Annals
of Statistics, 44(2):813-852, 2016.

T. Blumensath and M. Davies. Iterative hard thresholding for compressed sensing. Applied and Com-
putational Harmonic Analysis, 27(3):265-274, 2009.

P. Breheny and J. Huang. Coordinate descent algorithms for nonconvex penalized regression, with
applications to biological feature selection. The annals of applied statistics, 5(1):232, 2011.

P. Bithlmann and S. van-de-Geer. Statistics for high-dimensional data. Springer, 2011.

C. Erdman and N. Bates. The us census bureau mail return rate challenge: Crowdsourcing to develop
a hard-to-count score. Statistics, page 08, 2014.

J. Friedman, T. Hastie, and R. Tibshirani. Regularization paths for generalized linear models via
coordinate descent. Journal of Statistical Software, 33(1):1-22, 2010. URL http://www.jstatsoft.
org/v33/101/.

G. Furnival and R. Wilson. Regression by leaps and bounds. Technometrics, 16:499-511, 1974.

D. Gamarnik and I. Zadik. High dimensional regression with binary coeflicients. estimating squared
error and a phase transtition. In Conference on Learning Theory, pages 948-953, 2017.

E. Greenshtein and Y. Ritov. Persistence in high-dimensional linear predictor selection and the virtue
of overparametrization. Bernoulli, 10:971-988, 2004.

E. Greenshtein. Best subset selection, persistence in high-dimensional statistical learning and optimiza-
tion under ¢; constraint. The Annals of Statistics, 34(5):2367-2386, 2006.

D. Harrison and D. L. Rubinfeld. Hedonic housing prices and the demand for clean air. Journal
of Environmental Economics and Management, 5(1):81 — 102, 1978. ISSN 0095-0696. doi: https:
//doi.org/10.1016,/0095-0696(78)90006-2. URL http://www.sciencedirect.com/science/article/
pii/0095069678900062.

T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning: Prediction, Inference
and Data Mining (Second Edition). Springer Verlag, New York, 2009.

T. Hastie, R. Tibshirani, and R. J. Tibshirani. Extended Comparisons of Best Subset Selection, Forward
Stepwise Selection, and the Lasso. ArXiv e-prints, July 2017.

T. Hastie, R. Tibshirani, and M. Wainwright. Statistical Learning with Sparsity: The Lasso and Gen-
eralizations. CRC Press, FL, 2015.

R. He and J. McAuley. Ups and downs: Modeling the visual evolution of fashion trends with one-
class collaborative filtering. In Proceedings of the 25th International Conference on World Wide Web,
WWW ’16, pages 507-517, Republic and Canton of Geneva, Switzerland, 2016. International World
Wide Web Conferences Steering Committee. ISBN 978-1-4503-4143-1. doi: 10.1145/2872427.2883037.
URL https://doi.org/10.1145/2872427.2883037.

P.-L. Loh and M. J. Wainwright. Support recovery without incoherence: A case for nonconvex regular-
ization. The Annals of Statistics, 45(6):2455-2482, 2017.

Z. Lu. Iterative hard thresholding methods for 10 regularized convex cone programming. Mathematical
Programming, 147(1):125-154, Oct 2014. ISSN 1436-4646. doi: 10.1007/s10107-013-0714-4. URL
https://doi.org/10.1007/s10107-013-0714-4,

R. Mazumder and P. Radchenko. The Discrete Dantzig Selector: Estimating sparse linear models via
mixed integer linear optimization. IEEE Transactions on Information Theory, 63 (5):3053 — 3075, 2017.

40

https://doi.org/10.1137/120869778
http://dx.doi.org/10.1137/120887679
http://dx.doi.org/10.1137/120887679
https://books.google.com/books?id=TwOujgEACAAJ
http://www.jstatsoft.org/v33/i01/
http://www.jstatsoft.org/v33/i01/
http://www.sciencedirect.com/science/article/pii/0095069678900062
http://www.sciencedirect.com/science/article/pii/0095069678900062
https://doi.org/10.1145/2872427.2883037
https://doi.org/10.1007/s10107-013-0714-4

[23]

[24]

R. Mazumder, J. H. Friedman, and T. Hastie. Sparsenet: Coordinate descent with nonconvex penalties.
Journal of the American Statistical Association, 106(495):1125-1138, 2011. doi: 10.1198/jasa.2011.
tm09738. URL https://doi.org/10.1198/jasa.2011.tm09738. PMID: 25580042.

R. Mazumder, P. Radchenko, and A. Dedieu. Subset selection with shrinkage: Sparse linear modeling
when the snr is low. arXiv preprint arXiv:1708.03288, 2017.

A. Miller. Subset selection in regression. CRC Press Washington, 2002.

B. Natarajan. Sparse approximate solutions to linear systems. SIAM journal on computing, 24(2):
227-234, 1995.

Y. Nesterov. Efficiency of coordinate descent methods on huge-scale optimization problems. SIAM
Journal on Optimization, 22(2):341-362, 2012.

Y. Nesterov. Introductory Lectures on Convex Optimization: A Basic Course. Kluwer, Norwell, 2004.
A. Patrascu and I. Necoara. Random coordinate descent methods for £¢ regularized convex optimization.
IEEF Transactions on Automatic Control, 60(7):1811-1824, July 2015. ISSN 0018-9286. doi: 10.1109/
TAC.2015.2390551.

G. Raskutti, M. Wainwright, and B. Yu. Minimax rates of estimation for high-dimensional linear
regression over-balls. Information Theory, IEEE Transactions on, 57(10):6976-6994, 2011.

C. Sanderson and R. Curtin. Armadillo: a template-based c++ library for linear algebra. Journal of
Open Source Software, 2016.

W. Su, M. Bogdan, and E. Candes. False discoveries occur early on the lasso path. The Annals of
Statistics, 45(5):2133-2150, 2017.

R. Tibshirani, J. Bien, J. Friedman, T. Hastie, N. Simon, J. Taylor, and R. J. Tibshirani. Strong
rules for discarding predictors in lasso-type problems. Journal of the Royal Statistical Society: Series
B (Statistical Methodology), 74(2):245-266, 2012.

R. J. Tibshirani. The lasso problem and uniqueness. Electronic Journal of Statistics, 7:1456-1490, 2013.
P. Tseng. Convergence of a block coordinate descent method for nondifferentiable minimization. Journal
of Optimization Theory and Applications, 109:475-494, 2001.

C.-H. Zhang. Nearly unbiased variable selection under minimax concave penalty. The Annals of Statis-
tics, 38(2):894-942, 2010.

C.-H. Zhang and T. Zhang. A general theory of concave regularization for high-dimensional sparse
estimation problems. Statistical Science, 27(4):576-593, 2012.

Y. Zhang, M. J. Wainwright, and M. I. Jordan. Lower bounds on the performance of polynomial-time
algorithms for sparse linear regression. In Conference on Learning Theory, pages 921-948, 2014.

41

https://doi.org/10.1198/jasa.2011.tm09738

	Introduction
	Related work
	Notation and Preliminaries

	Necessary Optimality Conditions
	Stationary Solutions
	Coordinate-wise Minima
	Swap Inescapable Minima
	Partial Swap Inescapable (PSI) Minima
	Full Swap Inescapable (FSI) Minima

	Stationarity Motivated by Iterative Hard Thresholding (IHT)

	Cyclic Coordinate Descent: Algorithmic Convergence
	Convergence Analysis
	Rate of Convergence

	Local Combinatorial Optimization Algorithms
	Algorithms for PSI minima
	An efficient algorithm for computing PSI(1) minima

	Algorithm for FSI minima

	Efficient Computation of the Regularization Path
	Computational Experiments
	Experimental Setup
	Comparison among CD variants and IHT: Optimization performance
	Statistical Performance for Varying Number of Samples
	Experiment 1: High Correlation
	Experiment 2: Mild Correlation

	Statistical Performance for Varying SNR
	Experiment 1: Constant Correlation
	Experiment 2: Exponential Correlation

	Comparisons among PSI(k)/FSI(k)
	Large High-dimensional Experiments

	Appendix: Proofs and Technical Details
	Proof of Lemma 8
	Proof of Lemma 10
	Proof of Theorem 2

