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A NEW PERSPECTIVE ON BOOSTING IN LINEAR
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RELATIVES
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We analyze boosting algorithms [22, 25, 14] in linear regression
from a new perspective: that of modern first-order methods in con-
vex optimization. We show that classic boosting algorithms in linear
regression, namely the incremental forward stagewise algorithm (F'S.)
and least squares boosting (LS-B00sT(¢)), can be viewed as subgra-
dient descent to minimize the loss function defined as the maximum
absolute correlation between the features and residuals. We also pro-
pose a minor modification of FS. that yields an algorithm for the
LASSO, and that may be easily extended to an algorithm that com-
putes the LASSO path for different values of the regularization param-
eter. Furthermore, we show that these new algorithms for the LLASSO
may also be interpreted as the same master algorithm (subgradient
descent), applied to a regularized version of the maximum absolute
correlation loss function. We derive novel, comprehensive computa-
tional guarantees for several boosting algorithms in linear regression
(including LS-BoosT(g) and FS.) by using techniques of first-order
methods in convex optimization. Our computational guarantees in-
form us about the statistical properties of boosting algorithms. In
particular they provide, for the first time, a precise theoretical de-
scription of the amount of data-fidelity and regularization imparted
by running a boosting algorithm with a prespecified learning rate for
a fixed but arbitrary number of iterations, for any dataset.

1. Introduction. Boosting [45, 16, 25, 46, 33] is an extremely success-
ful and popular supervised learning method that combines multiple weak!
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Lthis term originates in the context of boosting for classification, where a “weak” clas-
sifier is slightly better than random guessing.
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learners into a powerful “committee.” AdaBoost [20, 46, 33], one of the ear-
liest boosting algorithms developed in the context of classification, may be
viewed as an optimization algorithm: a form of gradient descent in a certain
function space [5, 4]. In an influential paper, [25] nicely interpreted boosting
methods used in classification problems as instances of stagewise additive
modeling [32]. [22] provided an unified view of stagewise additive model-
ing and steepest descent minimization methods in function space to explain
boosting methods. For related perspectives from the machine learning com-
munity, we refer the reader to [37, 42] and the references therein.

An important instantiation of boosting, and the topic of the present paper,
is its application in linear regression [22, 33, 6, 7]. We use the usual notation
with model matrix X = [Xj,...,X,] € R™ P, response vector y € R"™! and
regression coefficients 8 € RP. We assume that the X;’s have been centered
to have zero mean and unit f» norm and y is also centered to have zero
mean. For a regression coefficient [, the predicted value of the response is
X3 and r =y — X denotes the residuals.

Boosting and Implicit Regularization. We begin our study with a popu-
lar algorithm: Least Squares Boosting — also known as LS-B0oosT(¢e) [22]
— which is formally described herein in Section 2. LS-B00ST(g) has been
studied by several authors [8, 6, 7, 36, 21]. Starting from the null model
B9 =0, at the k-th iteration LS-BoosT(¢) determines the covariate index
jx with the best univariate fit to the current residuals #* = y — XB’“ :

n n
jr € arg min g (ff—a:imﬂm)2, where, ,, = argmin E (ff — Zimu)? | .
lsmsp = uelR  \i=1

The algorithm then updates the ji-th regression coefficient with a shrinkage
factor ¢ > O: /3’;“:1 — Bfk + ety,, with all other regression coefficients
unchanged. A close cousin of the LS-BoosT(¢) algorithm is the Incremental
Forward Stagewise algorithm [33, 14] — also known as F'S. — which is formally
described herein in Section 3. FS. chooses the covariate most correlated (in
absolute value) with the residual #* and performs the update:

Aj]?:rl — Afk—i-s sen((F9)TX,), Bf“ — ﬁf,j # jk, where, jj € ar;gma;; [GakD:¥1R
Je{l,...p

(Since the covariates are standardized, both LS-BoosT(¢) and FS, lead to
the same variable selection for a given #*.) LS-Boost(¢) and FS. have
curious similarities but subtle differences as we characterize in Section 3
(see also [7]). In both algorithms, the shrinkage factor e, also known as
the learning rate, counterbalances the greedy selection strategy of choosing
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the best covariate. Qualitatively speaking, a greedy fitting procedure may
overfit quickly — a small value of € slows down the learning rate as compared
to a larger choice of ¢ (that is fine-tuned to minimize the training error)
and leads to slower overfitting. With a small ¢ it is possible to explore a
larger class of models, with varying degrees of shrinkage — this often leads
to models with better predictive power [22]. Let M denote the number of
boosting iterations. Then both M and e (the shrinkage factor) together
control the training error and the amount of shrinkage. We refer the reader to
Figure 1, which illustrates the evolution of the algorithmic properties of the
LS-BoosT(¢) algorithm as a function of k£ and . Up until now, as pointed
out by [33], the understanding of the tradeoff between regularization and
data-fidelity for these boosting methods has been rather qualitative. One of
the contributions of this paper is a precise quantification of this tradeoff. In
Sections 2 and 3 we will derive comprehensive computational guarantees for
these algorithms which provide a formal description of how M and e control
the amount of training error and regularization in FS. and LS-Boost(¢),
as well as precise bounds on their tradeoffs between regularization and data-
fidelity. Furthermore, in Section 3.3 we will provide a unified treatment of
LS-Boosrt(e), FS., and a generalization with adaptive step-sizes FS,, —
wherein we will show that all of these methods can be viewed as special
instances of (convex) subgradient optimization.

Both LS-Boost(e) and FS; may be interpreted as “cautious” versions
of the classical Forward Selection or Forward Stepwise regression [38, 52].
This algorithm identifies the variable most correlated (in absolute value)
with the current residual, includes it in the model, and updates the joint
least squares fit based on the current set of predictors — this update strategy
makes stepwise regression aggressive and hence different from FS,; and LS-
Boosr(e) .

LASsO and Explicit Regularization. All of the algorithms described above
impart regularization in an implicit fashion through the choice of € and M.
In contrast, let us consider the constraint version of the LASSO [48]:

LASsO : Lk ;= mﬁin =lly — XB|3

1.1
(1.1) st Bl <4,

with regularization parameter § > 0. The nature of regularization via the
LASSO is explicit — it is set up to find the best least squares solution subject
to a constraint on the ¢; norm of the regression coefficients. We let {35}
denote the path of solutions of (1.1) for all 6 > 0, otherwise known as the
“LASSO path.”
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F1G 1. Evolution of LS-Bo0sT(e) and FSe versus iterations (in log-scale), for a synthetic dataset
with n = 50, p = 500: the covariates are Gaussian with pairwise correlations p, the true B has
ten non-zeros with B; = 1,1 < 10 and SNR = 1. Different p and € values are considered. [Top
Row] Shows the training errors for different learning rates, [Bottom Row] shows the £1 norm of
coefficients produced by the algorithms for different learning rates (the y-azis values have been
re-scaled to lie in [0,1]).

Boosting and LASSO: Path Properties. Although LASSO and the above
boosting methods originate from different perspectives, there are curious
similarities between the two as is nicely explored in [33, 14, 34]. For certain
datasets, the coefficient profiles? of LAsso and FSy (defined to be the limit-
ing case of the FS, algorithm as ¢ — 0+) are exactly the same (see Figure 2,
top panel) [33]. However, they are different in general (Figure 2, bottom
panel). Efforts to understand the F'S. algorithm paved the way for the Least
Angle Regression algorithm — also known as LAR [14] (see also [33]). The
LAR is a unified framework: one instance of LAR computes the LASSO path
and another delivers a coefficient profile for FSg.

The similarities between the LASSO and boosting coefficient profiles mo-
tivate us to develop a minor modification of boosting that generates the
LAsso path, which we will accomplish in Sections 4 and 5. In a different
line of approach, [53] describes BLASSO, a modification of the FS, algorithm

2By a coefficient profile we mean the map A — B where, A € A indexes a family
of coefficients Bx. For example, the regression coefficients delivered by FSy delivers a
coefficient profile as a function of their ¢;-norms.
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Coeflicient Profiles: LS-BoosT(e), FS. and Lasso
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Fic 2. Coefficient Profiles of several algorithms as as function of the ¢1-norm of
coefficients on different datasets. [Top Panel] Prostate Cancer dataset described
in Section 6 with n = 98 and p = 8. All profiles look similar. [Bottom Panel] A
subset of samples of the Prostate Cancer dataset with n = 10; we also included all
second order interactions to get p = 44. The coefficient profile of LASSO is seen
to be different from FS. and LS-BoosT(e). Figure A.1 [19] shows training error
vis-a-vis the f1-shrinkage of the models for the same data.

with the inclusion of additional “backward steps” so that the resultant co-
efficient profile mimics the LASSO path.

Boosting and LAssO: Computation. While solving the LASSO is computa-
tionally very attractive for small to moderate-sized datasets, efficient imple-
mentations of boosting (for example, FS.) are equally efficient® [23]. With
regard to LAR, for example, computing the FSy and LASSO profiles have
comparable cost. In examples where the number of possible features is ex-
tremely large or possibly infinite [43, 44] a boosting algorithm like FS; is
computationally more attractive than solving the LLASSO.

3Friedman [23] shows that an optimized implementation of FS. leads to an entire
solution path for a problem with 10,000 features and 200 samples in 0.5 seconds, whereas
solving the LLASSO can take up to 6-8 times longer to compute a path of solutions.
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Subgradient Optimization as a Unifying Viewpoint of Boosting and the Lasso.
In spite of the various nice perspectives on FS. and its connections to the
LASsO as described above, the present understanding about the relationships
between the LAssO path, FS., and LS-BoosT(¢) for arbitrary datasets and
€ > 0 has nevertheless been fairly limited. A chief goal of this paper is to
contribute some substantial further understanding of the relationship be-
tween these objects. Somewhat like the LAR algorithm can be viewed as a
master algorithm with special instances yielding the LASSO path and FSy,
we establish herein that FS, and LS-Boo0ST(e)can be viewed as special
instances of one grand algorithm: the subgradient descent method (of con-
vex optimization) applied to the following parametric class of optimization
problems:

(1.2)

1
Ps : minimize || X770 + 2—6”7“ —yl|2 wherer =y —Xg for some f ,
T

where 0 € (0,00] is a regularization parameter. Here the first term is the
maximum absolute inner-product between the features and residuals, and
the second term acts as a regularizer by penalizing residuals that are far
from the response. As we describe herein in Section 4, Problem (1.2) is
intimately connected to the LASSO problem (1.1) through duality. We then
show that the subgradient descent algorithm applied to Problem (1.2) leads
to a new boosting algorithm — dubbed R-FS, 5 (for Regularized incremental
Forward Stagewise regression) — that solves the LLASSO, and that is almost
identical to FS. except that it includes an additional simple re-scaling of the
coefficients. Section 4 develops a variety of properties of the new algorithm
R-FS. s related to regularization, data-fidelity, etc. And in Section 5 we
present an adaptive version PATH-R-FS, of R-FS. s which approximates
the LAssO path, with associated approximation guarantees as well. We also
observe empirically that R-F'S. s has statistical properties similar to LASSO
and FS,, and it often leads to models that are more sparse than FS,.

Summary of Contributions. We view the contributions of this paper as
falling into two main streams as follows:

e Current Boosting Methods and the Subgradient Descent Method. We show
that both LS-Boost(e)and FS, are instances of the subgradient descent
method of convex optimization applied to the problem of minimizing the
maximum absolute correlation between features and residuals. This leads to
the first-ever computational guarantees for the behavior of these boosting
methods as well as precise bounds on the tradeoffs between regularization
and data-fidelity for these methods, which hold for any dataset. See Theorem
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2.1, Proposition 3.2, and Theorem 3.1.

e New Boosting Method R-FS; s connecting F'S; and the LASSO. We present
a new boosting algorithm named R-FS, 5 — for Regularized Forward Stage-
wise regression — that is identical to FS. except for a simple rescaling of
the coefficients at each iteration, and that specializes to FS. as well as
to an algorithm for solving the LLASSO, depending on the choice of §. We
present computational guarantees for convergence of R-FS; 5 to LASSO so-
lutions, and we present a path version of the algorithm that computes an
approximation of the LASSO path with associated approximation bounds.
See Proposition 4.1, Theorem 4.1, Theorem 5.1, and Corollary 5.1.

Organization of the Paper. 'The paper is organized as follows. In Section
2 we analyze the convergence behavior of the LS-BoosT(¢) algorithm. In
Section 3 we present a unifying algorithmic framework for FS., FS,, , and
LS-BoosT(¢) as subgradient descent. In Section 4 we introduce R-FS, 5 as
a boosting algorithm naturally associated with Problem (1.2). In Section 5,
we further expand R-FS, s into a method for computing approximate solu-
tions of the LASSO path. Section 6 contains computational experiments. To
improve readability, most of the technical details are placed in the supple-
mentary section [19].

1.1. Notation. For a vector x € R™, we use x; to denote the i-th coor-
dinate of . We use superscripts to index vectors in a sequence {:ck} Let
e; denote the j-th unit vector in R™, and let e = (1,...,1) denote the
vector of ones. Let || - ||, denote the ¢, norm for ¢ € [1,00] with unit ball
By, and let ||v||o denote the number of non-zero coefficients of the vector

v. For A € R™" let ||Allg,q0 = ”mHax |Az||4, be the operator norm. In
z:||zllg; <1

particular, ||Al/12 = max(||A1]l2, ..., ||An||2) is the maximum ¢3 norm of the
columns of A. For a scalar «, sgn(«) denotes the sign of a. The notation
“0 — argmax{ f(v)}” denotes assigning ¥ to be any optimal solution of the
veS

problem rileag({ f(v)}. For a convex set P let IIp(-) denote the Euclidean pro-
jection operator onto P, namely IIp(Z) := argmin cp ||z — Z||2. Let 0f(-)
denote the subdifferential operator of a convex function f(-). If @ # 0 is a
symmetric positive semidefinite matrix, let Amax(Q), Amin (@), and Apmin(Q)
denote the largest, smallest, and smallest nonzero (and hence positive) eigen-
values of @, respectively. We use the notation L, (3) := ﬁ”y — XB||3 for
the least squares loss function.

2. LS-Boost(g) : Computational Guarantees and Statistical Im-
plications.
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Roadmap. We begin our formal study by examining the LS-BoosT(¢) algorithm.
We study the rate at which the coefficients generated by LS-B0O0ST(¢) converge
to the set of unregularized least square solutions. This characterizes the
amount of data-fidelity as a function of the number of iterations and e. In
particular, we show (global) linear convergence of the regression coefficients
to the set of least squares coefficients, with similar convergence rates de-
rived for the prediction estimates and the boosting training errors delivered
by LS-Boo0sT(g) . We also present bounds on the shrinkage of the regression
coefficients Bk as a function of k and ¢, thereby describing how the amount of
shrinkage of the regression coefficients changes as a function of the number
of iterations k.

We present below a formal description of LS-BoosT(¢) following [22]:

Algorithm: Least Squares Boosting — LS-B0OO0sT(¢)

Fix the learning rate ¢ > 0, the number of iterations M, and initialize BO =0
and Y =y.

1. For 0 < k < M do the following;:

2. Select the covariate index jj and u;, as follows:

n n
Jk € arg min E (#* — Timiim)?, where, @, = arg min E (#F — zimu)? |,
1<m<p i=1 u€R i

form=1,...,p.
3. Update the regression coefficients and residuals as:

ak+1 , Ak ~ Akl Ak oz s bl ok N
e i + EWUgys Bj <_ﬁj v F# e, and 7 — 7 —eXj g,

A special instance of the LS-B0oosT(¢) algorithm with € = 1 is known as
LS-BoosT [22] or Forward Stagewise [33] — it is essentially a method of
repeated simple least squares fitting of the residuals [7]. In the signal pro-
cessing literature LS-BOOST is known as Matching Pursuit [36], a scheme
used to approximate a signal (herein, response) as a sparse linear sum of
dictionary elements (herein, features). In words, the LS-B0OosT algorithm
at the k-th iteration determines the covariate index ji resulting in the max-
imal decrease in the univariate regression fit to the current residuals. If
X, uj, denotes the best univariate fit for the current residuals, LS-BoosT
updates the residuals: #++1 « #F — X, uj, and the ji-th regression coef-
ficient: Bf:l — Afk + 4j,, in an attempt to minimize the training error.
LS-BoosT(g) has old roots — as noted by [7], LS-BoosT with M = 2 is
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known as “twicing,” a method proposed by Tukey [50]. The papers [8, 6, 7]
present very interesting perspectives on LS-B0o0ST(g), where they refer to
the algorithm as L2-B0OST. [7] also obtains approximate expressions for the
effective degrees of freedom of the L2-BoosT algorithm. LS-BoosT(e) is
also closely related to Friedman’s MART algorithm [21]. LS-BoosT(¢) is a
slow-learning variant of L.S-B00ST, which diminishes the fast and greedy
learning style of LLS-BoosT with an additional damping factor of ¢, which
consequently leads to a richer family of models, as we study in this section.

2.1. Computational Guarantees and Intuition. We first review some use-
ful properties associated with the familiar least squares regression problem:

LS: Ly= min Lu(6) = 5;lly - X5J3

(2.1) "
s.t. B €RP,

where L,() is the least squares loss, whose gradient is:
(22) VIn(8) = =5 X (y = X8) = -1 XTr

where r =y — X3 is the vector of residuals corresponding to the regression
coefficients . It follows that 3 is a least-squares solution of LS if and only
if VL, () =0, which leads to the well known normal equations:

(2.3) 0=-X"(y -X8)=-X"r.

It also holds that:

(2.4) 1 VL (B)lloo = [IX 7l = max {[r"X;l} .
j6{17"'7p}

The following theorem describes precise computational guarantees for L.S-
Boost(e): linear convergence of LS-B00sT(¢) with respect to (2.1), and
bounds on the ¢; shrinkage of the coefficients produced. Note that the theo-
rem uses the quantity Apmin(X” X) which denotes the smallest nonzero (and
hence positive) eigenvalue of X7 X.

THEOREM 2.1. (Linear Convergence of LS-Boost(¢) for Least Squares)
Consider the LS-B0OO0ST(¢g) algorithm with learning rate € € (0,1], and de-
fine the linear convergence rate coefficient ~y:

_ . T

£(2 — &) Adpmin(X X)> <1,
4p

For all k > 0 the following bounds hold:

(2.5) = (1 -
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(i) (training error): Ln(Bk) —L* < %HXBLSH% <ok

n —

(ii) (regression coefficients): there exists a least squares solution B}is such
that: .
[XBrsllz k2

Ak Ak
_ <
157 = Pisll> < Apmin (X7 X)

(iii) (predictions): for every least-squares solution frg it holds that
X"~ XBsll2 < [ XBrsllz -+

(iv) (gradient norm/correlation values): ||V Ln(B%)||lso = LIXTk || <
21X Brs]z - A2

(v) (€1-shrinkage of coefficients):

. " " " XA
135 < min {m/zw Il — XA~ X345 . T2 (1 W?)}

(vi) (sparsity of coefficients): ||Bk||0 < k. 0

Before remarking on the various parts of Theorem 2.1, we first discuss

the quantity v defined in (2.5), which is called the linear convergence rate
coefficient. We can write v = 1 — % where x(X7X) is defined to be
the ratio x(XTX) := m. Note that £(XTX) € [1,00). To see this,

let 3 be an eigenvector associated with the largest eigenvalue of XX, then:

_ XI5 < I1X[[3 2118113 -

[ Ve S
where the last inequality uses our assumption that the colur~nns of X h~ave
been normalized (whereby [|X||;,2 = 1), and the fact that ||8]j1 < /p||B] 2

This then implies that v € [0.75,1.0) — independent of any assumption on
the dataset — and most importantly it holds that v < 1.

(2.6) 0 < Apmin(XTX) < Apax(XTX)

)

Let us now make the following immediate remarks on Theorem 2.1:

e The bounds in parts (7)-(iv) state that the training errors, regression coeffi-
cients, predictions, and correlation values produced by LS-B0OOST(¢) converge
linearly (also known as geometric or exponential convergence) to their least
squares counterparts: they decrease by at least the constant multiplicative
factor v < 1 for part (i), and by /7 for parts (%i)-(iv), at every iteration.
The bounds go to zero at this linear rate as kK — oo.
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e The computational guarantees in parts (i) - (vi) provide characteriza-
tions of the data-fidelity and shrinkage of the LS-BoosT(e) algorithm for
any given specifications of the learning rate € and the number of boosting
iterations k. Moreover, the quantities appearing in the bounds can be com-
puted from simple characteristics of the data that can be obtained a priori
without even running the boosting algorithm. (And indeed, one can even
substitute ||y||2 in place of ||XArs||2 throughout the bounds if desired since

IXBusll2 < Ilyll2-)

Some Intuition Behind Theorem 2.1. Let us now study the LS-BoosT(¢) algorithm
and build intuition regarding its progress with respect to solving the uncon-
strained least squares problem (2.1), which will inform the results in The-

orem 2.1. Since the predictors are all standardized to have unit ¢ norm, it

follows that the coefficient index j; and corresponding step-size 4, selected

by LS-BoosT(e) satisfy:

(2.7) ji € argmax |(7F)TX;]| and i, = (MM)7TX;, .
je{lj"'7p}

Combining (2.4) and (2.7), we see that
(2.8) [, = 1(7*) " X = 1 IV L (B oo -

Using the formula for @, in (2.7), we have the following convenient way to
express the change in residuals at each iteration of LS-BoosT(¢):

(2.9) P =k e (P97, ) Xy

Intuitively, since (2.9) expresses ##+1 as the difference of two correlated vari-
ables, #F and sgn((#¥)TX;, )X, , we expect the squared £ norm of #**! to
be smaller than that of #¥. On the other hand, as we will see from (3.2),
convergence of the residuals is ensured by the dependence of the change
in residuals on |(#*)7X}, |, which goes to 0 as we approach a least squares
solution. In the proof of Theorem 2.1 in Section A.2.2 (in [19]) we make
this intuition precise by using (2.9) to quantify the amount of decrease in
the least squares objective function at each iteration of LS-BoosT(¢). The
final ingredient of the proof uses properties of convex quadratic functions
(Section A.2.1 in [19]) to relate the exact amount of the decrease from iter-
ation k to k+ 1 to the current optimality gap Ln(Bk) — L7, which yields the
following strong linear convergence property:

(2.10) L) =Ly < v (La(BY) - L) -
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The above states that the training error gap decreases at each iteration
by at least the multiplicative factor of 7, and clearly implies item (i) of
Theorem 2.1. The bounds in Theorem 2.1 are indeed tight, as addressed in
Section A.2.8 [19].

Comments on the global linear convergence rate in Theorem 2.1. 'The global
linear convergence of LS-B0o0ST(g) proved in Theorem 2.1, while novel, is
not at odds with the present understanding of such convergence for opti-
mization problems. One can view LS-B00ST(¢) as performing steepest de-
scent optimization steps with respect to the ¢; norm unit ball (rather than
the 5 norm unit ball which is the canonical version of the steepest descent
method, see [41]). It is known [41] that canonical steepest decent exhibits
global linear convergence for convex quadratic optimization so long as the
Hessian matrix ) of the quadratic objective function is positive definite,
i.e., Amin (@) > 0. And for the least squares loss function ¢ = %XTX, which
yields the condition that A (X7 X) > 0. As discussed in [3], this result ex-
tends to other norms defining steepest descent as well. Hence what is mod-
estly surprising herein is not the linear convergence per se, but rather that
LS-B0o0sT(¢) exhibits global linear convergence even when A, (X7 X) = 0,
i.e., even when X does not have full column rank (essentially replacing
Amin (XTX) with )\pmin(XTX) in our analysis). This derives specifically from
the structure of the least squares loss function, whose function values (and
whose gradient) are invariant in the null space of X, i.e., L,(8+d) = L, ()
for all d satisfying Xd = 0, and is thus rendered “immune” to changes in g
in the null space of X7X.

2.2. Statistical Insights from the Computational Guarantees. Note that
in most noisy problems, the limiting least squares solution is statistically less
interesting than an estimate obtained in the interior of the boosting profile,
since the latter typically corresponds to a model with better bias-variance
tradeoff. We thus caution the reader that the bounds in Theorem 2.1 should
not be merely interpreted as statements about how rapidly the boosting
iterations reach the least squares fit. We rather intend for these bounds
to inform us about the ewvolution of the training errors and the amount of
shrinkage of the coefficients as the LS-B00sT(¢) algorithm progresses and
when k is at most moderately large. When the training errors are paired
with the profile of the ¢1-shrinkage values of the regression coefficients, they
lead to the ordered pairs:

1 ~ N
2.11) (3lly = X4 11 ) k=1,
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which describes the data-fidelity and ¢;-shrinkage tradeoff as a function of
k, for the given learning rate ¢ > 0. This profile is described in Figure A.1
in Section A.1.1 [19] for several data instances. The bounds in Theorem 2.1
provide estimates for the two components of the ordered pair (2.11), and they
can be computed prior to running the boosting algorithm. For simplicity, let
us use the following crude estimate:

;s k X3
fr = min { [Xysllag /25 XAl g _py L
2-¢c ' 1—-4

which is an upper bound of the bound in part (v) of the theorem, to provide
an upper approximation of || Bk”l Combining the above estimate with the
guarantee in part (i) of Theorem 2.1 in (2.11), we obtain the following
ordered pairs:

1 A *
(2.12) (nIXbsl+25 . ), k21,

which describe the entire profile of the training error bounds and the ¢;-
shrinkage bounds as a function of k as suggested by Theorem 2.1. These
profiles, as described above in (2.12), are illustrated in Figure 3.

LS-BoosT(e) algorithm: ¢1-shrinkage versus data-fidelity tradeoffs (theoretical bounds)

Synthetic dataset (= = 1) Synthetic dataset (x = 25) Leukemia dataset

2 — eps=001 — eps=0.01 — eps=0.01
€ps=0.025 €ps=0.025 €ps=0.025

— eps=005 — eps=0.05 — eps=0.05
eps=1 eps=1 eps=1

Training Error
0

€1 shrinkage of coefficients £1 shrinkage of coefficients €1 shrinkage of coefficients

F1c 3. Figure showing profiles of £1 shrinkage of the regression coefficients versus training error
for the LS-Bo0sT(g) algorithm, for different values of the learning rate € (denoted by the moniker

“eps” in the legend). The profiles have been obtained from the computational bounds in Theo-

p

rem 2.1. The left and middle panels correspond to synthetic values of the ratio kK = x=—, and for
pmin

the right panel profiles the value of k (here, k = 270.05) is extracted from the Leukemia dataset,
described in Section 6. The vertical axes have been normalized so that the training error at k =0
is one, and the horizontal axes have been scaled to the unit interval.

It is interesting to consider the profiles of Figure 3 alongside the explicit
regularization framework of the LAsso (1.1) which also traces out a profile
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of the form (2.11), namely:
1 A% (12 Q%
(2.13) oy = XG5z 85l ), 620,

as a function of ¢, where, B(}‘ is a solution to the LASSO problem (1.1).
For a value of § := /; the optimal objective value of the LASSO problem
will serve as a lower bound of the corresponding LS-BoosT(¢) loss function
value at iteration k. Thus the training error of Bk delivered by the LS-
BoosTt(e) algorithm will be sandwiched between the following lower and
upper bounds:

1 . 1 - 1 - B}
Lij = %Hy — X3 |I5 < %Ily — XB*5 < %HXﬁLsII% YT+ Ly, = Uy

for every k. Note that the difference between the upper and lower bounds
above, given by U, — L; 1, converges to zero as k — oo. Figure A.1, Sec-
tion A.1.1 in [19] shows the training error versus shrinkage profiles for LS-
Boost(e) and LAsso solutions, for different datasets.

600 800 1000

400

Apmin(XTX)

200

T T T T T T T T T T T T
0 10000 20000 30000 40000 50000 o 10000 20000 30000 40000 5000C

p p

FI1G 4. Figure showing the behavior of v [left panel] and Apmin(XTX) [right panel] for different
values of p (denoted by the moniker “rho” in the legend) and p, with ¢ = 1. There are ten profiles
in each panel corresponding to different values of p for p =0, 0.1, ..., 0.9. Each profile documents
the change in vy as a function of p, the smallest value of p appearing in the display is p = 73. Here,
the data matriz X is comprised of n = 50 samples from a p-dimensional multivariate Gaussian
distribution with mean zero, and all pairwise correlations equal to p, and the features are then
standardized to have unit €o norm. The left panel shows that v exhibits a phase of rapid decay
(as a function of p) after which it stabilizes into the regime of fastest convergence. Interestingly,
the behavior shows a monotone trend in p: the rate of progress of LS-B0OOST(e) becomes slower
for larger values of p and faster for smaller values of p.

For the bounds in parts (i) and (i) of Theorem 2.1, the asymptotic
limits (as k& — oo0) are the unregularized least squares training error and
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predictions — which are quantities that are uniquely defined even in the
underdetermined case.

The bound in part (i) of Theorem 2.1 is a statement concerning the
regression coefficients. In this case, the notion of convergence needs to be
appropriately modified from parts (i) and (i), since the natural limiting
object BLS is not necessarily unique. In this case, perhaps not surprisingly,
the regression coefficients ¥ need not converge. The result in part (i) of
the theorem states that Bk converges at a linear rate to the set of least
squares solutions. In other words, at every LS-B00ST(g) boosting iteration,
there exists a least squares solution 5LS for which the presented bound holds.
Here /BLS is in fact the closest least squares solution to Bk in the 5 norm —
and the particular candidate least squares solution BES may be different for
each iteration.

Interpreting the parameters and algorithm dynamics. There are several de-
terminants of the quality of the bounds in the different parts of Theorem
2.1 which can be grouped into:

e algorithmic parameters: this includes the learning rate € and the num-
ber of iterations k, and
e data dependent quantities: || XALs]2, Apmin(XT X), and p.

The coefficient of linear convergence is given by the quantity v := 1 —
%, where £(XTX) := m. Note that v is monotone decreasing
in ¢ for ¢ € (0,1], and is minimized at ¢ = 1. This simple observation
confirms the general intuition about LS-B0oosT(¢): e = 1 corresponds to
the most aggressive model fitting behavior in the LS-B0oosT(¢) family, with
smaller values of € corresponding to a slower model fitting process. The ratio
k(XTX) is a close cousin of the condition number associated with the data
matrix X — and smaller values of x(X”'X) imply a faster rate of convergence.

In the overdetermined case with n > p and rank(X) = p, the condi-

tion number £(XTX) := % plays a key role in determining the

stability of the least-squares solution BLS and in measuring the degree of
multicollinearity present. Note that &(X”X) € [1,00), and that the prob-
lem is better conditioned for smaller values of this ratio. Furthermore, since
rank(X) = p it holds that Apmin(XTX) = Apin(XTX), and thus #(XTX) <
k(XTX) by (2.6). Thus the condition number (X' X) always upper bounds
the classical condition number &(X7X), and if Apax (X7 X) is close to p, then
R(XTX) ~ /i(XTX) and the two measures essentially coincide. Finally, since
in this setup SLg is unique, part (i) of Theorem 2.1 implies that the sequence
{ﬂk } converges linearly to the unique least squares solution BLS
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In the underdetermined case with p > n, )\min(XTX) = 0 and thus
R(XTX) = oo. On the other hand, x(XTX) < oo since Apmin(XTX) is
the smallest nonzero (hence positive) eigenvalue of X7X. Therefore the
condition number £(X7X) is similar to the classical condition number &(-)
restricted to the subspace S spanned by the columns of X (whose dimen-
sion is rank(X)). Interestingly, the linear rate of convergence enjoyed by
LS-BoosT(e)is in a sense adaptive — the algorithm automatically adjusts
itself to the convergence rate dictated by the parameter v “as if” it knows
that the null space of X is not relevant.

Dynamics of the LS-BoosT(eg) algorithm versus number of boosting iterations

p=20 p=0.5 p=0.9

150 200 250 300 350

100

Sorted Coefficient Indices

T T T T T T T T T T T
0 1000 2000 3000 4000 5000 6000 0 1000 2000 3000 4000 5000 6000 0 1000 2000 3000 4000 5000 6000

Number of Boosting lterations Number of Boosting lterations Number of Boosting lterations

Fi1c 5. Showing the LS-B00ST(g) algorithm run on the same synthetic dataset as was used in
Figure 1 with € = 1, for three different values of the pairwise correlation p. A point is “on” if
the corresponding regression coefficient is updated at iteration k. Here the vertical axes have been
reoriented so that the coefficients that are updated the mazimum number of times appear lower on
the azes. For larger values of p, we see that the LS-B0OOST(g) algorithm aggressively updates the
coefficients for a large number of iterations, whereas the dynamics of the algorithm for smaller
values of p are less pronounced. For larger values of p the LS-B0oosT(g) algorithm takes longer to
reach the least squares fit and this is reflected in the above figure from the update patterns in the
regression coefficients. The dynamics of the algorithm evident in this figure nicely complements

the insights gained from Figure 1.

As the dataset is varied, the value of v can change substantially from one
dataset to another, thereby leading to differences in the convergence behav-
ior bounds in parts (i)-(v) of Theorem 2.1. To settle all of these ideas, we
can derive some simple bounds on « using tools from random matrix the-
ory. Towards this end, let us suppose that the entries of X are drawn from a
standard Gaussian ensemble, which are subsequently standardized such that
every column of X has unit ¢5 norm. Then it follows from random matrix
theory [51] that Apmin(X?X) Z 2 (,/p—+/n)? with high probability. (See Sec-
tion A.2.4 in [19] for a more detailed discussion of this fact.) To gain better
insights into the behavior of v and how it depends on the values of pairwise
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correlations of the features, we performed some computational experiments,
the results of which are shown in Figure 4. Figure 4 shows the behavior of
v as a function of p for a fixed n = 50 and ¢ = 1, for different datasets X
simulated as follows. We first generated a multivariate data matrix from a
Gaussian distribution with mean zero and covariance ¥,x, = (0;;), where,
o;j = p for all ¢ # j; and then all of the columns of the data matrix were
standardized to have unit /o norm. The resulting matrix was taken as X.
We considered different cases by varying the magnitude of pairwise correla-
tions of the features p — when p is small, the rate of convergence is typically
faster (smaller ) and the rate becomes slower (higher 7) for higher values
of p. Figure 4 shows that the coefficient of linear convergence v is quite
close to 1.0 — which suggests a slowly converging algorithm and confirms
our intuition about the algorithmic behavior of LS-BoosT(¢). Indeed, LS-
BoosT(e), like any other boosting algorithm, should indeed converge slowly
to the unregularized least squares solution. The slowly converging nature of
the LS-B0oosT(¢) algorithm provides, for the first time, a precise theoretical
justification of the empirical observation made in [33] that stagewise regres-
sion is widely considered ineffective as a tool to obtain the unregularized
least squares fit, as compared to other stepwise model fitting procedures
like Forward Stepwise regression (discussed in Section 1).

The above discussion sheds some interesting insight into the behavior of
the LS-BoosT(¢e) algorithm. For larger values of p, the observed covariates
tend to be even more highly correlated (since p > n). Whenever a pair of
features are highly correlated, the LS-B0o0sT(g) algorithm finds it difficult to
prefer one over the other and thus takes turns in updating both coefficients,
thereby distributing the effects of a covariate to all of its correlated cousins.
Since a group of correlated covariates are all competing to be updated by the
LS-BoosT(e) algorithm, the progress made by the algorithm in decreasing
the loss function is naturally slowed down. In contrast, when p is small,
the LS-BoosT(¢g) algorithm brings in a covariate and in a sense completes
the process by doing the exact line-search on that feature. This heuristic
explanation attempts to explain the slower rate of convergence of the LS-
BoosT(e) algorithm for large values of p — a phenomenon that we observe in
practice and which is also substantiated by the computational guarantees in
Theorem 2.1. We refer the reader to Figures 1 and 5 which further illustrate
the above justification. Statement (v) of Theorem 2.1 provides upper bounds
on the ¢; shrinkage of the coefficients. Figure 3 illustrates the evolution of
the data-fidelity versus f;-shrinkage as obtained from the computational
bounds in Theorem 2.1. Some additional discussion and properties of LS-
BoosTt(e) are presented in Supplementary Material Section A.2.3, [19].
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We briefly discuss computational guarantees for Forward Stepwise regres-
sion (also known as Forward Selection) [33, 14, 52]. The Forward Stepwise
algorithm, at the k-th iteration, selects a covariate X;, maximally corre-
lated with the current residual®: ji, € arg max; |(7¥)TX]. If the set of active
(i.e., nonzero) regression coefficient indices at iteration k is denoted by Zj,
then the algorithm appends ji to this set, Zy11 < Zy U {jx}, and updates
the regression coeflicients by performing a joint least squares regression of
y restricted to the covariates in Zy1:

Bkﬂeargﬁmin ly —XBl5 st Bi=0,Vig T

Notice that the least-squares loss function value for Forward Stepwise is
bounded by the corresponding value if one was instead using LS-BOOST,
ie., Ln(BF) < Ln(B* + @j,.€j,.). Thus it is straightforward to show that
parts (i)-(iv) (and also part (vi)) of Theorem 2.1 (with & = 1) hold in their
current form for Forward Stepwise as well. Interestingly, part (v) does not
hold for Forward Stepwise nor should we expect Forward Stepwise — which is
the most aggressive model fitting procedure described herein — to have any
such guarantees about the shrinkage of coefficients. In the signal processing
literature, Forward Stepwise is popularly known as Orthogonal Matching
Pursuit [40].

3. Boosting Algorithms as Subgradient Descent.

Roadmap. In this section we present a new unifying framework for in-
terpreting the three boosting algorithms that were discussed in Section 1,
namely F'S,, its non-uniform learning rate extension FS, , and LS-BoosT(e).
We show herein that all three algorithmic families can be interpreted as in-
stances of the subgradient descent method of convex optimization, applied
to the problem of minimizing the largest correlation between residuals and
predictors. Interestingly, this unifying lens will also result in a natural gen-
eralization of FS. with very strong ties to the LLASSO problem and its solu-
tion, as we will present in Sections 4 and 5. The framework presented in this
section leads to convergence guarantees for FS, and FS,,. In Theorem 3.1
herein, we present a theoretical description of the evolution of the FS, al-
gorithm, in terms of its data-fidelity and shrinkage guarantees as a function
of the number of boosting iterations. These results are a consequence of the
computational guarantees for FS. that inform us about the rate at which
the FS. training error, regression coefficients, and predictions make their
way to their least squares counterparts. In order to develop these results, we

4Recall that we assume all the covariates to have unit £» norm
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first motivate and briefly review the subgradient descent method of convex
optimization.

3.1. Boosting Algorithms FS., LS-Bo0oST(¢) and FS;,. We present a for-
mal description of the F'S; algorithm introduced in Section 1.

Algorithm: Incremental Forward Stagewise Regression — F'S.

Fix the learning rate € > 0, the number of iterations M, and initialize BO =0
and 0 =y.
1. For 0 < k < M do the following:
2. Compute ji € argmaxjcry |(F)TX ]
3. Update the regression coefficients and residuals as:

Ak 3 ~ Ak 5 . .

j,jl — B;Ck +e€ Sgn((rk)TXjk)v IBjJrl — ﬁ;ﬁ yJ #jk ) and
(3.1)

PR e sen((PM)TX,) X,

The FS, algorithm in the k-th iteration greedily chooses a covariate X,
that is the most correlated (in absolute value) with the current residual
and updates the ji-th regression coefficient, along with the residuals, with
a shrinkage factor e. Firstly, since all of the covariates are standardized to
have unit ¢ norm, for same given residual value #* it is simple to derive that
LS-BoosT(e) and FS; lead to the same choice of ji. Qualitatively speaking,
as in the case of LS-B0O0ST(¢), a smaller value of € corresponds to a slower
learning procedure. However, in contrast to LS-B0OosT(¢), where, ¢ lies nat-
urally in (0, 1], the choice of € in FS. is more sensitive to the scale of the
problem. Indeed LS-BoosT(¢) and FS, inspite of their similarities contain
subtle differences, for example, in their residual updates:

(3.2)

LS-Boost(e) : [[#+L — iy = e|(#%)TX,, | =€ n - | VLn(8)||oo

FS.: [P —7F||y = elsg| where s; = sgn((#*)7X,) ,

where VL,(-) is the gradient of L,(5). Note that for both of the algo-
rithms, the quantity [#*¥1 — #¥||y involves the shrinkage factor e. Their
difference thus lies in the multiplicative factor, which is n - ||V Ly (6%)| o for
LS-Boost(e)and is |sgn((#*)TX;, )| for FS.. The norm of the successive
residual differences for LS-B0O0OST(¢) is proportional to the £, norm of the
gradient of the least squares loss function (see herein equations (2.2) and
(2.4)). For FS,, the norm of the successive residual differences depends on the

absolute value of the sign of the ji-th coordinate of the gradient. Note that
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sk € {—1,0,1} depending upon whether (fk’)TXjk is negative, zero, or pos-
itive; and sj, = 0 only when (#*)7X;, = 0, i.e., only when ||V Ly, (3*)|/c = 0
and hence ¥ is a least squares solution. Thus, for FS, the £ norm of the dif-
ference in residuals is almost always € during the course of the algorithm. For
the LS-B0oosT(e) algorithm, progress is considerably more sensitive to the
norm of the gradient — as the algorithm makes its way to the unregularized
least squares fit, one should expect the norm of the gradient to also shrink
to zero, as we have established formally in Section 2. Qualitatively speaking,
this means that the updates of LS-B00ST(¢) are more well-behaved when
compared to the updates of FS., which are more erratically behaved. Of
course, the additional shrinkage factor € further dampens the progress for
both algorithms.

While Section 2 shows that the predicted values Xﬁk obtained from LS-
Boost(e) converge (at a globally linear rate) to the least squares fit as
k — oo (for any value of € € (0,1]); on the other hand, for FS, with £ > 0,
the iterates XB’“ need not necessarily converge to the least squares fit as
k — o0. Indeed, the FS. algorithm, by its operational definition, has a
uniform learning rate € which remains fixed for all iterations; this makes it
impossible to always guarantee convergence to a least squares solution with
accuracy less than O(e). We show in this section that the predictions from
the FS. algorithm converges to an approximate least squares solution, albeit
at a global sublinear rate.’

Since the main difference between FS, and LS-B0o0sT(¢) lies in the choice
of the step-size used to update the coefficients, let us therefore consider a
non-constant step-size/non-uniform learning rate version of FS., which we
call FS,, . FS;, replaces update (3.1) of FS; by:

restdual update: R Sgn((’flk)TXjk)Xjk
coefficient update: ﬂ]klj'l — ﬁfk + ek, sgn((7%)TX;,) and 5;“1 — vaj # Jks

where {e;} is a sequence of learning-rates (or step-sizes) which depend
upon the iteration index k. LS-B0O0sT(¢) can thus be thought of as a version
of FS.,, where the step-size ¢y, is given by e, := eiij, sgn((#*)7 X, ).

In Section 3.3 we provide a unified treatment of LS-BoosT(e), FS., and
FS.,, wherein we show that all these methods can be viewed as special
instances of subgradient optimization.

5For the purposes of this paper, linear convergence of a sequence {a;} will mean that
a; — @ and there exists a scalar v < 1 for which (a; —a)/(a;—1 —a) < v for all 7. Sublinear
convergence will mean that there is no such v < 1 that satisfies the above property. For
much more general versions of linear and sublinear convergence, see [2] for example.
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3.2. Brief Review of Subgradient Descent. We briefly motivate and re-
view the subgradient descent method for non-differentiable convex optimiza-
tion problems. Consider the following optimization problem:

o= min f()

3.3
(3:3) st. zeP,

where P C R™ is a closed convex set and f(-) : P — R is a convex function. If
f(+) is differentiable, then f(-) will satisfy the following gradient inequality:

fy) = fx)+Vf(@) (y—a) foranyaz,yeP,

which states that f(-) lies above its first-order (linear) approximation at
x. One of the most intuitive optimization schemes for solving (3.3) is the
method of gradient descent. This method is initiated at a given point 2° € P.
If 2% is the current iterate, then the next iterate is given by the update
formula: z¥+1 < Mp(2* — ap Vf(2¥)). In this method the potential new
point is ¥ — o,V f(2¥), where oy, > 0 is called the step-size at iteration k,
and the step is taken in the direction of the negative of the gradient. If this
potential new point lies outside of the feasible region P, it is then projected
back onto P. Here recall that IIp(-) is the Euclidean projection operator,
namely Ilp(x) := argmingep ||z — y|2.

Now suppose that f(-) is not differentiable. By virtue of the fact that f(-)
is convex, then f(-) will have a subgradient at each point z. Recall that g is
a subgradient of f(-) at x if the following subgradient inequality holds:

(3.4) f) > f@)+g"(y—=) forallye P,

which generalizes the gradient inequality above and states that f(-) lies
above the linear function on the right side of (3.4). Because there may exist
more than one subgradient of f(-) at x, let 0f(z) denote the set of subgradi-
ents of f(-) at . Then “g € df(x)” denotes that g is a subgradient of f(-) at
the point x, and so g satisfies (3.4) for all y. The subgradient descent method
(see [47], for example) is a simple generalization of the method of gradient
descent to the case when f(-) is not differentiable. One simply replaces the
gradient by the subgradient, yielding the following update scheme:

(3.5)
Compute a subgradient of f(-) at ¥ : ¢F € df(z¥)
Peform update at x* o2 TIp (e — aggh) .
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The following proposition summarizes a well-known computational guar-
antee associated with the subgradient descent method.

PropoOsITION 3.1.  (Convergence Bound for Subgradient Descent[41,
39]) Consider the subgradient descent method (3.5), using a constant step-
size oy = « for alli. Let x* be an optimal solution of (3.3) and suppose that
the subgradients are uniformly bounded, namely ||g'|l2 < G for all i > 0.
Then for each k > 0, the following inequality holds:

O

, i o Nl =23 aG?
. <
(3.6) z‘e{r{)lf{l,k} Ja) = 2(k + 1) 2

The left side of (3.6) is simply the best objective function value obtained
among the first k iterations. The right side of (3.6) bounds the best objective
function value from above, namely the optimal value f* plus a nonnegative
quantity that is a function of the number of iterations k, the constant step-
size «, the bound G on the norms of subgradients, and the distance from
the initial point to an optimal solution x* of (3.3). Note that for a fixed
step-size a > 0, the right side of (3.6) goes to QTGQ as k — oo. In the interest
of completeness, we include a proof of Proposition 3.1 in Supplementary
Material Section A.2.5, [19].

3.3. A Subgradient Descent Framework for Boosting. We now show that
the boosting algorithms discussed in Section 1, namely FS. and its rela-
tives FS¢, and LS-B00sT(¢), can all be interpreted as instantiations of the
subgradient descent method to minimize the largest absolute correlation
between the residuals and predictors.

Let Pos := {r € R" : r = y — X3 for some 3 € RP} denote the affine
space of residuals and consider the following convex optimization problem:
(3.7)

Correlation Minimization (CM) : f* := mrin fr) = [IX'7|lw

s.t. 17 E P,

which we dub the “Correlation Minimization” problem, or CM for short.
Note an important subtlety in the CM problem, namely that the optimiza-
tion variable in CM is the residual r and not the regression coefficient vector

3.

Since the columns of X have unit ¢, norm by assumption, f(r) is the
largest absolute correlation between the residual vector r and the predictors.
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Therefore (3.7) is the convex optimization problem of minimizing the largest
correlation between the residuals and the predictors, over all possible values
of the residuals. From (2.3) with r = y — X3 we observe that XTr = 0 if
and only if 3 is a least squares solution, whereby f(r) = [|XT7|/o = 0 for
the least squares residual vector r = g =y — Xfrs. Since the objective
function in (3.7) is nonnegative, we conclude that f* = 0 and the least
squares residual vector 7rg is also the unique optimal solution of the CM
problem (3.7). Thus CM can be viewed as an optimization problem which
also produces the least squares solution.

The following proposition states that the three boosting algorithms FS,,
FS;, and LS-B0o0ST(¢) can all be viewed as instantiations of the subgradient
descent method to solve the CM problem (3.7).

PROPOSITION 3.2. Consider the subgradient descent method (3.5) with
step-size sequence {ay} to solve the correlation minimization (CM) problem
(3.7), initialized at 7° =y. Then:

(i) the FS. algorithm is an instance of subgradient descent, with a constant
step-size oy, := € at each iteration,
(i1) the FS., algorithm is an instance of subgradient descent, with non-
uniform step-sizes oy, := €y, at iteration k, and
(iii) the LS-BOOST(g) algorithm is an instance of subgradient descent,
with non-uniform step-sizes oy, := €|uy, | at iteration k, where Uj, =
arg min, || — X, /3.

PrOOF. We first prove (7). Recall the update of the residuals in FS,:
PRl — b o sgn((f'k)TXjk)Xjk .

We first show that g* := sgn((#¥)TX, )X, is a subgradient of the objective

function f(r) = ||X”r||s of the correlation minimization problem CM (3.7)

at r = #*. At iteration k, FS, chooses the coefficient to update by selecting

Ji € argmax |(#")X;|, whereby sgn((#*)7X;,) (7)7X;,) = [IXT(#*)]|o,
]6{17'7p}

and therefore for any r it holds that:

o) =1X"rle > sen((F*)"X;,) ((X;,)"7)
= Sgn((fk)TXjk) ((Xjk)T(fk +r— fk))
= [IXT(7) oo + sgn((7*) "X, ) (X5) " (r = 7))

= f(f’k) + Sgn((fk)TXjk) ((Xjk)T(r - f'k)) :
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Therefore using the definition of a subgradient in (3.4), it follows that g* :=
sgn((#*)TX;, )X, is a subgradient of f(r) = || X 7|/« at r = #*. Therefore
the update #**1 = 7% — ¢ . sgn((#F)TX;, )X, is of the form #F+1 = #k — ggk
where g¥ € 0f(#*). Last of all notice that the update can also be written as
ik —egh = #htl =y — XBFH1 € P, hence Tlp, (7% — egh) = #* —eg¥, ie.,
the projection step is superfluous here, and therefore #**1 = IIp_ (#* —eg*),
which is precisely the update for the subgradient descent method with step-
size qy 1= €.

The proof of (i) is the same as (i) with a step-size choice of oy, = ¢, at
iteration k. Furthermore, as discussed in Section 1, LS-B0OOST(g) may be
thought of as a specific instance of FS,, , whereby the proof of (7ii) follows
as a special case of (ii). O

Proposition 3.2 presents a new interpretation of the boosting algorithms
FS: and its cousins as subgradient descent. This is interesting especially
since FS; and LS-Boo0sT(g) have been traditionally interpreted as greedy
coordinate descent or steepest descent type procedures [33, 21]. This has
the following consequences of note:

o We take recourse to existing tools and results about subgradient descent
optimization to inform us about the computational guarantees of these meth-
ods. When translated to the setting of linear regression, these results will
shed light on the data fidelity vis-a-vis shrinkage characteristics of FS. and
its cousins — all using quantities that can be easily obtained prior to run-
ning the boosting algorithm. We will show the details of this in Theorem
3.1 below.

e The subgradient optimization viewpoint provides a unifying algorithmic
theme which we will also apply to a regularized version of problem CM (3.7),
and that we will show is very strongly connected to the LLASSO. This will be
developed in Section 4. Indeed, the regularized version of the CM problem
that we will develop in Section 4 will lead to a new family of boosting
algorithms which are a seemingly minor variant of the basic FS. algorithm
but deliver (O(e)-approximate) solutions of the LAssoO.

3.4. Deriving and Interpreting Computational Guarantees for FS.. The
following theorem presents the convergence properties of FS., which are a
consequence of the interpretation of FS. as an instance of the subgradient
descent method.

THEOREM 3.1. (Convergence Properties of FS.) Consider the FS.
algorithm with learning rate €. Let k > 0 be the total number of iterations.
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Then there exists an index i € {0,...,k} for which the following bounds
hold:

. . . . Xf1s)2 2
(i) (training error): L,(B") — L} < 2n>\pmif(XTX) [Hs(,fisl‘)b + 6}

(7i) (regression coefficients): there exists a least squares solution 325 such
that: .
VP I XBLsll3
)\pmin(XTX) E(k + 1)

18"~ BLsl2 < +e

(iii) (predictions): for every least-squares solution BLg it holds that

3 _ X} VP IXBLsl3
X0 = Xbnslle = A= X% [+ 1)
. X 37 ql|2
(iv) (correlation values) | X170 < !E(lffnf) + %
(v) (€1-shrinkage of coeﬁicients): 181 < ke
(vi) (sparsity of coefficients): ||B%|lo < k . =

The proof of Theorem 3.1 is presented in Section A.2.6, in [19].

FS. algorithm: ¢; shrinkage versus data-fidelity tradeoffs (theoretical bounds)

Synthetic dataset (k = 1) Leukemia dataset Leukemia dataset (zoomed)
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F1G 6. Figure showing profiles of £1 shrinkage bounds of the regression coefficients versus training
error bounds for the FSc: algorithm, for different values of the learning rate €. The profiles have
been obtained from the bounds in parts (i) and (v) of Theorem 3.1. The left panel corresponds to

a hypothetical dataset using kK = £
pmin

=1, and the middle and right panels use the parameters
of the Leukemia dataset.
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Interpreting the Computational Guarantees. Theorem 3.1 accomplishes for
FS: what Theorem 2.1 did for LS-BoosT(g) — parts (i) — (iv) of the theo-
rem describe the rate in which the training error, regression coefficients, and
related quantities make their way towards their (O(e)-approximate) unregu-
larized least squares counterparts. Part (v) of the theorem also describes the
rate at which the shrinkage of the regression coefficients evolve as a func-
tion of the number of boosting iterations. The rate of convergence of FS,
is sublinear, unlike the linear rate of convergence for LS-BoosT(¢). Note
that this type of sublinear convergence implies that the rate of decrease of
the training error (for instance) is dramatically faster in the very early it-
erations as compared to later iterations. Taken together, Theorems 3.1 and
2.1 highlight an important difference between the behavior of algorithms
LS-BoosTt(e) and FS.:

e the limiting solution of the LS-BoosT(¢) algorithm (as k — oo) cor-
responds to the unregularized least squares solution, but

e the limiting solution of the FS. algorithm (as k — oco) corresponds to
an O(e) approximate least squares solution.

As demonstrated in Theorems 2.1 and 3.1, both LS-BoosT(¢) and F'S, have
nice convergence properties with respect to the unconstrained least squares
problem (2.1). However, unlike the convergence results for LS-B0oosT(¢) in
Theorem 2.1, FS, exhibits a sublinear rate of convergence towards a subop-
timal least squares solution. For example, part (i) of Theorem 3.1 implies in
the limit as k — oo that FS; identifies a model with training error at most:

pe?

2n(Apmin (XTX))

(3.8) L+

In addition, part (7i) of Theorem 3.1 implies that as k — oo, FS; identifies a
model whose distance to the set of least squares solutions {ALs : X' X/Ls =

XTy} is at most: W‘/)};X).

Note that the computational guarantees in Theorem 3.1 involve the quan-
tities Apmin(X7X) and || X B1s]|2, assuming n and p are fixed. To settle ideas,
let us consider the synthetic datasets used in Figures 4 and 1, where the
covariates were generated from a multivariate Gaussian distribution with
pairwise correlation p. Figure 4 suggests that Apmin(X?X) decreases with
increasing p values. Thus, controlling for other factors appearing in the com-

putational bounds® , it follows from the statements of Theorem 3.1 that the

5To control for other factors, for example, we may assume that p > n and for different
values of p we have || Xfrs|l2 = |ly|l2 = 1 with ¢ fixed across the different examples.
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training error decreases much more rapidly for smaller p values, as a func-
tion of k. This is nicely validated by the computational results in Figure 1
(the three top panel figures), which show that the training errors decay at
a faster rate for smaller values of p.

Let us examine more carefully the properties of the sequence of models
explored by FS; and the corresponding tradeoffs between data fidelity and
model complexity. Let TBOUND and SBOUND denote the training error
bound and shrinkage bound in parts (i) and (v) of Theorem 3.1, respectively.
Then simple manipulation of the arithmetic in these two bounds yields the
following tradeoff equation:

p

TBOUND =
U A (XTX)

SBOUND + ¢

o 9 2
HMM2+4

The above tradeoff between the training error bound and the shrinkage
bound is illustrated in Figure 6, which shows this tradeoff curve for four
different values of the learning rate €. Except for very small shrinkage lev-
els, lower values of & produce smaller training errors. But unlike the cor-
responding tradeoff curves for LS-BoosT(¢), there is a range of values of
the shrinkage for which smaller values of ¢ actually produce larger train-
ing errors, though admittedly this range is for very small shrinkage values.
For more reasonable shrinkage values, smaller values of € will correspond to
smaller values of the training error.

Part (v) of Theorems 2.1 and 3.1 presents shrinkage bounds for FS, and
LS-BoosT(e) , respectively. Let us briefly compare these bounds. Examining
the shrinkage bound for LS-BoosT(¢), we can bound the left term from
above by Vkv/g||[XfBLs|l2. We can also bound the right term from above
by e[| XpBLsll2/(1 — V/7) where recall from Section 2 that v is the linear

_ - (XT
convergence rate coefficient v := 1 — e E))‘pf‘n(x X) . We may therefore
alternatively write the following shrinkage bound for LS-BooST(e) :

(3.9) 1851 < X Busllomin {VEVE , =/(1— )} -

The shrinkage bound for F'S. is simply ke. Comparing these two bounds,
we observe that not only does the shrinkage bound for FS, grow at a faster
rate as a function of k for large enough k, but also the shrinkage bound for
FS. grows unbounded in k, unlike the right term above for the shrinkage
bound of LS-BoosT(e).
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One can also compare FS. and LS-BoosT(¢)in terms of the efficiency
with which these two methods achieve a certain pre-specified data-fidelity.
In Section A.2.7 [19] we show, at least in theory, that LS-B0o0OST(¢) is much
more efficient than FS. at achieving such data-fidelity, and furthermore it
does so with much better shrinkage.

Generalizations of F'S;.  Here we briefly mention some recent work that gen-
eralize the FS; algorithm: [24] study extensions to incorporate non-convex
penalization schemes, and [49] propose a framework generalizing FS. to a
flexible family of convex loss functions and sparsity inducing convex regu-
larizers.

4. Regularized Correlation Minimization, Boosting, and Lasso.

Roadmap. In this section, we introduce a new boosting algorithm, param-
eterized by a scalar § > 0, which we denote by R-FS, 5 (for Regularized in-
cremental Forward Stagewise regression), that is obtained by incorporating
a simple rescaling step to the coefficient updates in FS.. We then introduce
a regularized version of the Correlation Minimization (CM) problem (3.7)
which we refer to as RCM. We show that the adaptation of the subgradient
descent algorithmic framework to the Regularized Correlation Minimiza-
tion problem RCM exactly yields the algorithm R-FS, 5. The new algorithm
R-FS. s may be interpreted as a natural extension of popular boosting algo-
rithms like FS., and has the following notable properties:

e Whereas FS; updates the coefficients in an additive fashion by adding a
small amount ¢ to the coefficient most correlated with the current residuals,
R-FS. s first shrinks all of the coefficients by a scaling factor 1 — 5 < 1 and
then updates the selected coefficient in the same additive fashion as FS..

e R-FS, 5 delivers O(e)-accurate solutions to the LASSO in the limit as k —
0o, unlike FS. which delivers O(g)-accurate solutions to the unregularized
least squares problem.

oR-F'S, 5 has computational guarantees similar in spirit to the ones described
in the context of FS; — these quantities directly inform us about the data-
fidelity wvis-a-vis shrinkage tradeoffs as a function of the number of boosting
iterations and the learning rate €.

The notion of using additional regularization along with the implicit
shrinkage imparted by boosting is not new in the literature. Various interest-
ing notions have been proposed in [26, 9, 53, 13, 23], see also the discussion
in Section A.3.4 [19]. However, the framework we present here is new. We
present a unified subgradient descent framework for a class of regularized
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CM problems that results in algorithms that have appealing structural sim-
ilarities with forward stagewise regression type algorithms, while also being
very strongly connected to the LLASSO.

Boosting with additional shrinkage — R-FS. 5. Here we give a formal de-
scription of the R-FS, 5 algorithm. R-F'S, 5 is controlled by two parameters:
the learning rate ¢, which plays the same role as the learning rate in FS,,
and the “regularization parameter” § > . Our reason for referring to ¢ as a
regularization parameter is due to the connection between R-FS;. s and the
LAsso, which will be made clear later. The shrinkage factor, i.e., the amount
by which we shrink the coefficients before updating the selected coefficient,
is determined as 1 — 5. Supposing that we choose to update the coefficient
indexed by j at iteration k, then the coefficient update may be written as:

B (1—8) BF + 2 - sgn((7*) X, ey, -

Below we give a concise description of R-F'S, 5, including the update for the
residuals that corresponds to the update for the coefficients stated above.

Algorithm: R-FS, ;

Fix a learning rate £ > 0, regularization parameter § > 0 (with ¢ < §),
number of iterations M; and initialize at 3° = 0.

For 0 < k < M select ji, € argmaxjcgy . ) |(7*)TX;| and perform the
update:
(4.1)

AR Ay [sgn((fk)TXjk)Xjk + 1(FF - Y)}

S (1 5) B, e sen((P5)"X5,) and BT« (1-5) B j # .

Note that R-FS. s and IS, are structurally very similar — and indeed
when § = oo then R-FS.; is exactly F'S.. Note also that R-FS. s shares
the same upper bound on the sparsity of the regression coefficients as FS.,
namely for all k it holds that: ||3*]lo < k. When § < oo then, as previously
mentioned, the main structural difference between R-FS. s and FS; is the
additional rescaling of the coefficients by the factor 1 — 5. This rescaling
better controls the growth of the coefficients and, as will be demonstrated
next, plays a key role in connecting R-F'S, 5 to the LAsso.

Regularized Correlation Minimization (RCM) and LAssO. The starting
point of our formal analysis of R-FS. 5 is the Correlation Minimization (CM)
problem (3.7), which we now modify by introducing a regularization term
that penalizes residuals that are far from the vector of observations y. This
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modification leads to the following parametric family of optimization prob-
lems indexed by § € (0, o0]:
(4.2)

RCMs :  f5 = mrin fs(r)

IXTrlloc + 5507 = ¥13

st. 7€ Pes = {reR":r=y—Xg for some § € RP} |

where “RCM” connotes Regularlized Correlation Minimization. Note that
RCM reduces to the correlation minimization problem CM (3.7) when 6 =
00. RCM may be interpreted as the problem of minimizing, over the space
of residuals, the largest correlation between the residuals and the predictors
plus a regularization term that penalizes residuals that are far from the
response y (which itself can be interpreted as the residuals associated with
the model 5 = 0).

Interestingly, as we show in [19] Section A.3.1, RCM (4.2) is equivalent to
the LAsso (1.1) via duality. This equivalence provides further insight about
the regularization used to obtain RCMy. Comparing the LASSO and RCM,
notice that the space of the variables of the LASSO is the space of regression
coefficients 3, namely RP, whereas the space of the variables of RCM is the
space of model residuals, namely P..s C R™. The duality relationship shows
that RCMy (4.2) is an equivalent characterization of the LASSO problem,
just like the correlation minimization (CM) problem (3.7) is an equivalent
characterization of the (unregularized) least squares problem. Recall that
Proposition 3.2 showed that subgradient descent applied to the CM prob-
lem (4.2) (which is RCM; with § = o00) leads to the well-known boosting
algorithm FS.. We now extend this theme with the following Proposition,
which states that R-FS. s is equivalent to subgradient descent applied to
RCM.

PRrOPOSITION 4.1.  The R-F'S. s algorithm is an instance of subgradient
descent to solve the regularized correlation minimization (RCMs) problem
(4.2), initialized at 7° =y, with a constant step-size ay := € at each itera-
tion.

The proof of Proposition 4.1 is presented in [19] Section A.3.2.

4.1. R-FS, 5: Computational Guarantees and their Implications. In this
subsection we present computational guarantees and convergence properties
of the boosting algorithm R-FS. ;. Due to the structural equivalence be-
tween R-F'S, ;s and subgradient descent applied to the RCM; problem (4.2)
(Proposition 4.1) and the close connection between RCM;s and the LAssO
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(see [19], Section A.3.1), the convergence properties of R-FS, 5 are naturally
stated with respect to the LASSO problem (1.1). Similar to Theorem 3.1
which described such properties for FS. (with respect to the unregularized
least squares problem), we have the following properties for R-FS, ;.

THEOREM 4.1. (Convergence Properties of R-FS, ; for the Lasso
) Consider the R-FS; s algorithm with learning rate € and regularization
parameter § € (0,00), where € < §. Then the regression coefficient Bk 18
feasible for the LASSO problem (1.1) for all k > 0. Let k > 0 denote a
specific iteration counter. Then there exists an index i € {0,...,k} for which
the following bounds hold:

A . -~ 2
(i) (training error): Ln(B6') — L}, 5 < ) [”;;(%ﬂl)z 19

n

(ii) (predictions): for every LASSO solution Bg‘ it holds that

5 A 8||X B2
XA — X35 <4 ——=2 14
X B5 |2 _\/5(k+1) + 49¢

(iii) (01-shrinkage of coefficients): ||B||1 < 6 [1 - (1- %)k} <9
(iv) (sparsity of coefficients): HBA’LHO <k. O

The proof of Theorem 4.1 is presented in Supplementary Material [19]
Section A.3.3.

Interpreting the Computational Guarantees. The statistical interpretations
implied by the computational guarantees presented in Theorem 4.1 are anal-
ogous to those previously discussed for LS-BoosT(g) (Theorem 2.1) and FS,
(Theorem 3.1). These guarantees inform us about the data-fidelity vis-a-
vis shrinkage tradeoffs as a function of the number of boosting iterations,
as nicely demonstrated in Figure 7. There is, however, an important dif-
ferentiation between the properties of R-FS. s and the properties of LS-
Boosrt(e) and FS,, namely:

e For LS-BoosT(¢) and FS., the computational guarantees (Theorems 2.1
and 3.1) describe how the estimates make their way to a unregularized (O(g)-
approximate) least squares solution as a function of the number of boosting
iterations.

e For R-FS. 5, our results (Theorem 4.1) characterize how the estimates
approach a (O(e)-approximate) LASSO solution.
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R-FS. s algorithm, Prostate cancer dataset (computational bounds)
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F1G 7. Figure showing the evolution of the R-FS. s algorithm (with e = 10™%) for different values
of 8, as a function of the number of boosting iterations for the Prostate cancer dataset, with
n =10,p = 44 (see also Figure 8). [Left panel] shows the change of the £1-norm of the regression
coefficients. [Middle panel] shows the evolution of the training errors, and [Right panel] is a
zoomed-in version of the middle panel. Here we took different values of § given by § = fracX dmax,
where, dmax denotes the £1-norm of the minimum £1-norm least squares solution, for 7 different
values of frac.

Notice that like F'S;, R-FS, 5 traces out a profile of regression coefficients.
This is reflected in item (%ii) of Theorem 4.1 which bounds the ¢;-shrinkage
of the coefficients as a function of the number of boosting iterations k. Due
to the rescaling of the coefficients, the ¢;-shrinkage may be bounded by a
geometric series that approaches § as k grows. Thus, there are two important
aspects of the bound in item (%i): (a) the dependence on the number of
boosting iterations k£ which characterizes model complexity during early
iterations, and (b) the uniform bound of § which applies even in the limit
as k — oo and implies that all regression coefficient iterates Bk are feasible
for the LASSO problem (1.1).

On the other hand, item (i) characterizes the quality of the coefficients
with respect to the LLASSO solution, as opposed to the unregularized least
squares problem as in FS.. In the limit as k — oo, item (i) implies that
R-FS. s identifies a model with training error at most L;‘h s+ 2% . This
upper bound on the training error may be set to any prescribed error level
by appropriately tuning ¢; in particular, for € =~ 0 and fixed > 0 this limit
is essentially L; ;. Thus, combined with the uniform bound of ¢ on the ¢;-
shrinkage, we see that the R-FS, 5 algorithm delivers the LASSO solution in
the limit as k& — oo.

It is important to emphasize that R-F'S. 5 should not just be interpreted
as an algorithm to solve the LASSO. Indeed, like FS,, the trajectory of the
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algorithm is important and R-FS, s may identify a more statistically inter-
esting model in the interior of its profile. Thus, even if the LASSO solution
for ¢ leads to overfitting, the R-FS, 5 updates may visit a model with better
predictive performance by trading off bias and variance in a more desirable
fashion suitable for the particular problem at hand.

Figure 8 shows the profiles of R-FS, 5 for different values of 0 < dpax,
where dmax 18 the £1-norm of the minimum /¢;-norm least squares solution.
Curiously enough, Figure 8 shows that in some cases, the profile of R-FS, s
bears a lot of similarities with that of the LASSO (as presented in Figure 2).
However, the profiles are in general different. Indeed, R-FS.s imposes a
uniform bound of § on the ¢;-shrinkage, and so for values larger than ¢ we
cannot possibly expect R-F'S; s to approximate the LASSO path. However,
even if § is taken to be sufficiently large (but finite) the profiles may be
different. In this connection it is helpful to draw the analogy between the
curious similarities between the FS, (i.e., R-FS, ;s with § = c0) and LAsso
coefficient profiles, even though the profiles are different in general.

Readers familiar with convex optimization methods will notice that R-FS, s
bears a striking resemblance to another notable optimization algorithm: the
Frank-Wolfe method [15, 35, 18]. Indeed, the update for the coefficients in
R-FS, s is of the form:

(4.3) B (1 —a) B +apk, where % := dsgn((#*)7X;, )ej,

and & := £ € (0,1], where gk e gﬁ\%ﬁng {VLH(B’“)TB}, which is ezactly of
: 1>
the form of the Frank-Wolfe method applied to the LASSO, with constant

step-sizes & := 5. The fact that R-FS_ s is equivalent to both the subgradient
descent and Frank-Wolfe methods is no coincidence; indeed, this is a special
case of a more general primal-dual equivalence between certain subgradi-
ent algorithms and the Frank-Wolfe method developed in [1]. It should be
noted, however, that despite this additional equivalence, the use of constant
step-sizes in Frank-Wolfe is typically not very sensible — yet turns out to
be relevant in the boosting context. We refer the reader to Supplementary
Material [19] Section A.3.5 for further discussion regarding this connection
with the Frank-Wolfe method.

5. A Modified Forward Stagewise Algorithm for Computing the
Lasso Path. In Section 4 we introduced the boosting algorithm R-FS; s
(which is a very close cousin of FS,) that delivers solutions to the LASsO
problem (1.1) for a fixed but arbitrary ¢, in the limit as k¥ — oo with ¢ ~ 0.
Furthermore, our experiments in Section 6 suggest that R-FS, 5 may lead to
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F1G 8. Coefficient profiles for R-FS. 5 as a function of the £1-norm of the regression coefficients,
for the same datasets appearing in Figure 2. For each example, different values of 6 have been
considered. The left panel corresponds to the choice § = oo, i.e., F'Sc. In all the above cases, the
algorithms were run for a mazimum of 100,000 boosting iterations with € = 10™%. [Top Panel]
Corresponds to the Prostate cancer dataset with n = 98 and p = 8. All the coefficient profiles
look similar, and they all seem to coincide with the LASSO profile (see also Figure 2). [Bottom
Panel] Shows the Prostate cancer dataset with a subset of samples n = 10 with all interactions
included with p = 44. The coefficient profiles in this example are sensitive to the choice of 6 and
are seen to be more constrained towards the end of the path, for decreasing § values. The profiles
are different than the LASSO profiles, as seen in Figure 2. The regression coefficients at the end
of the path correspond to approzimate LASSO solutions, for the respective values of 6.

estimators with good statistical properties for a wide range of values of 9,
provided that the value of ¢ is not too small. While R-F'S, 5 by itself may be
considered as a regularization scheme with excellent statistical properties,
the boosting profile delivered by R-FS, ;s might in some cases be different
from the LASSO coeflicient profile, as we saw in Figure 8. Therefore in this
section we investigate the following question: is it possible to modify the
R-FS. 5 algorithm, while still retaining its basic algorithmic characteristics,
so that it delivers an approximate LASSO coefficient profile for any dataset?
We answer this question in the affirmative herein.

To fix ideas, let us consider producing the (approximate) LASSO path
by producing a sequence of (approximate) LASSO solutions on a predefined
grid of regularization parameter values ¢ in the interval (0, 4] given by 0 <
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80 < 01 < ...< 6 = 6. (A standard method for generating the grid points
is to use a geometrlc sequence such as §; = n~*- & for i = 0,..., K, for
some 7 € (0,1).) Motivated by the notion of warm-starts popularly used
in the statistical computing literature in the context of computing a path
of LASSO solutions via coordinate descent methods [27], we propose here a
slight modification of the R-FS, 5 algorithm that sequentlally updates the
value of § according to the predeﬁned grid values &g, 61, - ,0x = 0, and
does so prior to each update of #* and ﬁl. We call this method PATH-R—FSs,
whose complete description is as follows:

Algorithm: PATH-R-FS,

Fix the learning rate e > 0, choose values &;, i = 0,..., K, satisfying
0<dy<d <---<dx <§ such that e < §y. Initialize at BO =0.

For 0 < k < K select coefficient index jy € argmax;cg; |(FR)TX |
and perform the update:

PR i e [sgn((PM)T X)X, + (FF — y) /0]
BEFL e (1= ¢/84) B +e sgn((7)7X,) and 1 (1—e/8) BE 5 # i

Notice that PATH-R-FS. retains the identical structure of a forward
stagewise regression type of method, and uses the same essential update
structure (3.1) of R-FS, 5. Indeed, the updates of #**! and $%*! in PATH-R-FS,
are identical to those in (3.1) of R-FS. 5 except that they use the regulariza-
tion value d), at iteration k instead of the constant value of § as in R-FS;s.

Theoretical Guarantees for PATH-R-FS.. Analogous to Theorem 4.1 for
R-FS. 5, the following theorem describes properties of the PATH-R-FS, al-
gorithm. In particular, the theorem provides rigorous guarantees about the
distance between the PATH-R-FS, algorithm and the LASSO coefficient pro-
files — which apply to any general dataset.

THEOREM 5.1. (Computational Guarantees of PATH-R-FS.) Con-
sider the PATH-R-FS; algorithm with the given learning rate £ and regu-
larization parameter sequence {8x}. Let k > 0 denote the total number of
iterations. Then the following holds:

(i) (LASSO feasibility and average training error): for each i = 0,... .k,
Bz provides an approzimate solution to the LASSO problem for (5 =0;.
More specifically, ﬁz is feasible for the LASSO problem for § = 6;, and
satisfies the following suboptimality bound with respect to the entire
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boosting profile:

k; — N —
i . IXAusl3 25
S (LB -1 ) < AAPrsl | 208
kE+1 ; ( (5 n,&-) = 2ne(k+1) L
(ii) (t1-shrinkage of coefficients): 16%|l1 < 8 fori=0,.... k.

(iii) (sparsity of coefficients): ||B%|o < i fori=0,... k. O

CorOLLARY 5.1. (PATH-R-FS. approximates the Lasso path)
For every fized € > 0 and k — oo it holds that:

k
lim sup m (Ln(ﬁ ) — L'I‘L,S

k—o0 i—0

(and the quantity on the right side of the above bound goes to zero as € —
0). O

The proof of Theorem 5.1 is presented in Supplementary Material [19]
Section A.4.1.

Interpreting the computational guarantees. Let us now provide some in-
terpretation of the results stated in Theorem 5.1. Recall that Theorem 4.1
presented bounds on the distance between the training errors achieved by
the boosting algorithm R-FS. s and LASSO training errors for a fized but
arbitrary d that is specified a priori. The message in Theorem 5.1 generalizes
this notion to a family of LASSO solutions corresponding to a grid of § val-
ues. The theorem thus quantifies how the boosting algorithm PATH-R-FS,
simultaneously approximates a path of LASSO solutions.

Part (i) of Theorem 5.1 first implies that the sequence of regression coef-
ficient vectors {B’} is feasible along the LASSO path, for the LASSO problem
(1.1) for the sequence of regularization parameter values {d;}. In considering
guarantees with respect to the training error, we would ideally like guaran-
tees that hold across the entire spectrum of {d;} values. While part (i) does
not provide such strong guarantees, part (i) states that these quantities will
be sufficiently small on average. Indeed, for a fixed € and as k — oo, part
(i) states that the average of the differences between the training errors pro-
duced by the algorithm and the optimal training errors is at most 2%8. This
non-vanishing bound (for € > 0) is a consequence of the fixed learning rate
€ used in PATH-R-FS, — such bounds were also observed for R-FS, 5 and
FSc.
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On average, the training error of the PATH-R-FS, solutions will be suf-
ficiently close (as controlled by the learning rate ) to the LASSO training
error for the corresponding regularization parameter grid values {§;}. And
while PATH-R-FS, provides the most amount of flexibility in terms of con-
trolling for model complexity since it allows for any (monotone) sequence
of regularization parameter values in the range (0, 6], this freedom comes at
the cost of weaker training error guarantees with respect to any particular §;
value (as opposed to R-F'S, 5 which provides strong guarantees with respect
to the fixed value ). Nevertheless, part (i) of Theorem 5.1 guarantees that
the training errors will be sufficiently small on average across the entire path
of regularization parameter values explored by the algorithm.

It is interesting that PATH-R-FS. approximates the LASSO path train-
ing errors, with associated shrinkage and sparsity bounds — all the while
performing only boosting steps. In a sense, the price it pays for being a
boosting method is that the approximation to the LASSO path is only on
average over the chosen grid points (as opposed to holding simultaneously
over all grid points). In contrast, classic algorithms that exactly track the
piecewise-linear LASSO path require an exponential number of iterations in
the worst-case, see [28] for a very general result in this regard. [49] proposes
“shrunken stagewise” which is shown to deliver LASSO solutions in a limit-
ing sense as certain parameters go to zero and under technical assumptions.
On the other hand, there are several efficient L.LASSO path algorithms with
computational guarantees that hold approximately over the entire LLASSO
path; such methods typically choose the {0;} values adaptively — see [29]
and [30] for some general results in this regard, and in particular [31] for
optimal general complexity results in this context. Similar adaptive choices
of {8;} values are also studied by [49] for computing an approximate LASSO
path.

6. Some Computational Experiments. We consider an array of ex-
amples exploring statistical properties of the different boosting algorithms
studied herein. We consider different types of synthetic and real datasets,
which are briefly described here.

Synthetic datasets. We considered synthetically generated datasets of the
following types:

e Eg-A. Here the data matrix X is generated from a multivariate normal
distribution, i.e., for each i = 1,...,n, x; ~ MVN(0, X). Here x; denotes
the i*® row of X and ¥ = (0ij) € RP*P has all off-diagonal entries equal to p
and all diagonal entries equal to one. The response y € R" is generated as
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y = X[PP + ¢, where ¢; YN (0,02). The underlying regression coefficient

was taken to be sparse with PP =1 for all 4 < 5 and AP°" = 0 otherwise.

o2 is chosen so as to control the signal to noise ratio SNR := Var(x’3)/o?.
Different values of SNR, n, p and p were taken and they have been specified

in our results when and where appropriate.

e Eg-B. Here the datasets are generated similar to above, with 87°? = 1 for

i <10 and BP°? = 0 otherwise. We took SNR=1 in this example.

Real datasets. We considered four different publicly available microarray
datasets as described below.

e Leukemia dataset. This dataset, taken from [11], was processed to have
n =72 and p = 500. y was created as y = XAPP + ¢; with PP =1 for all
1 < 10 and zero otherwise.
e Golub dataset. This dataset, taken from the R package mpm, was pro-
cessed to have n = 73 and p = 500, with artificial responses generated as
above.
e Khan dataset. This dataset, taken from the website of [33], was processed
to have n = 73 and p = 500, with artificial responses generated as above.
¢ Prostate dataset. This dataset, analyzed in [14], was processed to create
three types of different datasets: (a) the original dataset with n = 97 and
p = 8, (b) a dataset with n = 97 and p = 44, formed by extending the
covariate space to include second order interactions, and (c) a third dataset
with n = 10 and p = 44, formed by subsampling the previous dataset.

For more detail on the above datasets, we refer the reader to the Supple-
mentary Material [19] Section A.5.

Note that in all the examples we standardized X such that the columns
have unit 5 norm, before running the different algorithms studied herein.

6.1. Statistical properties of boosting algorithms: an empirical study. We
performed some experiments to better understand the statistical behavior
of the different boosting methods described in this paper. We summarize
our findings here; for details (including tables, figures and discussions) we
refer the reader to Supplementary Material [19], Section A.5.

Sensitivity of the Learning Rate in LS-BoosT(g) and FS.. We explored
how the training and test errors for LS-BoosT(¢) and F'S. change as a func-
tion of the number of boosting iterations and the learning rate. We observed
that the best predictive models were sensitive to the choice of € — the best
models were obtained at values larger than zero and smaller than one. When
compared to LASSO solutions, stepwise regression [14] and FSy [14]; FS, and
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LS-BoosT(e) were found to be as good as the others, and in some cases were
better than the rest.

Statistical properties of R-FS.s, LASSO solutions, and FS;: an empirical
study. We performed some experiments to evaluate the performance of
R-FS; s, in terms of predictive accuracy and sparsity of the optimal model,
versus the more widely known methods FS, and (solving the) Lasso. We
found that when 6 was larger than the best § for the LASSO (in terms of
obtaining a model with the best predictive performance), R-FS, 5 delivered
a model with excellent statistical properties — R-FS; 5 led to sparse solutions
and the predictive performance was as good as, and in some cases better
than, the LASSO solution. We observed that the choice of § does not play a
very crucial role in the R-F'S, 5 algorithm, once it is chosen to be reasonably
large; indeed the number of boosting iterations play a more important role.
The best models delivered by R-FS, s were more sparse than FS..
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A.1. Additional Details for Section 1.

A.1.1. Figure showing training error versus {1-shrinkage bounds. Fig-
ure A.1 shows profiles of £; norm of the regression coefficients versus training
error for LS-BoosT(¢), FS, and LAsso.

¢ shrinkage versus data-fidelity tradeoffs: LS-BoosT(¢), FS., and LAsso
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Fic A.1. Figure showing profiles of £1 norm of the regression coefficients versus
training error for LS-BoosT(e), FS. and LASso. [Left panel] Shows profiles for
a synthetic dataset where the covariates are drawn from a Gaussian distribution
with pairwise correlations p = 0.5. The true B has ten non-zeros with 3; = 1 for
i =1,...,10, and SNR = 1. Here we ran LS-B0OO0ST(¢) with ¢ = 1 and ran FS;
with € = 1072, The middle (and right) panel profiles corresponds to the Prostate
cancer dataset (described in Section 6). Here we ran LS-BOOST(g) with ¢ = 0.01
and we ran FS. with ¢ = 107°. The right panel figure is a zoomed-in version of the
middle panel in order to highlight the difference in profiles between LS-BOOST(e),
FS. and LASSO. The vertical axes have been normalized so that the training error
at k = 0 is one, and the horizontal azes have been scaled to the unit interval (to

express the {1-norm of Bk as a fraction of the maximum,).

A.2. Additional Details for Section 2.
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A.2.1. Properties of Conver Quadratic Functions. Consider the follow-
ing quadratic optimization problem (QP) defined as:

h* := min h(z) := LaT T ©
min (x):=30"Qx+q x+q°,

where @ is a symmetric positive semi-definite matrix, whereby h(:) is a
convex function. We assume that ) # 0, and recall that Apmin(Q) denotes
the smallest nonzero (and hence positive) eigenvalue of Q.

ProposiTION A.2.1. If h* > —o0, then for any given x, there exists an
optimal solution x* of (QP) for which

2(h(z) — h*)
)\pmin(Q)

[l — %2 <

Also, it holds that

)\pmin(Q) i (h(l‘) — h*) )
2

VAl >

Proof: The result is simply manipulation of linear algebra. Let us assume
without loss of generality that ¢° = 0. If h* > —oo, then (QP) has an
optimal solution x*, and the set of optimal solutions are characterized by
the gradient condition

0=Vh(z)=Qz+q.

Now let us write the sparse eigendecomposition of Q as Q@ = PDPT where
D is a diagonal matrix of non-zero eigenvalues of ) and the columns of P
are orthonormal, namely PTP = I. Because (QP) has an optimal solution,
the system of equations )z = —q has a solution, and let & denote any such
solution. Direct manipulation establishes:

PPTq=—-PPT'Qz = —PP"PDPTs = —PDPTi = —Qi=q.

Furthermore, let & := —PD~'PTq. It is then straightforward to see that &
is an optimal solution of (QP) since in particular:

Qi =-PDPTPD'PTqg= —ppPTg=—q,

and hence

h*

137Qi+q¢"s = -13"Q2 = 1" PD'PTPDPTPD'PTq = —1¢"PD'PTq.
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Now let = be given, and define * := [I — PPT]z — PD~'PTq. Then just
as above it is straightforward to establish that Qz* = —q whereby z* is an
optimal solution. Furthermore, it holds that:

lz —2*|3 = (¢"PD '+ 2TP)PTP(D-'PTq+ PTx)

1 1 1 1
= (¢*PD72 +2TPD2)D"Y(D"2PTq+ D2 PTz)

1 1 1 1
< sy (@' PDT2 +2"PD2)(D72P"q + D2 P'x)
pmin

= ) (¢"PD'PTq+ 2" PDPTx 4 227 PP q)
pmin

— Apmiln(Q) (—2h* + 27 Qx + 227¢q)

= /\pmi‘(Q)(h(x) —h*),

and taking square roots establishes the first inequality of the proposition.
Using the gradient inequality for convex functions, it holds that:

h* = h(z*) > h(z)+ Vh(z)(z* - 2)
> h(z) = [Vh(z)|2llz” — 2|2

W) = |Vh() ]2/ B2

and rearranging the above proves the second inequality of the proposition.
O

v

A.2.2. Proof of Theorem 2.1. We first prove part (7). Utilizing (2.9),

which states that #+1 = #F — ¢ ((F6)TX, ) X, , we have:

Ik
La(B*Y) = gLl 3
= L — e (PTX,) X, |12
(A2.) = I - e (97X, e ((MTX,)°

= La(B¥) = o2 - o) (()7X,)°

= Ln(BY) = £e(2 — || VL (5|2
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(where the last equality above uses (2.8)), which yields:
(A'2‘2) Ln(BkJrl) - L:L = Ln(/ék) - L;kl - %5(2 - €)HVLn(Bk)Hgo .

We next seek to bound the right-most term above. We will do this by invok-
ing Proposition A.2.1, which presents two important properties of convex
quadratic functions. Because L, () is a convex quadratic function of the
same format as Proposition A.2.1 with h(-) + L,(-), Q@ + 2XTX, and

h* < L}, it follows from the second property of Proposition A.2.1 that

IVLn(B)ll2 > \/ Apmin(iXTX;@n(ﬁ) - L) _ \/)\pmin(XTX)z(nLn(B) —Ly)
Therefore
Apmin(XTX) (L, (B) — L)

2np )

IVLL(8)% = LIVL(B)]5 >

Substituting this inequality into (A.2.2) yields after rearranging:
(A.2.3)

La(B )L < (La(B5)-L2) (1 -

—_ . T ~
8(2 5))\2;;11H(X X)) _ (Ln(ﬁk)_L’:L)/y,

Now note that Ln(BO) =L,(0) = ﬁ\lyH% and

Ln(B%) = Ly, =5 Iy 113 — 55 Iy — XPs|l3
== llyll3 — 2 (lyll3 — 2" XPus + [ XPus|l3)
:ﬁHXBLSH% 5

where the last equality uses the normal equations (2.3). Then (i) follows by
using elementary induction and combining the above with (A.2.3):

La(B") = L, < (La(8°) = L) - 7" = 55 I XBusll3 - 7" -

To prove (ii), we invoke the first inequality of Proposition A.2.1, which
in this context states that

V2L~ L3)  \/2n(La(39) - L)
)‘Pmin(%XTX) )\pmm(XTX) ‘

18F — Brs|l2 <

Part (ii) then follows by substituting the bound on (L, (%) — L*) from (i)
and simplifying terms. Similarly, the proof of (%ii) follows from the observa-

tion that || X3F — Xfiglls = \/2n(Ln(Bk) — L%) and then substituting the
bound on (L, (3%) — L*) from (i) and simplifying terms.
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To prove (i), define the point 8% = gk + Uj.€j,. Then using similar
arithmetic as in (A.2.1) one obtains:

L, < Ln(Bk) = Ln(Bk) X

T 2n gk 0

where we recall that @;, = (#¥)TX;,. This inequality then rearranges to

(A.2.4) 5 < \/20(La(BY) — L2) < [XPusl -2,

where the second inequality follows by substituting the bound on (Ln(BZ) -
L?) from (i). Recalling (2.4) and (2.8), the above is exactly part (iv).

Part (v) presents two distinct bounds on ||3¥||1, which we prove inde-
pendently. To prove the first bound, let BLS be any least-squares solution,
which therefore satisfies (2.3). It is then elementary to derive using similar
manipulation as in (A.2.1) that for all ¢ the following holds:

(A.2.5) IX (B = Bis)ll} = IIX(F — Bus)Ilf — (22 — 2,
which implies that
(A.2.6)

k—1

k3

(2e—€%) )5, = X (B°=BLs) I3 —IX (6" —brs)IIF = 1X Bus|3—1X (8" —Brs) 13

ﬁ
Il
o

Then note that
185111 <l ety - - €t

(A.2.7) S\/Eg”(aj07"'7ﬁjk—1)u2
—VE /55 IXBusllE — X Brs — XG53

where the last equality is from (A.2.6).
To prove the second bound in (v), noting that g¥ = Zf:_ol ellj,ej;, We
bound ||5¥||; as follows:

k—1
. )
18]l < & |
1=0

IN

k—1
el Xpusll D7
=0

_ el XBrsll2 (1 —Vk/2> 7
L=y

where the second inequality uses (A.2.4) for each i € {0,...,k — 1} and the

final equality is a geometric series, which completes the proof of (v). Part

(vi) is simply the property of LS-BooST(e) that derives from the fact that

BO := 0 and at every iteration at most one coordinate of 8 changes status

from a zero to a non-zero value. O
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A.2.3. Additional properties of LS-BoosT(e). We present two other in-
teresting properties of the LS-B0oosT(¢) algorithm, namely an additional
bound on the correlation between residuals and predictors, and a bound
on the f-shrinkage of the regression coefficients. Both are presented in the
following proposition.

PrOPOSITION A.2.2. (Two additional properties of LS-Boost(c))
Consider the iterates of the LS-B0O0ST(¢) algorithm after k iterations and
consider the linear convergence rate coefficient :

. (1 (2 5))\pmin(XTX)> .

4p

(i) There exists an index i € {0, ..., k} for which the log norm of the gradient
vector of the least squares loss functwn evaluated at f3° satisfies:

VLA (B
= LXT#|
1XBLsll3 — | XBrs — XA*+1|3
< min \/ 1HX5LSH2 A

ny/e(2—¢e)(k+1)

(ii) Let Jy denote the number of iterations of LS-B0OOST(g), among the first
k iterations, where the algorithm takes a step in coordinate £, forl =1,... p,
and let Jmax := max{Ji,...,Jp}. Then the following bound on the shrinkage
of B¥ holds:

~ £ ~ ~ ~
(429) 1812 < /Ty /1K Brsll3 — X s — X343

(A.2.8)

Ol

PROOF. We first prove part (7). The first equality of (A.2.8) is a restate-
ment of (2.8). For each i € {0,...,k}, recall that @;, = (#)7X;, and that
i, = |(F)TX;,| = | XT# o0, from (2.8). Therefore:

(A.2.10)
2 k 512 A+l A 2
- XBusllz = IX(8"" = Bus)||
N PRLED L E ;
(ieﬁ%ﬂk} 1, |> zeg)l,m, i = Z e(2—¢e)(k+1) ’

where the final inequality follows from (A.2.6) in the proof of Theorem 2.1.
Now letting i be an index achieving the minimum in the left hand side of
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the above and taking square roots implies that

VIIXBus |3 — 11X Bus — XB+12
e2—¢e)(k+1)

which is equivalent to the inequality in (A.2.8) for the first right-most term

therein. Directly applying (A.2.4) from the proof of Theorem 2.1 and using

the fact that ¢ is an index achieving the minimum in the left hand side of
(A.2.10) yields:

X" 7|00 = |5, <

I

k/2
e(2 — ) Apmin(XTX)\ ™/

4p ’
which is equivalent to the inequality in (A.2.8) for the second right-most
term therein.

We now prove part (). For fixed k > 0, let J(¢) denote the set of iteration
counters where LS-B0oosT(¢) modifies coordinate ¢ of /3, namely

J) :={i:i<kand j; =/ in Step (2.) of Algorithm LS-BoosTt(¢) } ,

for ¢ =1,...,p. Then J;, = |7 (¢)|, and the sets J(1),...,J(p) partition the
iteration index set {0,1,...,k — 1}. We have:
(A.2.11)

18512 < 1 ieqq i Yie s €lsi)ll2

1T 0 = Ji,] < li,] < [XBrslo <1 -

< memmm)lt
— 772 02
= 6\/@\/(%0 +..F ujk—l) ’
and the proof is completed by applying inequality (A.2.6). =

Part (i) of Proposition A.2.2 describes the behavior of the gradient of the
least squares loss function — indeed, recall that the dynamics of the gradient
are closely linked to that of the LS-B0o0sT(¢) algorithm and, in particular,
to the evolution of the loss function values. To illustrate this connection, let
us recall two simple characteristics of the LS-B0oosT(¢) algorithm:

La(B*) = La(B*Y) = (2 —)IVLa(B")]%

phHL _ gk = —£ ((f’k)Tng) Xjk )



8 FREUND, GRIGAS AND MAZUMDER

which follow from (A.2.2) and Step (3.) of the LS-BoosT(¢) algorithm, re-
spectively. The above updates of the LS-BoosT(¢) algorithm clearly show
that smaller values of the £, norm of the gradient slows down the “progress”
of the residuals and thus the overall algorithm. Larger values of the norm
of the gradient, on the other hand, lead to rapid “progress” in the algo-
rithm. Here, we use the term “progress” to measure the amount of decrease
in training error and the norm of the changes in successive residuals. In-
formally speaking, the LS-B00sT(¢) algorithm operationally works towards
minimizing the unregularized least squares loss function — and the gradi-
ent of the least squares loss function is simultaneously shrunk towards zero.
Equation (A.2.8) precisely quantifies the rate at which the o norm of the
gradient converges to zero. Observe that the bound is a minimum of two
distinct rates: one which decays as O(ﬁ) and another which is a linear

rate of convergence with parameter /. This is similar to item (v) of The-
orem 2.1. For small values of k the first rate will dominate, until a point is
reached where the linear rate begins to dominate. Note that the dependence
on the linear rate v suggests that for large values of correlations among the
samples, the gradient decays slower than for smaller pairwise correlations
among the samples.

The behavior of the LS-BoosT(¢) algorithm described above should be
contrasted with the FS. algorithm. In view of Step (3.) of the FS. algo-
rithm, the successive differences of the residuals in FS. are indifferent to
the magnitude of the gradient of the least squares loss function — as long
as the gradient is non-zero, then for FS. it holds that [|#F*! — 7|y = e.
Thus FS. undergoes a more erratic evolution, unlike LS-Bo0ST(¢) where
the convergence of the residuals is much more “smooth.”

A.2.4. Concentration Results for )\pmin(XTX) in the High-dimensional
Case.

ProposITION A.2.3. Suppose that p > n, let X € R™? be a random

matriz whose entries are i.i.d. standard normal random variables, and define

1~ ; .
X := \/EX‘ Then it holds that:

EDpmin(X7X)) > © (V5 - V)"

Furthermore, for everyt € [0, \/p—+/n], with probability at least 1—2 exp(—t?/2)
it holds that:

Apmin(XTX) > % (Vp—vn—1t) .
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PROOF. Let oy (XT) > 0o(XT) > L2 on(XT) denote the ordered sin-
gular values of X7 (equivalently of X). Then, Theorem 5.32 of [51] states
that:

E[UH(XT)] >\/p— v,

which thus implies:

Epmin(X"X)] =E[(0(X"))?]

where the first inequality is Jensen’s inequality.
Corollary 5.35 of [51] states that for every ¢ > 0, with probability at least
1 — 2exp(—t2/2) it holds that:

on(XTY > \/p—n—t,
which implies for ¢ € [0, \/p — /n] that:

Apmin(XTX) = (0,(XT))? = %(an(XT)V > - (Vp—vn—t)°

1
n
O

Note that in practice we standardize the model matrix X so that its
columns have unit {2 norm. Supposing that the entries of X did originate
from an i.i.d. standard normal matrix X standardizing the columns of X is
not equivalent to setting X := fX But, for large enough n, standardizing

is a valid approximation to normalizing by — Nk ie, X~ %X, and we may
thus apply the above results.

Additional Details for Section 3.

A.2.5. An Elementary Sequence Process Result, and a Proof of Proposi-
tion 3.1. Consider the following elementary sequence process: z° € R" is
given, and 2! « 2’ — a;¢° for all i > 0, where ¢* € R” and «; is a nonneg-
ative scalar, for all 4. For this process there are no assumptions on how the
vectors ¢' might be generated.
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PROPOSITION A.2.4. For the elementary sequence process described above,
suppose that the {g'} are uniformly bounded, namely ||g*||2 < G for alli > 0.
Then for all k > 0 and for any x € R™ it holds that:

k k
(4212 — ' S a(gf - < BB YL
2 Z . |
Yo 25°F

Indeed, in the case when «; = ¢ for all i, it holds that:

) . 0 __ 2 G2
92. NT (0 < ”l’ $H2 €
(4.2.13) P12 0) @ ) < 2k + 1) T 2

PROOF. Elementary arithmetic yields the following;:

I =23 = 2’ — aig’ — 2|3

= [l2* — 2[5 + af[|¢'[5 + 20:(g") " (z — )

< 2t — 2|3 + G%a? + 20 (g") T (x — 2P) .
Rearranging and summing these inequalities for ¢ = 0, ...,k then yields:
k k k
2% ai(g) (@' —2) < G* Y ol e —alf— [ —2|3 < G af+[a"—2l3
i=0 i=0 i=0

which then rearranges to yield (A.2.12). (A.2.13) follows from (A.2.12) by
direct substitution. O

Proof of Proposition 3.1: Consider the subgradient descent method (3.5)
with arbitrary step-sizes «; for all i. We will prove the following inequality:
|2° — 2" |3 + G* 3 o

7
)

(A.2.14) min _ f(z') < f*F +

from which the proof of Proposition 3.1 follows by substituting a; = « for all
i and simplifying terms. Let us now prove (A.2.14). The subgradient descent
method (3.5) is applied to instances of problem (3.3) where f(-) is convex,
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and where ¢’ is a subgradient of f(-) at z‘, for all 7. If z* is an optimal
solution of (3.3), it therefore holds from the subgradient inequality that

fr=fa") > fla') + (g) " (" —a") .

Substituting this inequality in (A.2.12) for the value of z = x* yields:

T O S SR
HH? €z H2+ Z'L:Oaz > Zai(g'L)T( i *)

r —x
2 zic=0 & - Zf:o Qi o
> o i (f@@) = f*) = min f(a') - f*
—k Q; xr)— 2 min bt —
B Zf:() Q5 o 1€{0,....k}

A.2.6. Proof of Theorem 3.1. We first prove part (7). Note that item
(i) of Proposition 3.2 shows that FS. is a specific instance of subgradient
descent to solve problem (3.7), using the constant step-size . Therefore we
can apply the computational guarantees associated with the subgradient
descent method, particularly Proposition 3.1, to the FS, algorithm. Exam-
ining Proposition 3.1, we need to work out the corresponding values of f*,
|2 —2*||2, o, and G in the context of F'S. for solving the CM problem (3.7).
Note that f* = 0 for problem (3.7). We bound the distance from the initial
residuals to the optimal least-squares residuals as follows:

17— r*[|o = |70 = Frsll2 = ly — (v — XBrs)l2 = [ XBrs]lz -

From Proposition 3.2 part (i) we have a = €. Last of all, we need to deter-
mine an upper bound G on the norms of subgradients. We have:

lg* 112 = llsgn((#*)" X)X 12 = X ll2 =1,

since the covariates have been standardized, so we can set G = 1. Now
suppose algorithm FS; is run for k iterations. Proposition 3.1 then implies
that:

(A.2.15)
] ) A0 k(|2 G2 ||X/3LS||2 e
: XTAZ o = : AW ”T T ||2 Q — 2, < )
e X oo = min F0) S P ) T2 T 2eh 1) 2

The above inequality provides a bound on the best (among the first & resid-
ual iterates) empirical correlation between the residuals 7 and each predictor
variable, where the bound depends explicitly on the learning rate € and the
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number of iterations k. Furthermore, invoking (2.4), the above inequality
implies the following upper bound on the norm of the gradient of the least
squares loss Ly (+) for the model iterates {3‘} generated by FS.:

: i IXBusll3 | e
A.2.16 L ()l < S2PLSI2 €
( ) z'egl,{r.l,k} IVLn(F) oo < 2ne(k+1) + 2n

Let ¢ be the index where the minimum is attained on the left side of the
above inequality. In a similar vein as in the analysis in Section 2, we now
use Proposition A.2.1 which presents two important properties of convex
quadratic functions. Because L,(-) is a convex quadratic function of the
same format as Proposition A.2.1 with h(-) + L,(-), Q@ + 2XTX, and
h* < L}, it follows from the second property of Proposition A.2.1 that

Apmin (XTX)(Ln (1) — L) [ Apmin(XTX) (Lo (B) — L3;)
HVLMﬂ)hzz¢ 5 -¢ . ,

where recall that Apmin(XT X) denotes the smallest non-zero (hence positive)
eigenvalue of X7X. Therefore

- ~s )\min XTX Ln 3 _L:L
IVLa (8912 = IIVLa(59)II3 = =2 : QpW) .

Substituting this inequality into (A.2.16) for the index i where the minimum
is attained yields after rearranging:

X Brs|I3
e(k+1)

(A.2.17) La(B) - L% < b

" = A pmin(XTX) te

)

which proves part (i). The proof of part (ii) follows by noting from the first
inequality of Proposition A.2.1 that there exists a least-squares solution 5*
for which:

A _ A 2(La(B) — L3)
8% — B2 S\/)\pmin (1XTX)

- \/%(Ln(éi)—L;;)
N Apmin (XTX)

VP
- )\pmin (XTX)

1X Brs]i3
e(k+1)

+e€

)
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where the second inequality in the above chain follows using (A.2.17).
The proof of part (iii) follows by first observing that ||X(3% — fBrs)|2 =
\/Zn(Ln(Bl) — L*) and then substituting the bound on (L, (3%) — L*) from
part (i) and simplifying terms. Part (iv) is a restatement of inequality
(A.2.15). Finally, parts (v) and (vi) are simple and well-known structural
properties of F'S; that are re-stated here for completeness. O

A.2.7. A deeper investigation of the computational guarantees for LS-
Boost(e) and FS.. Here we show that, at least in theory, LS-BooST(¢) is
much more efficient than FS, if the primary goal is to obtain a model with
a certain (pre-specified) data-fidelity. To formalize this notion, we consider
a parameter 7 € (0,1]. We say that 3 is at a 7-relative distance to the least
squares predictions if (3 satisfies:

(A.2.18) IXB — Xpislla < 7I|XBis]2 -

Now let us pose the following question: if both LS-BoosT(e)and FS.
are allowed to run with an appropriately chosen learning rate € for each
algorithm, which algorithm will satisfy (A.2.18) in fewer iterations? We will
answer this question by studying closely the computational guarantees of
Theorems 2.1 and 3.1. Since our primary goal is to compute 3 satisfying
(A.2.18), we may optimize the learning rate ¢, for each algorithm, to achieve
this goal with the smallest number of boosting iterations.

Let us first study LS-B0O0OST(¢) . As we have seen, a learning rate of ¢ = 1
achieves the fastest rate of linear convergence for LS-BoosT(¢) and is thus
optimal with regard to the bound in part (7ii) of Theorem 2.1. If we run

LS-BoosT(g) with £ = 1 for kLS-BoosT(e) .— [% In (%2)—‘ iterations,
pmin

then it follows from part (iii) of Theorem 2.1 that we achieve (A.2.18).

Furthermore, it follows from (3.9) that the resulting ¢;-shrinkage bound will

satisfy:

SROUNDLS-BoOsT(€) < ||XBLSH2 LLS-BoosTt(e)

For FS., if one works out the arithmetic based on part (iii) of Theorem
3.1, the optimal number of boosting iterations to achieve (A.2.18) is given

by: kFSe .= {m (7—12)—‘ —1 using the learning rate € = \'}% Also,

it follows from part (v) of Theorem 3.1 that the resulting shrinkage bound
will satisfy:

SBOUND™: < . kTS & | X Brg]2 - VEFS: |
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Observe that kFS-Bo0sT(E) « EFS: 'whereby LS-BoosT(¢) is able to achieve
(A.2.18) in fewer iterations than FS.. Indeed, if we let n denote the ratio
fLS-BoostT(e) /1FSe then it holds that

k,LS—BOOST(E) In
(A.2.19) n:i= JFS.

—

)

1
72

~ < ! < 0.368 .

e

The left panel of Figure A.2 shows the value of n as a function of 7. For
small values of the tolerance parameter 7 we see that 7 is itself close to zero,
which means that LS-Boo0sT(e) will need significantly fewer iterations than
F'S; to achieve the condition (A.2.18).

We can also examine the ¢;-shrinkage bounds similarly. If we let ¥ denote
the ratio of

SBOUNDMSBOOST(E) 4 SBoUND ¢, then it holds that

(A.2.20)

SBoUNDLS-BoosT(e) LLS-BoosT(e) In (%)

1
Sounp™Ss RESe L = Ve < 0007
This means that if both bounds are relatively tight, then the £;-shrinkage
of the final model produced by LS-BoosT(¢)is smaller than that of the
final model produced by FS., by at least a factor of 0.607. The right panel
of Figure A.2 shows the value of ¥} as a function of 7. For small values of the
relative predication error constant 7 we see that ¢ is itself close to zero.

9 :

o ]
=

~ | o~
s S
o | 4
S

T T T T T T T T T T T T
0.0 02 0.4 0.6 0.8 1.0 0.0 02 0.4 0.6 0.8 10

0.8

T T

Fic A.2. Plot showing the value of the ratio n of iterations of LS-B0OOST(e) to FS.
(equation (A.2.19)) versus the target relative prediction error T [left panel], and the
ratio ¥ of shrinkage bounds of LS-BOOST(¢) to FS. (equation (A.2.20)) versus the
target relative prediction error T [right panel].

We summarize the above analysis in the following remark.
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REMARK A.2.1. (Comparison of efficiency of LS-Boost(c) and FS;)
Suppose that the primary goal is to achieve a T-relative prediction error as
defined in (A.2.18), and that LS-B0o0sT(¢) and FS. are run with appropri-
ately determined learning rates for each algorithm. Then the ratio of required
number of iterations of these methods to achieve (A.2.18) satisfies

kLS—BOOST(E)

Also, the ratio of the shrinkage bounds from running these numbers of iter-

ations satisfies
LS-BoosT(e)

FS.

~ SBOUND
B SBOUND
where all of the analysis derives from the bounds in Theorems 2.1 and 3.1.

9 < 0.607 ,

We caution the reader that the analysis leading to Remark A.2.1 is premised
on the singular goal of achieving (A.2.18) in as few iterations as possible. As
mentioned previously, the models produced in the interior of the boosting
profile are more statistically interesting than those produced at the end.
Thus for both algorithms it may be beneficial, and may lessen the risk
of over-fitting, to trace out a smoother profile by selecting the learning
rate € to be smaller than the prescribed values in this subsection (¢ = 1
IXBLsll2

v/ kFSe+1

BoosT(e) for simplicity, if our goal is to produce a 7-relative prediction error
according to (A.2.18) with the largest value of the ¢; norm of the coefficients,
then Figure 3 suggests that this should be accomplished by selecting ¢ as
small as possible (essentially very slightly larger than 0).

for LS-BoosT(¢) and ¢ = for F'S.). Indeed, considering just LS-

A.2.8. Tightness of bounds. Herein we show the results of some numer-
ical experiments to assess the tightness of the bounds provided in Theo-
rem 2.1. We considered two different classes of examples, Type 1 and Type 2,
as described below.

Type 1: In this example, we set X such that XTX = X, with the (4, 5)-
entry of ¥ being given by: 0;; = p for i # j and o;; = 1 otherwise. The
response was generated as y = XB°, without any noise. Here BY = 3 and
BY = 0 otherwise.

Type 2: This example is similar to Type 1, with the exception of 3°. Here
B)=3foralli=1,...,p.

LS-Boost(e) was allowed to run for different values of ¢ for different
datasets generated as per Types 1 and 2, for different values of p and p.
Let 4y := (Ln(B*Y) — L*)/(Ln(B*) — L*) denote the estimated rate of
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change of the loss function optimality gap at iteration k. If the upper bounds
implied by Theorem 2.1 are tight, the quantity 4, = 7 for all values of k.
We considered the evolution of LS-Boost(¢) for a fixed e for up to 20,000
iterations. We set qy0%, ¢50% and ggoy, as the 10th, 50th and 90th quantiles of
the observed values 4 for k£ > 1, and we show the values of their deviations
from ~ in Table A.1. Table A.1 shows results for € € {0.1,1} — we see that
the theoretical values and the observed values are quite close. The theoretical
and empirical values are in good agreement for all values of . (Note that
for smaller values of €, the value of v becomes progressively closer to one.)
We also study the evolution of the ¢;-shrinkage of the coefficients as per
Theorem 2.1, part (v). We considered the following modified upper bound:

5 . 5 - X3
Hﬁ’fulsmm{ﬁ@ 1XBisl3 5”1_5%”2(1—%/2)},

by dropping the term (—||XArs — X5%||2) from the first component. Fig-
ure A.3 shows the results for LS-BoosT(¢) for a fixed ¢ € {0.001,0.01}. The
figure shows that the bounds on the ¢1-shrinkage of the coefficients are tight
for early iterations k, but are not tight for large values of k. We observe em-
pirically that the theoretical and empirical bounds are in good agreement
for small/moderate values of € — but the agreement deteriorates with larger
values of € that are close to one.

A.3. Additional Details for Section 4.

A.3.1. Duality Between Regularized Correlation Minimization and the 1.ASSO.
In this section, we precisely state the duality relationship between the RCM
problem (4.2) and the LASSO optimization problem (1.1). We first prove the
following property of the least squares loss function that will be useful in
our analysis.

PROPOSITION A.3.1. The least squares loss function Ly(-) has the fol-
lowing mazx representation:

(A31)  La(B) = max {~7T(2X)5 - LI7 - yl3+ lvI3} |

where Pres := {r € R" : r = y — X for some § € RP}. Moreover, the
unique optimal solution (as a function of B) to the subproblem in (A.3.1) is
r=y—Xg.
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Type 1,p =0.5,p =2 Type 1,p = 0.99,p = 2
E] Theory (0.001) ! ER Theory (0.001) '
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Fic A.3. Figure showing observed versus theoretical bounds (as implied by Theo-
rem 2.1) of the ¢1-norm of the regression coefficients obtained from LS-B0oOST(¢),
for different values of € and different datasets. The horizontal axis is the number
of LS-BoosT(¢) iterations (in the log-scale). The top panels show results for data
of Type 1, and the bottom panels show results for data of Type 2.

PROOF. For any 8 € RP, it is easy to verify through optimality condi-
tions (setting the gradient with respect to 7 equal to 0) that 7 solves the
subproblem in (A.3.1), i.e.,

_ -T ~
= arg max {77 (238 — 7 - yI§ + &Iy}

Thus, we have
max {7 ((X)8 — g [IF — I3 + 5 Iy13} = & Gyl - y" X8+ 31X5]3)

1
fGPres n
= oLy - XB|3 .
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The next result demonstrates that RCM (4.2) has a direct interpretation
as a (scaled) dual of the LAsso problem (1.1). Moreover, in part (i) of
the result below, we present a bound on the optimality gap for the LASsSO

problem in terms of a quantity that is closely related to the objective function
of RCM.

PROPOSITION A.3.2. (Duality Equivalence of Lasso and RCMy,
and Optimality Bounds) The LASsO problem (1.1) and the regularized
correlation minimization problem RCM;y (4.2) are dual optimization prob-
lems modulo the scaling factor %. In particular:

(i) (Weak Duality) If (3 is feasible for the LASSO problem (1.1), and if T
is feasible for the regularized correlation minimization problem RCM;
(4.2), then

Lu(B) + 21s(7) = 5113 -
(ii) (Strong Duality) It holds that:

é
Lys+afs = oyl -

Moreover, for any given parameter value d > 0, there is a unique
vector of residuals 75 associated with every LASSO solution Bg‘, i.e.,
S =y — Xﬁ(}‘, and 73 is the unique optimal solution to the RCM;
problem (4.2).

(11i) (Optimality Condition for LLASSO) If 8 is feasible for the LASSO prob-
lem (1.1) and r =y — X0, then

T
(432 wa(B) = X vl — 22 >0,

and
Lo(B) = Lis < 2-ws(B) .

Hence, if ws(B) = 0, then (B is an optimal solution of the LASSO prob-
lem (1.1). O]

PRrROOF. Let us first construct the problem RCM; using basic constructs
of minmax duality. As demonstrated in Proposition A.3.1, the least-squares
loss function L, () has the following max representation:

~T - 2 2
Ln(B) = max {7 (2308 — 117 — yIB + &lvIB} -

res

Therefore the LASSO problem (1.1) can be written as

. ~T /1 1 |1~ 2 1 2
min frggfs{—r (#X)B8 = 517 = yl3 + 51y 13}
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where Bs := {8 € RP : ||B||1 < §}. We construct a dual of the above problem
by interchanging the min and max operators above, yielding the following
dual optimization problem:
. ~T (1 1z 2 1 2
max  min {7 (;X)8 — 5|7~ yls + 5 lyl2} -
After negating, and dropping the constant term %Hy“%, the above dual
problem is equivalent to:

. ~T/1 1y~ 2
(A.3.3) i max {F X8} + 57—yl -

Now notice that

A34 max {71 (£ X :5< max fTX-> = 9XTF||o ,
(A3d)  max (TEX08) =2 max [77X)) = X7

from which it follows after scaling by % that (A.3.3) is equivalent to (4.2).

Let us now prove item (i). Let 8 be feasible for the LASSO problem (1.1)
and 7 be feasible for the regularized correlation minimization problem RCMgs
(4.2), and let = y — X and let § be such that # = y — X3. Then direct
arithmetic manipulation yields the following equality:

5 _ N I'Xp3
(A3.5) Lo(B) + 2 f5(7) = A lyl3+ ok lr — 73 + 2 (uxTruoo _ ) |

0
from which the result follows since ||r—7(|2 > 0 and 77 X8 < || XT7||oo||Bll1 <
§||X7'7|| 0o which implies that the last term above is also nonnegative.

To prove item (ii), notice that both the LAssO and RCM; can be re-cast
as optimization problems with a convex quadratic objective function and
with linear inequality constraints. That being the case, the classical strong
duality results for linearly-constrained convex quadratic optimization apply,
see [3] for example.

We now prove (iii). Since g is feasible for the LASSO problem, it follows
from the Holder inequality that 7 X3 < ||XT7||so||Bll1 < 61X 7| o0, from
which it then follows that ws(5) > 0. Invoking (A.3.5) with 7 < r =y — Xf
yields:

Ln(B) + 7 fs(r) = 5 Iy 3 + 5 we(B) -

Combining the above with strong duality (ii) yields:
Lo(B) + 2 fs(r) = Ly s + 2 fs + 5 - ws(B) -

After rearranging we have:

La(B) = Lis < 2f5 = 2fs5(r) + 2 - ws(B) < £ - ws(B)

where the last inequality follows since f5 < f5(r). O



20 FREUND, GRIGAS AND MAZUMDER

A.3.2. Proof of Proposition 4.1. Recall the update formula for the resid-
uals in R-FS, s:

(A.3.6) S [Sgn((fk)TXjk)Xjk + 3 —y)

We first show that g* := sgn((#*)7X;,)X;, + 3(?* —y) is a subgradi-
ent of fs(-) at #*. Recalling the proof of Proposition 3.2, we have that
sgn((#*)TX;, )X, is a subgradient of f(r) := ||XT7r| at #* since ji €
argmax ey, . p} |(#*)TX|. Therefore, since fs(r) = f(r) + 55lr — yll3, it
follows from the additive property of subgradients (and gradients) that
9" = sgn((P*)TX;,)X;, + $(PF —y) is a subgradient of f5(r) at r = #*.
Therefore the update (A.3.6) is of the form #F! = #* — ¢gF where ¢F €
Ofs(7*). Finally note that 7% — eghf = #F*1 = y — XBF1 ¢ P, hence
Op, (#* — egF) = 7% — eg¥, i.e., the projection step is superfluous here.
Therefore 71 = TIp_ (#¥ — eg¥), which shows that (A.3.6) is precisely the

res

update for the subgradient descent method with step-size oy := €. O

A.3.3. Proof of Theorem /4.1. Let us first use induction to demonstrate
that the following inequality holds:

k—1
A3.7 Bl < e 1-2) forallk>0.
0
=0

Clearly, (A.3.7) holds for k = 0 since 39 = 0. Assuming that (A.3.7) holds
for k, then the update for f**1 in step (3.) of algorithm R-FS. 5 can be
written as Bk+1 = (1 — %)ﬁk +e- Sgn(('f*k)TXjk)ejk, from which it holds that

1B¥ 1 = [](1 = £)B% + ¢ - sgn((#") X, )es |l

< (1= 5B +elleells
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which completes the induction. Now note that (A.3.7) is a geometric series
and we have:

k—1
(A38) [IBFli< > (1-5) =3 [1 —(1- g)’“} < § forallk>0.
7=0

Recall that we developed the algorithm R-FS, 5 in such a way that it corre-
sponds exactly to an instantiation of the subgradient descent method applied
to the RCM problem (4.2). Indeed, the update rule for the residuals given in
Step (3.) of R-FS, 5 is: #*1 < #*—cg® where g* = [sgn((**)TX,, )X, + 1 (** —y)].
We therefore can apply Proposition A.2.4, and more specifically the inequal-
ity (A.2.13). In order to do so we need to translate the terms of Proposition
A.2.4 to our setting: here the variables x are now the residuals r, the iterates
x* are now the iterates 7, etc. The step-sizes of algorithm R-FS, 5 are fixed
at e, so we have a; = ¢ for all i > 0. Setting the value of x in Proposition
A.2.4 to be least-squares residual value, namely x = 7pg, the left side of
(A.2.13) is therefore:

(A.3.9)

) ) ) ~INT
i@ (@ —x) = g S (X [sen(() X )e;, — 15]) G~ rs)
) A NT .
- k%-l Zf:O (Sgn((fZ)Tin)in - %(Xﬁl)) (i
= X [IXTF o — ) TXA]

= T}»l Zfzo w5(/3i) 5

where the second equality uses the fact that X”77g = 0 from (2.3) and the
fourth equality uses the definition of ws(/5) from (A.3.2).

Let us now evaluate the right side of (A.2.13). We have |29 — x|l =
|79 — 7rsll2 = |y — (y — XBLs)|l2 = [|[XBLs|l2. Also, it holds that

9" l2 =llsen((7*)" X)X, — 3(X5)]l2
<[1Xjill2 + X512

<1+ 31X 1205
<1+ [IX[l12
<2

)

where the third inequality follows since ||3%]|; < & from (A.3.8) and the
second and fourth inequalities follow from the assumption that the columns
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of X have been normalized to have unit 5 norm. Therefore G = 2 is a
uniform bound on ||g¢||2. Combining the above, inequality (A.2.13) implies
that after running R-FS. s for k iterations, it holds that:

(A.3.10)
k A ~
: i 1 Ai [XPuslls | 2% [ XPsl3
N < — o ele 2 2 D2 EOlE 4 9
jemin, ws(B) < P ) < 2kt 1)e 2 2e(k4l)

=0

where the first inequality is elementary arithmetic and the second inequality
is the application of (A.2.13). Now let ¢ be the index obtaining the mini-
mum in the left-most side of the above. Then it follows from part (iii) of
Proposition A.3.2 that

S| XBrsll3 | 20e

31 * ) A1
(A.3.11) Ln(B") — ns = n “ws(B') < m + -

which proves item (i) of the theorem.

To prove item (ii), note first that if Bg is a solution of the LASSO problem
(1.1), then it holds that \|3§H1 < 0 (feasibility) and wg(Bg) = 0 (optimality).
This latter condition follows easily from the optimality conditions of linearly
constrained convex quadratic problems, see [3] for example. Setting 75 =
y — XB;, the following holds true:

IXA = X5518 = 20 (La(F) - La(B)) + (33X (5 - 57))

= 2n (La(B) = Ly 5 — 01X 75 oo + (75) "X ')

< 2 (La(B) = L5 = OIXT# oo + X1 15711 )
< 2 (La(B) = Ly s = OXT# oo + 61X )

— 20 (Lal3) - L)

< OX s 3 + 4ée

e(k+1)

where the first equality is from direct arithmetic substitution, the second
equality uses the fact that OJ(;(,BZ;) = 0 whereby (fg)TXBS‘ = §||XT7% || o, the
first inequality follows by applying Holder’s inequality to the last term of
the second equality, and the final inequality is an application of (A.3.11).
Item (ii) then follows by taking square roots of the above.
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Item (iii) is essentially just (A.3.8). Indeed, since i < k we have:

N
—

i—1 ] .
I8 < e (=5 < e (-5 = [1- (-9 < 5.
j=0

<.
I
o

(Note that we emphasize the dependence on k rather than 7 in the above
since we have direct control over the number of boosting iterations k.) Item
(iv) of the theorem is just a restatement of the sparsity property of R-FS, 5.

O

A.3.4. Regularized Boosting: Related Work and Context. As we have al-
ready seen, the FS. algorithm leads to models that have curious similarities
with the LASSO coefficient profile, but in general the profiles are different.
Sufficient conditions under which the coefficient profiles of FS. (for £ ~ 0)
and LASSO are equivalent have been explored in [34]. A related research
question is whether there are structurally similar algorithmic variants of
FS. that lead to LASSO solutions for arbitrary datasets? In this vein [53]
propose BLASSO, a corrective version of the forward stagewise algorithm.
BLASsO, in addition to taking incremental forward steps (as in FS.), also
takes backward steps, the result of which is that the algorithm approximates
the LAsSsO coefficient profile under certain assumptions on the data. The au-
thors observe that BLASSO often leads to models that are sparser and have
better predictive accuracy than those produced by FS..

In [9], the authors point out that models delivered by boosting methods
need not be adequately sparse, and they highlight the importance of obtain-
ing models that have more sparsity, better prediction accuracy, and better
variable selection properties. They propose a sparse variant of L2-BoosT
(see also Section 1) which considers a regularized version of the squared
error loss, penalizing the approximate degrees of freedom of the model.

In [26], the authors also point out that boosting algorithms often lead
to a large collection of nonzero coefficients. They suggest reducing the com-
plexity of the model by some form of “post-processing” technique—one such
proposal is to apply a LASSO regularization on the selected set of coefficients.

A parallel line of work in machine learning [13] explores the scope of
boosting-like algorithms on ¢;-regularized versions of different loss functions
arising mainly in the context of classification problems. The proposal of [13],
when adapted to the least squares regression problem with ¢;-regularization
penalty, leads to the penalized version of the LASSO problem:

(A.3.12) min ally = X815+ AlBlh
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for which the authors [13] employ greedy coordinate descent methods. Like
the boosting algorithms considered herein, at each iteration the algorithm
studied by [13] selects a certain coefficient 3;, to update, leaving all other
coefficients 5; unchanged. The amount with which to update the coefficient
B, is determined by fully optimizing the loss function (A.3.12) with respect
to Bj,, again holding all other coefficients constant (note that one recov-
ers LS-Boost(1) if A = 0). This way of updating f;, leads to a simple
soft-thresholding operation [12] and is structurally different from forward
stagewise update rules. In contrast, the boosting algorithm R-FS.s that
we propose here is based on subgradient descent on the dual of the LASSO
problem (1.1), i.e., problem (4.2).

A.3.5. Connecting R-FS; 5 to the Frank-Wolfe method. Although we de-
veloped and analyzed R-FS, 5 from the perspective of subgradient descent,
one can also interpret R-FS, 5 as the Frank-Wolfe algorithm in convex opti-
mization [15, 35, 18] applied to the LAsso (1.1). This secondary interpreta-
tion can be derived directly from the structure of the updates in R-FS, 5 or
as a special case of a more general primal-dual equivalence between subgra-
dient descent and Frank-Wolfe developed in [1]. Other authors have com-
mented on the qualitative similarities between boosting algorithms and the
Frank-Wolfe method, see for instance [10] and [35].

We note that there are subtle differences between R-F'S, 5 and a standard
Frank-Wolfe method — the difference lies in the choice of the step-size se-
quence. Standard (popular) Frank Wolfe methods [35] (see also, references
therein) use a step-size of 2/(k + 2) (where k is the iteration index) or a
step-size based on a line-search. The step-size in R-FS, 5, however, is fized
across iterations — this is done to make R-F'S; 5 coincide with a boosting al-
gorithm with fixed learning rate (and in particular, to make it coincide with
FS. when 6 = 00). Analysis of this particular step-size choice in R-FS, ;
requires a different technique than that used in a more traditional analysis
of Frank-Wolfe such as that presented in [35]. In particular, the analysis we
present herein is based on tools from subgradient optimization, which we
utilize since subgradient descent provides a natural unifying framework for
a general class of boosting algorithms (including F'S. and R-FS; 5) via a sin-
gle algorithm applied to a parametric class of objective functions. We note
that [18] derive computational guarantees for Frank-Wolfe with a general
step-size sequence — including a fixed step-size across iterations; however
their proof is different than that presented herein.

A.4. Additional Details for Section 5.
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A.4.1. Proof of Theorem 5.1. We first prove the feasibility of Bk for the
LASSO problem with parameter 6. We do so by induction. The feasibility
of 3 is obviously true for k = 0 since 3% = 0 and hence ||3°]|; = 0 < do.
Now suppose it is true for some iteration k, ie., |3*||; < ;. Then the
update for 5! in step (3.) of algorithm PATH-R-FS. can be written as
Br+l = (1 — i)ﬁk + i(gksgn((fk)TXjk)ejk), from which it follows that

I8 = 10— £)5° + & Gusen( () X el

<= 2B+ EBkeslh < (U= £+ 5k = 5 < b

which completes the induction.
We now prove the bound on the average training error in part (i). In fact,
we will prove something stronger than this bound, namely we will prove:

k A
1 1 . IXBisl3 | 2e
Al S (LB -1 ) < 2Pl 2
( ) k—i—l;di ( (5% n,cﬁ) ~ 2ne(k+1) * n

from which average training error bound of part (i) follows since ¢; < &
for all i. The update rule for the residuals given in Step (3.) of R-FS.;
is: PR« 78 — cgF where gF = [Sgn((f”“)TXjk)Xj,C + i(ﬁk —y)] This
update rule is precisely in the format of an elementary sequence process,
see Appendix A.2.5, and we therefore can apply Proposition A.2.4, and
more specifically the inequality (A.2.13). Similar in structure to the proof of
Theorem 4.1, we first need to translate the terms of Proposition A.2.4 to our
setting: once again the variables = are now the residuals 7, the iterates a* are
now the iterates 7, etc. The step-sizes of algorithm PATH-R-FS, are fixed
at €, so we have a; = ¢ for all i > 0. Setting the value of x in Proposition
A.2.4 to be least-squares residual value, namely x = 71g, and using the
exact same logic as in the equations (A.3.9), one obtains the following result
about the left side of (A.2.13):

k k

Let us now evaluate the right side of (A.2.13). We have ||2° — x|z = ||#° —
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frslle = ly — (v — XBis) |2 = | XBrsl|2. Also, it holds that

g ll2 =llsgn((7)" X)X, — 5 XAz
<1 Xjill2 + I1X(5) 12
<1+ X105

<L+ [1X]1,2
<2

where the third inequality follows since ||3%|; < 6&; from the feasibility of
ﬁ’ for the LASSO problem with parameter §; proven at the outset, and the
second and fourth inequalities follow from the assumption that the columns
of X have been normalized to have unit 5 norm. Therefore G = 2 is a
uniform bound on ||g||2. Combining the above, inequality (A.2.13) implies
that after running PATH-R-FS, for k iterations, it holds that:

k

IXBLsH% 2% X Bs i3
A4.2 iy < 12PISIp | 2€ _ IBIISIE o
(A-42) Z; ACY 2k+1)e T 2 2e(ht1)

where the inequality is the application of (A.2.13). From Proposition A.3.2
we have L, (37) — Lrs < % -w, (37), which combines with (A.4.2) to yield:

k k

R I i IXusl3 | 2
k—|—125< n(3) - ”5i>_ k—l—l nz _QnE(k+1)+n'

=0

This proves (A.4.1) which then completes the proof of part (i) through the
bounds &; < ¢ for all i.

Part (ii) is a restatement of the feasibility of 3% for the LASSO problem
with parameter 6, which was proved at the outset, and is re-written to be
consistent with the format of, and for comparison with, Theorem 4.1. Last
of all, part (7i4) follows since at each iteration at most one new coefficient is
introduced at a non-zero level. O

A.5. Additional Details on the Experiments. We describe here
some additional details pertaining to the computational results performed
in this paper. We first describe in some more detail the real datasets that
have been considered in the paper.

Description of datasets considered.
We considered four different publicly available microarray datasets as de-
scribed below.
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Leukemia dataset. This dataset, taken from [11], has binary response with
continuous covariates, with 72 samples and approximately 3500 covariates.
We further processed the dataset by taking a subsample of p = 500 covari-
ates, while retaining all n = 72 sample points. We artificially generated the
response y via a linear model with the given covariates X (as described
in Eg-A in Section 6). The true regression coefficient SP°P was taken as
BP°P =1 for all ¢ < 10 and zero otherwise.

Golub dataset. The original dataset was taken from the R package mpm,
which had 73 samples with approximately 5000 covariates. We reduced this
to p = 500 covariates (all samples were retained). Responses y were gener-
ated via a linear model with SP°P as above.

Khan dataset. This dataset was taken from the dataset webpage http:
//statweb.stanford.edu/~tibs/ElemStatLearn/datasets/ accompany-
ing the book [33]. The original covariate matrix (khan.xtest), which had
73 samples with approximately 5000 covariates, was reduced to p = 500 co-
variates (all samples were retained). Responses y were generated via a linear
model with SP°P as above.

Prostate cancer dataset. This dataset appears in [14] and is available from
the R package LARS. The first column 1lcavol was taken as the response (no
artificial response was created here). We generated multiple datasets from
this dataset, as follows:

(a) One of the datasets is the original one with n =97 and p = 8.

(b) We created another dataset, with n = 97 and p = 44 by enhancing the
covariate space to include second order interactions.

(c) We created another dataset, with n = 10 and p = 44. We subsampled
the dataset from (b), which again was enhanced to include second
order interactions.

Note that in all the examples above we standardized X such that the
columns have unit /o norm, before running the different algorithms studied
herein.

Sensitivity of the Learning Rate in LS-B00sT(¢) and F'S.. We performed
several experiments running L'S-BoosT(e) and FS. on an array of real and
synthetic datasets, to explore how the training and test errors change as a
function of the number of boosting iterations and the learning rate. Some of
the results appear in Figure A.4. The training errors were found to decrease
with increasing number of boosting iterations. The rate of decay, however,
is very sensitive to the value of ¢, with smaller values of € leading to slower
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Leukemia, SNR=1, p=500 Leukemia, SNR=3, p=500 Khan, SNR=1, p=500
LS-BoosT(g) LS-BoosT(g) LS-BoosT(g)
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Fic A.4. Figure showing the training and test errors (in relative scale) as a function
of boosting iterations, for both LS-BOOST(¢) (top panel) and FS. (bottom panel).
As the number of iterations increases, the training error shows a global monotone
pattern. The test errors however, initially decrease and then start increasing after
reaching a minimum. The best test errors obtained are found to be sensitive to the
choice of €. Two different datasets have been considered: the Leukemia dataset (left
and middle panels) and the Khan dataset (right panel), as described in Section 6.

convergence behavior to the least squares fit, as expected. The test errors
were found to decrease and then increase after reaching a minimum; further-
more, the best predictive models were found to be sensitive to the choice of
€.

In addition to the above, we also performed a series of experiments on both
real and synthetic datasets comparing the performance of LS-B0o0ST(¢) and
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FS; to other sparse learning methods, namely solution via the LASSO, step-
wise regression [14] and FSy [14]. Our results are presented in Table A.2. In
all the cases, we found that the performance of FS, and LS-B0o0OST(¢) were
at least as good as the LASSO solution. And in some cases, the performances
of F'S; and LS-Boo0ST(¢) were superior. The best predictive models achieved
by LS-BoosT(e) and FS; correspond to values of € that are larger than zero
or even close to one — this suggests that a proper choice of € can lead to
superior models.

Statistical properties of R-FS; 5, LASSO and FS.: an empirical study. We
performed some experiments to evaluate the performance of R-FS, s, in
terms of predictive accuracy and sparsity of the optimal model, versus the
more widely known methods FS. and solution via the LASsO. In all the
cases, we took a small value of ¢ = 1073. We ran R-FS_ 5 on a grid of twenty
0 values, with the limiting solution corresponding to the LLASSO solution es-
timate at the particular value of § selected. In all cases, we found that when
0 was large, i.e., larger than the best ¢ for the LASSO (in terms of obtaining
a model with the best predictive performance), R-FS, 5 delivered a model
with excellent statistical properties — R-FS, 5 led to sparse solutions (the
sparsity was similar to that of the best LASSO model) and the predictive
performance was as good as, and in some cases better than, the LASSO so-
lution. This suggests that the choice of § does not play a very crucial role
in the R-FS, s algorithm, once it is chosen to be reasonably large; indeed
the number of boosting iterations plays a more important role in obtaining
good quality statistical estimates. When compared to FS. (i.e., the version
of R-FS. s with § = o0o) we observed that the best models delivered by
R-FS. ; were more sparse (i.e., with fewer non-zeros) than the best F'S. so-
lutions. This complements a popular belief about boosting in that it delivers
models that are quite dense — see the discussion herein in Section A.3.4. Fur-
thermore, it shows that the particular form of regularized boosting that we
consider, R-FS; 5, does indeed induce sparser solutions. Our detailed results
are presented in Table A.3.

Comments on Table A.2. Inthis experiment, we ran FS, and LS-BoosT(¢) for
thirty different values of € in the range 0.001 to 0.8. The entire regulariza-
tion paths for LLASsO, FSp, and the more aggressive Stepwise regression were
computed with the LARS package. First, we observe that Stepwise regression,
which is quite fast in reaching an unconstrained least squares solution, does
not perform well in terms of obtaining a model with good predictive perfor-
mance. The slowly learning boosting methods perform quite well — in fact
their performances are quite similar to the best LASSO solutions. A closer
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inspection shows that F'S. almost always delivers the best predictive models
when ¢ is allowed to be flexible. While a good automated method to find the
optimal value of ¢ is certainly worth investigating, we leave this for future
work (of course, there are excellent heuristics for choosing the optimal ¢ in
practice, such as cross validation, etc.). However, we do highlight that in
practice a strictly non-zero learning rate € may lead to better models than
its limiting version € = 0+.

For Eg-A (p = 0.8), both LS-BoosT(g) and FS, achieved the best model
at ¢ = 1073, For Eg-A (p = 0), LS-BoosT(e) achieved the best model
at € = 0.1,0.7,0.8 and FS, achieved the best model at ¢ = 1073,0.7,0.8
(both for SNR values 1, 3, 10 respectively). For the Leukemia dataset, LS-
BoosTt(e) achieved the best model at ¢ = 0.6,0.7,0.02 and FS. achieved
the best model at ¢ = 0.6,0.02,0.02 (both for SNR values 1, 3, 10 respec-
tively). For the Khan dataset, LS-B0O0ST(¢) achieved the best model at ¢ =
0.001,0.001,0.02 and FS. achieved the best model at € = 0.001,0.02,0.001
(both for SNR values 1, 3, 10 respectively).
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Type D p e lqow =7 lgso% — v lgo0% — 7] v
1 2 099 0.1 2375e-04 2.375e-04 2.375e-04 9.99762e-01
2 -0.99 1.0 1.250e-03 1.250e-03 1.250e-03  9.98750e-01
2 -05 0.1 1.187e-02 1.187e-02 1.187¢-02 9.88125¢-01
2 205 1.0 6.250e-02 6.250e-02  6.250e-02  9.37500e-01
2 05 0.1 1.187e-02 1.187e-02  1.187e-02  9.88125e-01
2 05 1.0 6.250e-02 6.250e-02  6.250e-02  9.37500e-01
2 099 0.1 2375e-04 2.375e-04 2.375e-04  9.99762e-01
2 099 1.0 1.250e-03 1.250e-03 1.250e-03  9.98750e-01
2 099 0.1 8.146e-04 8.146e-04 8.146e-04 9.99762¢-01
2 099 1.0 1.865e-02 1.250e-03 1.250e-03  9.98750e-01
2 .05 0.1 1.187e-02 1.187e-02 1.187¢-02  9.88125¢-01
2 205 1.0 6.250e-02 6.250e-02  6.250e-02  9.37500e-01
2 05 0.1 1.187e-02 1.187e-02  1.187e-02  9.88125e-01
2 05 1.0 6.250e-02 6.250e-02  6.250e-02  9.37500e-01
2 099 0.1 2375e-04 2.375e-04 2.375e-04  9.99762e-01
2 099 1.0 1.865e-02 1.250e-03 1.250e-03  9.98750e-01
50 -0.99 0.1 2.804e-03 2.615e-03 6.518¢-04 9.99348¢-01

50 -0.99 1.0 3.431e-03 3.431e-03  3.431e-03  9.96569e-01

50 -0.5 0.1 4.738¢-03 7.345e-04  7.345e-04  9.99265e-01

50 -0.5 1.0 3.866e-03  3.866e-03  3.866e-03  9.96134e-01

50 0.5 0.1 1.869e-03 1.750e-03  1.716e-03  9.99525e-01

50 0.5 1.0 2.500e-03  2.500e-03  2.500e-03  9.97500e-01

50 099 0.1 9.676e-05 6.597e-05  5.665e-05 9.99991e-01

50 099 1.0 1.013e-02 5.000e-05  5.000e-05 9.99950e-01

100 -0.99 0.1 1.330e-03 1.217e-03  1.153e-03  9.99679e-01

100 -0.99 1.0 1.692e-03 1.692e-03  1.692e-03  9.98308e-01

100 -0.5 0.1 1.464e-03 1.352e-03  1.270e-03  9.99638e-01

100  -0.5 1.0 1.904e-03 1.904e-03  1.904e-03  9.98096e-01

100 0.5 0.1 1.120e-03 9.784e-04  9.459e-04  9.99762e-01

100 0.5 1.0 1.753e-02  1.250e-03  1.250e-03  9.98750e-01

100 0.99 0.1 7.874e-05 5.335e-05  4.507e-05  9.99995e-01

100  0.99 1.0 1.008e-02  2.500e-05  2.500e-05  9.99975e-01

200 -0.99 0.1 8.898e-04 7.217e-04 6.814e-04  9.99840e-01

200 -0.99 1.0 1.509e-02 8.403e-04 8.403e-04  9.99160e-01

200 -0.5 0.1 8.952e-04 7.415e-04 6.965e-04  9.99821e-01

200 -0.5 1.0 1.523e-02 9.446e-04 9.446e-04  9.99055e-01

200 0.5 0.1 8.429e-04 6.466e-04 6.208e-04  9.99881e-01

200 0.5 1.0 1.128e-02  6.250e-04  6.250e-04  9.99375e-01

200 099 0.1 7.186e-05 4.833e-05 4.043e-05  9.99998e-01

200 099 1.0 3.417e-04 2.325e-04 2.161e-04  9.99988e-01

500 -0.99 0.1 6.974e-04 4.662e-04 4.331e-04  9.99936e-01

500 -0.99 1.0 8.227e-03 3.348e-04 3.348e-04  9.99665e-01

500 -0.5 0.1 6.554e-04 4.443e-04 4.135e-04  9.99929e-01

500 -0.5 1.0 9.550e-03 3.761e-04 3.761e-04  9.99624e-01

500 0.5 0.1 7.124e-04 4.565e-04 4.281e-04  9.99953e-01

500 0.5 1.0 5.371e-03  3.637e-03  2.500e-04  9.99750e-01

500 0.99 0.1 6.848e-05 4.582e-05 3.807e-05  9.99999e-01

500 099 1.0 1.914e-04 1.201e-04 1.048e-04  9.99995e-01

TABLE A.1

Table showing the observed convergence rate versus the theoretical linear convergence
parameter v (as given by Theorem 2.1) for the LS-BoosT(e) algorithm for different
values of €, for the datasets Types 1 and 2. The bounds are observed to be fairly tight

until the {1-norm of the regression coefficients are found to stabilize, which corresponds
to the unregularized fit. Since statistically interesting solutions appear typically in the
interior of the LS-BOOST(¢) path, the agreement between the observed and theoretical

bounds are encouraging.
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Dataset SNR n LS-BoosT(e) FS. FSo Stepwise LASsO
x1072 x1072 x1072 x1072 x1072
> 1 72 65.9525 (1.8221) 66.7713 (1.8097) 68.1869 (1.4971) 74.5487 (2.6439)  68.3471 (1.584)
& 3 72 35.4844 (1.1973)  35.5704 (0.898)  35.8385 (0.7165) 38.9429 (1.8030) 35.3673 (0.7924)
\}@0 10 72 13.5424 (0.4267) 13.3690 (0.3771) 13.6298 (0.3945) 14.8802 (0.4398) 13.4929 (0.4276)
N 1 63 22.3612 (1.1058) 22.6185 (1.0312) 22.9128 (1.1209)  25.2328 (1.0734)  23.5145 (1.2044)
\&” 3 63 9.3988 (0.4856) 9.4851 (0.4721) 9.6571 (0.3813) 10.8495 (0.3627) 9.2339 (0.404)
& 10 63  3.4061 (0.1272)  3.4036 (0.1397)  3.4812 (0.1093)  3.7986 (0.0914)  3.1118 (0.1229)
ch 1 50  53.1406 (1.5943) 52.1377 (1.6559) 53.6286 (1.4464) 60.3266 (1.9341) 53.7675 (1.2415)
v 3 50 29.1960 (1.2555) 29.2814 (1.0487) 30.0654 (1.0066) 33.4318 (0.8780)  29.8000 (1.2662)
V“Q 10 50 12.2688 (0.3359) 12.0845 (0.3668) 12.6034 (0.5052) 15.9408 (0.7939) 12.4262 (0.3660)
P
N /Q 1 50 741228 (2.1494) 73.8503 (2.0983) 75.0705 (2.5759) 92.8779 (2.7025)  75.0852 (2.1039)
Q/ 3 50  38.1357 (2.7795)  40.0003 (1.8576) 41.0643 (1.5503) 43.9425 (3.9180)  41.4932 (2.2092)
haa 10 50 14.8867 (0.6994) 12.9090 (0.5553) 15.2174 (0.7086) 12.5502 (0.8256) 15.0877 (0.7142)
@%

TABLE A.2

Table showing the prediction errors (in percentages) of different methods:
LS-BoosT(e), FS. (both for different values of €), FSy, (forward) Stepwise
regression, and LLASSO. The numbers within parentheses denote standard errors.
(The test errors were all standardized by the test error corresponding to the null
model.) LS-BoosT(e), FS. are found to exhibit similar statistical performances
as the LASSO, in fact in some examples the boosting methods seem to be

marginally better than LASSO. The predictive performance of the models were also

found to be sensitive to the choice of the learning rate €. For FSy and Stepwise we
used the R package LARS [14] to compute the solutions. For all the cases, p = 500.
For Eg-A, we took n = 50. Both LS-B00sT(¢) and FS: were run for a few values
of € in the range [0.001 — 0.8] — in all cases, the optimal models (see the text for
details) for LS-B00sT(e) and FS. were achieved at a value of € larger than its
limiting version € = 0+, thereby suggesting the sensitivity of the best predictive

model to the learning rate €.
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Real Data Example: Leukemia

Method n p SNR Test Error Sparsity (|8 [[1/11B]lx _ 6/Smax
FS. 72 500 1 0.3431 (0.0087) 28 0.2339 -
R-FS.s 72 500 1 0.3411 (0.0086) 25 0.1829 0.56
Lasso 72 500 1 0.3460 (0.0086) 30 1 0.11
FS. 72 500 10 0.0681 (0.0014) 67 0.7116 -
R-FS.s 72 500 10 0.0659 (0.0014) 60 0.5323 0.56
Lasso 72 500 10 0.0677 (0.0015) 61 1 0.29

Synthetic Data Examples: Eg-B (SNR=1)

Method n p p Test Error Sparsity [|3°P[1/l1B*]l1  §/Omax
FS. 50 500 0 0.19001 (0.0057) 56 0.9753 -
R-FS:.s 50 500 0 0.18692 (0.0057) 51 0.5386 0.71
Lasso 50 500 0 0.19163 (0.0059) 47 1 0.38
FS. 50 500 0.5 0.20902 (0.0057) 14 0.9171 -
R-FS.s 50 500 0.5 0.20636 (0.0055) 10 0.1505 0.46
Lasso 50 500 0.5 0.21413 (0.0059) 13 1 0.07
FS. 50 500 0.9 0.05581 (0.0015) 4 0.9739 -
R-FS.s 50 500 0.9 0.05507 (0.0015) 4 0.0446 0.63
Lasso 50 500 0.9 0.09137 (0.0025) 5 1 0.04

TABLE A.3

Table showing the statistical properties of R-F'S. s as compared to LASSO and FS..
Both R-FS s and FS; use ¢ = 0.001. The model that achieved the best predictive
performance (test-error) corresponds to B‘”’t. The limiting model (as the number
of boosting iterations is taken to be infinitely large) for each method is denoted by
B*, “Sparsity” denotes the number of coefficients in B"pt larger than 10~° in
absolute value. dmax s the £1-norm of the least squares solution with minimal
£i1-norm. Both R-FS. s and LASSO were run for a few § values of the form némax,
where 1 takes on twenty values in [0.01,0.8]. For the real data instances, R-FS; s
and LASSO were run for a maximum of 30,000 iterations, and FS; was run for
20,000 iterations. For the synthetic examples, all methods were run for a
mazimum of 10,000 iterations. The best models for R-FS. 5 and FS. were all
obtained in the interior of the path. The best models delivered by R-FS; s are seen
to be more sparse and have better predictive performance than the best models
obtained by F'S.. The performances of LASSO and R-FS. s are found to be quite
similar, though in some cases R-FS; 5 is seen to be at an advantage in terms of
better predictive accuracy. The test errors were all standardized by the test error
corresponding to the null model.
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