LECTURE NOTES AND EXAMPLES

1. QUARKS come in different colors: red, blue and green. Each color behaves a little differently: one color quark *feels* different, one *sounds* different, and one *counts* different.

2. ANTIQUARKS have opposite charge and inverse chirality from their paired quarks. A quark can sometimes be its own antiquark.

QUARK (q)	ANTIQUARK (q)
BOOK	POOR
GLOB	CLOP
FLOOD	FLOOD
AUTO	AWES
EMIT	TIME
CANCAN	CANCAN
AMYL	OILY
WOOF	BAAS
FORK	SAVE
ANTIQUARK (q)	QUARK (q)

3. GLUONS are easy. They only change quark color.

4. W BOSONS transfer a unit of charge, and may scatter the quark . W bosons don't care about quark color.

Occasionally a quark / antiquark pair is

formed from gluon decay:

When this happens there is no scattering.

A W boson can also decay to a quark and an antiquark:

5. Z BOSONS mediate weak force interaction, but only certain outcomes are possible. They also may scatter the quark like W bosons.

The Z boson acts on different colors of quark similarly but with different results. Z bosons can interact with multiple colors simultaneously.

TIME

TAKE-HOME FINAL:

Complete the diagram.

Note 1: Some quarks in the diagram will appear to be scattering in more than one direction at once. This is normal and does not represent a threat to the space-time continuum.

Note 2: No two quarks are completely identical.

Note 3: The numbers in the diagram are purely to provide an indication of where inputs go on the diagram and are not in any way part of the final exam.

