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ABSTRACT: Dissipative particle dynamics (DPD) simulations are employed to study the shape transformations
of vesicles formed from amphiphilic triblock copolymers. The amphiphilic molecule is built from two different
hydrophilic blocks on the sides and a hydrophobic block in the middle. To model the asymmetric membrane in
the vesicle, spontaneous curvature is introduced by the difference in repulsive parameters between the two different
hydrophilic blocks of the amphiphilic molecule. A plethora of complex vesicle shapes is revealed by the DPD
simulations, including some shapes that have not been reported in other simulation studies on vesicles, such as
starfish-shaped, toroidal, long rodlike, and inverted vesicles. These simulated vesicles agree with theoretically
derived vesicle shapes based on the spontaneous curvature model and also with experimental observations.

1. Introduction

Block copolymers can self-assemble into a variety of ordered
structures in solutions because of the repulsive interactions
between the different blocks and the topological constraints
caused by the subchains being linked permanently. Amphiphilic
block copolymers, which contain hydrophilic groups and
hydrophobic groups, represent an interesting class of polymeric
materials that exhibit a rich variety of morphologies,1,2 such as
micelles, membranes, and vesicles, making them a subject of
great interest for experiments, theories, and computer simula-
tions. Among these complex microstructures, the vesicles have
received increasing attention due to their great potential ap-
plications in the fields of drug delivery and nanotechnology.

It is well-known that vesicles are highly adaptive structures
having a rich variety of shapes. The study of shape and
topological changes has important physical and biological
significance. In the past decade, vesicles attracted considerable
attention in both experimental and theoretical studies.3-10 It was
recognized early on that vesicle shapes reflect to a large extent
the bilayer nature of amphiphilic membranes.11,12 An interesting
laboratory study of shape deformations of membrane vesicles
caused by temperature changes was performed by Sackmann’s
group.13,14 Further analysis revealed some general features of
vesicle shapes that depend on the layered membrane structure.5

These experimental results confirm the hypothesis that the shape
of a vesicle is mainly determined by bending elasticity and thus

by curvature. A number of theoretical continuum based models
explaining the variety of shapes exist. Among them are the
spontaneous curvature model (SCM),15,16 the bilayer coupling
model (BCM),16,17 and the area-difference model (ADE).18,19

The models and their variants allow the prediction of energy-
minimizing shapes for a given parameter set. However, despite
the large amount of published works on the vesicle shapes in
experiment and theory, papers on numerical simulations of
vesicle shapes have seldom been reported. Morikawa et al.20

studied the vesicle shapes by the Monte Carlo simulation of a
joint-segment model. The shape transitions of fluid vesicles and
red blood cells in shear flow were studied by Noguchi21,22 and
Pivkin and Karniadakis23 using simulation techniques that
combine a three-dimensional particle-based mesoscopic model
for the solvent with a triangulated surface model for the
membrane. Also, recently the shape transformations of two-
component lipid vesicles from coarse-grained molecular dynam-
ics (CGMD) simulations have been investigated by Markvoort
and co-workers.24 However, to the best of our knowledge, no
studies of shape transformations of single-component polymer
vesicles using the dissipative particle dynamics (DPD) method
have been reported.

In this paper, we study the shape transformations of polymer
vesicles composed of amphiphilic triblock copolymers using
the DPD approach. We show that for a membrane consisting
of amphiphilic triblock copolymers, a difference in DPD
parameters between two different hydrophilic blocks in am-
phiphilic molecules can introduce an asymmetry in the mem-
brane, resulting in a spontaneous curvature. In case the
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membrane forms a vesicle, the spontaneous curvature can
influence the shapes of the membrane vesicles. We can obtain
a wide variety of vesicle shapes by properly adjusting the
difference in the repulsive parameters of the DPD system. Both
familiar and new shapes are formed, and here we compare our
results with theoretically derived shapes and experimental
observations whenever possible.

2. Simulation Details

2.1. DPD Formulation. Dissipative particle dynamics is a
mesoscopic Lagrangian simulation method, introduced in 1992
by Hoogerbrugge and Koelman.25 In DPD simulation, a particle
represents the center of mass of a cluster of atoms, and the mass,
length, and time scales are all unity. Particles i and j interact
with each other via a pairwise additive force, consisting of three
components: (i) a conservative force, Fij

C; (ii) a dissipative force,
Fij

D; and (iii) a random force, Fij
R. All forces are nonzero within

a cutoff radius rc. Hence, the total force on particle i is given
by

where the sum acts over all particles within rc. Specifically, in
our simulations

where aij is a maximum repulsion between particles i and j, rij

is the distance between them, with the corresponding unit vector
r̂ij, Vij is the difference between the two velocities, �ij is a random
number with zero mean and unit variance, and γ and σ are
parameters coupled by σ2 ) 2γkBT. The weight function ω(rij)
is given by

The value σ ) 2.4 and γ ) 4.5 are used to study the shape
transformations of membrane vesicles; therefore, the temperature
constant is kept at kBT ) 0.64. By joining consecutively particles
with a spring force, we can construct coarse-grained models of
polymers.26,27 The harmonic spring force with a spring constant
ks ) 10.0 and an equilibrium bond length rs ) 0.86 in our
simulations has the form

The simulations are performed using a modified version of
the DPD code named MYDPD.28,29 The time integration of
motion equations is done using a modified velocity-Verlet
algorithm with λ ) 0.65 and time step ∆t ) 0.04; a temporal
resolution study is presented in section 4.1.

2.2. DPD Models. Within the mesoscopic approach, an
amphiphilic molecule is represented by a coarse-grained model.
In order to simulate polymer-based asymmetric membranes as
well as vesicles in solvent, we consider the amphiphilic triblock
copolymer molecules. For the sake of simplicity, each am-
phiphilic molecule is built by pairs of hydrophilic particles
(denoted by A/C) on each side and six hydrophobic particles
(denoted by B) in the middle; i.e., an amphiphilic A2B6C2

triblock copolymer molecule is modeled, as shown in Figure
1a. Solvent particles (denoted by S) are included explicitly in
the simulations; however, for clarity, they are not shown in the
following figures.

For single-component vesicles consisting of amphiphilic
triblock copolymers, the spontaneous curvature of the membrane
can be controlled by changing the conservative (repulsive)
parameters between particles. Following Laradji and Kumar,30,31

the repulsive parameter between two alike particles is set to aij

) 25.0. The values of the parameters between two particles of
which one is hydrophilic and the other hydrophobic are aAB )
aBC ) 200.0, which ensures that the hydrophobic block of
amphiphile is sufficiently shielded from the hydrophilic blocks.
For the interaction between two distinct types of hydrophilic
particles, we have chosen the value aAC ) 100.0 such that the
two types of hydrophilic particles are in the strong segregation
regime. To introduce a spontaneous curvature in the membrane,
the repulsive parameter between A particles is chosen to be
larger than between C particles. Specifically, their values are
set to aAA ) 30.0 and aCC ) 20.0. In summary, the repulsive
interaction parameters between any two particles are given by

With these parameters, an asymmetric membrane vesicle with
the outer part of the membrane consisting of hydrophilic
particles A and inner part consisting of hydrophilic particles C
can be formed. The area expansion modulus, KA, of the
membrane is calculated to be 23.4kBT/rc

2, and the membrane
thickness lme is estimated to be 3.7rc; then the bending rigidity
is calculated via κ ) KAlme

2/48, which is about 6.8kBT. The value
of κ in our model is in reasonable agreement with the
experimental values for membranes.

A difference in repulsive interactions between two different
hydrophilic blocks in amphiphilic molecules introduces an
asymmetry in the membrane, resulting in a spontaneous
curvature. In case the membrane forms a vesicle, the spontane-
ous curvature of the membrane will influence the shapes of the
vesicle. Therefore, the shape transformations of vesicles can
be imposed by changing the repulsive interaction differences
between the parameters of the hydrophilic particles A in the
outer part and hydrophilic particles C in the inner part of the
membrane.

Fi ) ∑
i*j

Fij
C + Fij

D + Fij
R (1)

Fi ) ∑
i*j

aijω(rij)r̂ij - γω2(rij)(r̂ij·Vij)r̂ij + σω(rij)�ij∆t-1/2r̂ij

(2)

ω(rij) ) { 1 - rij/rc rij < rc

0 rij g rc
(3)

Fij
S ) ks(1 - rij/rs)r̂ij (4)

Figure 1. (a) DPD model of A2B6C2 amphiphilic molecule and (b) the
self-assembled vesicle obtained in DPD simulations. In the figure, the
A and C particles are hydrophilic while the B particles are hydrophobic.

aij ) ( A B C S
A 30.0 200.0 100.0 25.0
B 200.0 25.0 200.0 200.0
C 100.0 200.0 20.0 25.0
S 25.0 200.0 25.0 25.0

) (5)
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3. Shape Transformations of Membrane Vesicles

In this section, we present results from simulations of the
A2B6C2 amphiphilic triblock copolymer systems. The simula-
tions are started from a spherical vesicle that is formed from
960 amphiphilic molecules (or 9600 particles) of A2B6C2

amphiphilic triblock copolymers in a simulation box of 40 ×
40 × 40 with a particle number density of 3 at two different
temperatures. At kBT ) 1.00, we find only a little difference in
the repulsive parameters can bring a large shape deformation
of vesicles. So, we adopt a strategy that the shape transforma-
tions of vesicles are imposed by varying the difference of
repulsive interactions in a larger range at a lower temperature
kBT ) 0.64. A rough but simple estimation of the value of this
reduced temperature in terms of physical temperature can be
given by the following equation:32

where T and T* represent the physical temperature and reduced
temperature, respectively. We then find T ) 325 K for kBT )
0.64. The vesicle, which is shown in Figure 1b, contains 3190
solvent particles in the interior. As described in previous
simulations based on DPD model,31 the large repulsive interac-
tion parameters of the model are selected so that the membrane
vesicle is impermeable to solvent particles, which implies that
the number of solvent particles inside the closed vesicle is
constant. It is hard to change the shape for a spherical vesicle
without changing the interior volume. Therefore, the initial
configurations for the following simulations are all derived from
a vesicle for which a certain number of solvent particles are
removed from its interior and placed into the outer region. The
shape transformations of vesicles can be imposed by varying
the difference of repulsive interactions, ∆a ) aAA - aCC, in
the range from -10.0 to 49.5 by changing the repulsive
parameters of aAA in the range from 20.0 to 49.5; aCC is obtained
through the relation aCC ) 50.0 - aAA. A typical simulation
requires 500 000 time steps, of which 50 000 time steps are
needed for equilibration.

A plethora of vesicle shapes are observed in the simulations.
A selection of vesicle shapes induced by the differences of the
repulsive interactions is displayed in Figure 2. The spherical
vesicle deforms to achieve oblate/prolate shapes depending on
the value of ∆a just after a certain number of the interior solvent
particles are removed. If we continue changing ∆a for these
two shapes, the range of shapes obtained for the membrane
vesicle grows larger, and new shapes appear. At low ∆a,
the oblate shape is formed from the spherical vesicle. With the
decrease of the value of ∆a, it transforms to stomatocyte shape,
which is abundant in nature.16,33 Further decrease in ∆a to even
smaller (or negative) value causes the oblate to split from the
edge and to form an asymmetric monolayer and later to
transform into an inverted vesicle. As ∆a is increased, the oblate
shape is transformed continuously into the prolate one via an
ellipsoidal shape, which indicates that the prolate shape is
favored at higher positive ∆a. Further increase in ∆a causes
formation of branches, resulting in dumbbell and pear-shaped
vesicles. These finally transform to fission-produced vesicles
through a necklike early intermediate and a hemifission late
intermediate. When more solvent particles are removed from
the interior of the vesicle to the outer region, we find several
novel shapes, such as starfish and toroidal vesicles, which have
been studied previously experimentally and theoretically.34-39

At still lower ∆a, when more interior solvent particles are
removed, the oblate becomes flat and pinches off at the center
to form a toroidal vesicle with a single hole (a torus).34,35,40 As
the ∆a is increased, the oblate shape is no longer transformed
into ellipsoidal or prolate shape; instead, it transforms continu-

ously into a three-armed starfish36-39 via an elongated rounded
triangular shape.

In order to provide a more quantitative insight into the
characteristics of the shape transformation behavior of mem-
brane vesicles, we employ existing theoretical models for
comparison. For the three continuum models, the bilayer
coupling model and the area-difference model apply to a
membrane consisting of two monolayers; however, the am-
phiphilic membrane in our simulations is essentially a single
monolayer. Moreover, the amphiphilic membrane consists of
an asymmetric monolayer, and hence it has nonzero spontaneous
curvature. Thus, we hypothesize here that the spontaneous
curvature model might be the most appropriate model for this
membrane. We have also made comparisons with the bilayer
coupling model; these resultssnot shown heressupport our
hypothesis. In the following sections, we compare the simulated
vesicles with the spontaneous curvature model.

4. Comparison with Spontaneous Curvature Model

For the spontaneous curvature model, the phase diagram
depends only on two dimensionless variables: the reduced
spontaneous curvature, c0, and the reduced volume, ν, defined
by

where R0 is the radius of a sphere with the same area. To
describe the shape transformations of simulated vesicles in terms
of the spontaneous curvature model, the triangulated surface
model is used to estimate the volume of the vesicles. Since a
relatively small vesicle is used, the thickness of the membrane
is not negligible and should be taken into account when
estimating its volume. The density of particles forming the
vesicle membrane is computed on a three-dimensional grid with
a series of nodes. The density isosurfaces can be represented
using the triangular surface meshes connecting the corresponding
nodes. The membrane formed from amphiphilic molecules has
two different hydrophilic domains and two different isosurfaces
(where the density is midway between the hydrophilic and

T ) 133T* + 240 (6)

Figure 2. Shape transformation pathways of membrane vesicles from
amphiphilic triblock copolymer in DPD simulations. The slices of these
shapes are also shown here for clarity. In the upper half, the difference
of repulsive interactions, ∆a, has larger positive value whereas in the
lower half, ∆a has smaller or negative value.

ν ) V

4π/3R0
3

(7)

Macromolecules, Vol. 42, No. 8, 2009 Shape Transformations of Membrane Vesicles 3197

http://pubs.acs.org/action/showImage?doi=10.1021/ma9000918&iName=master.img-001.jpg&w=239&h=218


hydrophobic domains) exist in the membrane, i.e., the inner
isosurface between hydrophilic A and hydrophobic B domains
and the outer one between hydrophilic C and hydrophobic B
domains. The volume of the vesicle is calculated by measuring
how many vertices of a dense regular grid happen to be within
the middle surface of the monolayer, which is located in the
middle between the inner and outer isosurfaces. The values of
reduced volumes are listed in Table 1. For a spherical vesicle,
we obtain a reduced volume of ∼1.0. A reduced volume of
∼0.80 can be obtained after 40% of the interior solvent particles
are removed from the interior of the vesicle. Similarly, if 80%
of the interior solvent particles are removed, we obtain a vesicle
with a reduced volume of ∼0.55.

A simple estimate can be given here. The original vesicle has a
radius (R0) of 8.0rc and thus a volume V0 ) (4/3)πR0

3 ) 2145rc
3.

The membrane thickness lme is estimated to be 3.7rc, and the inner
radius of the vesicle is 6.2rc with a volume Vin ) 998rc

3. If we
assume that the membrane volume is constant, a reduced volume
ν ≈ (V0 - Vin × 0.40)/V0 ) 0.81 is obtained by removing 40% of
the interior solvent. When 80% of interior solvent is removed, the
volume ratio drops to ν ≈ (V0 - Vin × 0.80)/V0 ) 0.63. We noticed
that when a certain number of solvent particles are removed from
the interior of the vesicle and placed into its outer region, the
membrane thickness will increase slightly. This affects the volume
of the vesicle. Thus, the calculated reduced volumes decrease faster
than predicted by simple estimates presented above. For the purpose
of comparison with spontaneous curvature model, we also need to
find the relation between the reduced spontaneous curvature c0 and
the difference of repulsive interactions ∆a in the simulations.

4.1. Spontaneous Curvature in Membrane. Following
Markvoort et al.,24 a membrane with two large domains consisting
of A2B6C2 amphiphilic molecules is simulated in a periodic box
to obtain spontaneous curvature. In the simulations, the membrane
is oriented perpendicular to the x-axis and the area of the yz-plane
is changed in order to control the membrane tension to be a constant
with the given value. This is done by manually changing the
membrane projected area on the yz-plane and the height of the
simulation box to ensure that the total volume of the system remains
constant, and therefore no work is done against the external
pressure. The structure of the membrane is shown in Figure 3a; in
the left half of the membrane, the lower part consists of
hydrophilic particles C while the upper part consists of
hydrophilic particles A; in the right half of the membrane it is
exactly the other way around. Since two domains with different
hydrophilic particles coexist, when we change the difference
of repulsive interactions between two different hydrophilic
particles from the tensionless state, two domains with opposite
curvature are formed. A resulting highly curved membrane in
the case of ∆a ) 5.0 is shown in Figure 3b. To determine the
relation between the changes in our DPD repulsive parameters
and the spontaneous curvature of the membrane, we compare
the curves obtained from the DPD simulations with predictions
for membrane shapes from a spontaneous curvature model that

predicts the energy-minimizing shapes for a given parameter
set. In the spontaneous curvature model of Herfrich,15 the
membrane has bending energy which depends quadratically on
its local principal curvatures C1 and C2 as

where κb and κG are respectively the bending rigidity and
Gaussian bending rigidity, and C0 is a parameter representing
the spontaneous curvature that a membrane may possess arising
from compositional inhomogeneities in its monolayer. Since
curvature in the membrane is expected only in one dimension,
the equation reduces to

where lme is the membrane thickness. The responses obtained in
simulations by changing the values of spontaneous curvature
through variation of the parameters of repulsive interactions are
shown in Figure 4. Several recent works showed that using a
time step of 0.04 in simulations of model bilayer membranes
may lead to deviations in the distribution of stresses within the
membrane that are as large as the physically meaningful
quantities found for smaller time steps.41,42 In order to inves-
tigate possible effects of the time step in simulations of our
particular membrane, we repeated all simulations at different
time steps. We concluded that our results are independent of
the time step in the range we have selected; typical results of
this systematic temporal resolution study are shown in Figure
5a,b.

By comparing the curves obtained from theory and simula-
tions, the spontaneous curvature C0 can be plotted as a function
of the difference in repulsive forces ∆a between aAA and aCC,
as shown in Figure 6. Then, the functional dependence of the
reduced spontaneous curvature c0 on the difference of repulsive
forces ∆a is obtained by a linear fitting method, i.e.

Once the reduced spontaneous curvature c0 has been determined
for a specific vesicle, other attributes such as the reduced volume

Table 1. Obtained Reduced Volumes of Vesicles by Removing Percents of Solvent from the Interior of the Vesicle to the Outer Region

percentage of interior solvent removed (%) 0 10 20 30 40 50 60 70 80
volume (rc

3) 2164 2061 1955 1845 1731 1612 1485 1346 1190
reduced volume 1.00 0.95 0.90 0.85 0.80 0.74 0.69 0.62 0.55

Figure 3. Spontaneous curvature in the resulting monolayer with two
opposite domains for (a) ∆a ) 0.0 and (b) ∆a ) 5.0.

Figure 4. Responses obtained through energy minimization according
to eq 9 for various values of the spontaneous curvatures C0 (solid lines)
and changes of the repulsive parameters (symbols) from simulations.

Eb )
κb

2 ∫A
da (C1 + C2 - C0)

2 +
κG

2 ∫A
da C1C2 (8)

Eb )
κblme

2 ∫0

L
(C1 - C0)

2 ds (9)

c0 ) C0R0 ) 0.0834∆a + 0.0008 (10)
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ν of vesicle can be varied, and the resulting change in shapes
can be compared against both theoretical prediction and
experimental results. Similarly, a comparison in opposite
direction can be obtained, i.e., once the reduced volume ν has
been determined for a specific vesicle, the values obtained for
the spontaneous curvature c0 can be compared to the theoretical
prediction as well as experimental observations.

4.2. Shape Transformations of Membrane Vesicles for
Fixed Reduced Volume. Let us consider vesicle shapes of the
same reduced volume with different spontaneous curvatures c0.
Specifically, we chose the value of ν ) 0.80, for which the
results can be compared to the theoretical prediction by the
spontaneous curvature model reported in Markvoort et al.24 The
variation of vesicle shape as a function of the reduced spontane-
ous curvature at the fixed volume fraction are shown in Figure
7. In the order from low to high values of reduced spontaneous
curvature, inverted-shaped, stomatocyte, oblate, prolate, pear-
shaped, and fission-produced vesicles are observed. The shapes
appear in the same order as predicted by the spontaneous
curvature model for c0 > 0; however, for c0 e 0.0, we find
similar order with the theoretical prediction24 but also new
shapes; e.g., for c0 ) -1.0, we obtain the inverted spherical
vesicle shape with the outer part of the membrane consisting
of hydrophilic particles C and the inner part consisting of
hydrophilic particles A. The reduced volume goes back to 1.00
for the inverted vesicle since it is formed after rupture. The
appearance of the inverted vesicle can be explained by the fact
that an asymmetry exists in the membrane of the original vesicle.
A change in repulsive interactions between two different
hydrophilic particles in amphiphilic molecules influences the
packing of the amphiphiles in the monolayer, causing a slight

change of the membrane area. For a relative large negative value
of ∆a, the vesicle can rupture and form an inverted vesicle.

4.3. Shape Transformations of Membrane Vesicles for
Fixed Reduced Spontaneous Curvature. For the purpose of
comparison with the spontaneous curvature model in the case
of fixed spontaneous curvature, we chose the same value of
spontaneous curvature in our simulations as in Seifert et al.16

A series of simulations with fixed repulsive interaction param-
eters were performed, varying the reduced volume ν by
removing some amount of solvent particles from the interior of
vesicle into the outer region. In Figure 8 some simulated shapes
of membrane vesicles are shown with the corresponding values
of the reduced volume ν for fixed reduced spontaneous curvature
c0 ) 3.0. The shapes from simulations correspond to pear-shaped
and dumbbell classes.

At ν ) 1.0, the vesicle shape is always spherical. As ν is
decreased from unity, the sphere is transformed into a prolate
shape, elongating continuously. Upon further decrease of ν, the
prolate is replaced by the pear-shaped vesicle, where a large
and a small sphere are connected by a narrow neck. As the
reduced volume is reduced to 0.70, the dumbbell shape appears.
A further decrease of ν leads to the gradual increase of the neck
length, while the shapes remain basically the same. The
sequence of shapes found is quantitatively the same as the
theoretical prediction by Seifert et al.16 However, the multi-
spherical vesicle connected by narrow necks, which is predicted
by theory, does not appear in our simulations. The reason for

Figure 5. (a) Same plot as in the previous figure but for two different time steps. (b) Time resolution tests for ∆a ) 5.0 and different values of the
time step.

Figure 6. Functional dependence of the spontaneous curvature C0 on
the difference repulsive forces ∆a between aAA and aCC obtained from
simulations.

Figure 7. Shape transformations of membrane vesicles as a function
of the reduced spontaneous curvature by changing the repulsive
parameters between two different hydrophilic particles at the reduced
volume ν ) 0.80, except for the c0 )-1.00 (the inverted vesicle formed
after rupture makes the reduced volume go back to 1.00).
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this might be the size of the vesicle in our simulations, which
is relatively small.

5. Conclusion

In this paper, we studied shape transformations of vesicles
by particle-based models of amphiphilic triblock copolymers
for the first time using the dissipative particle dynamics (DPD)
approach. The DPD model of an amphiphilic molecule has two
different hydrophilic blocks in each side. The amphiphilic
membrane is essentially a single monolayer with the amphiphilic
molecule responsible for the hydrophobic core as well as both
hydrophilic ends. This is different from the work of Markvoort
et al.,24 who used coarse-grained molecular dynamics (CGMD)
models of lipid bilayer membranes. The spontaneous curvature
of the membrane is controlled by the difference in repulsive
parameters between the hydrophilic blocks of the amphiphilic
molecules. A plethora of complex vesicle shapes, including some
that have not been reported in previous simulation studies on
vesicles, such as starfish-shaped, toroidal, long rod-like and
inverted vesicles, are obtained in the DPD simulations. The
results are in agreement with experimental observations and
theoretical predictions. These findings demonstrate that DPD
method is an effective (relatively simple) simulation technique
for understanding the behavior of amphiphilic block copolymer
vesicles.
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