
Motivation Preliminaries Sums-of-AM/GM-Exponentials Sparsity preservation A Hierarchy Extreme rays Conclusion Appendices

Conditional Moment Relaxations and Sums-of-AM/GM-Exponentials

Riley Murray

California Institute of Technology

MIT Virtual Seminar on Optimization and Related Areas
17 April 2020

Riley Murray 1



Motivation Preliminaries Sums-of-AM/GM-Exponentials Sparsity preservation A Hierarchy Extreme rays Conclusion Appendices

The functions of interest

polynomials

Parameters ai in Nn, ci in R.

Using xai =
∏n
j=1 x

aij
j ,

x 7→
m∑
i=1

cix
ai .

Care about degree: maxi ‖ai‖1.

signomials

Parameters ai in Rn, ci in R.

In “exponential form”,

x 7→
m∑
i=1

ci exp(ai · x).

Care about number of terms: m.

For historical and modeling reasons, signomials are often written in geometric form

y 7→
m∑
i=1

ciy
ai

where y ∈ Rn++ has the correspondence yi = exp(xi). We use the exponential form!

Riley Murray 2



Motivation Preliminaries Sums-of-AM/GM-Exponentials Sparsity preservation A Hierarchy Extreme rays Conclusion Appendices

Geometric Programming

The signomial

f(x) =
∑m
i=1 ci exp(ai · x)

is called a posynomial when all ci ≥ 0.

Geometric programs (GPs):

inf
x∈Rn

{
f(x) : gi(x) ≤ 1 ∀ i ∈ [k]

}
where f and {gi}ki=1 are posynomials.

Study of GPs initiated by Zener, Duffin, and
Peterson (1967). Exponential-form GPs are
convex & poly-time solvable via IPMs [1].

Optimization-based engineering design: electrical
[2, 3, 4], structural [5, 6], environmental [7], and
aeronautical [8, 9].

Epidemilogical process control [10, 11, 12], power control
and storage [13, 14], self-driving cars [15], gas network
operation [16].

Additional applications in healthcare [17], biology [18], economics [19, 20, 21], and statistics [22, 23]

Riley Murray 3



Motivation Preliminaries Sums-of-AM/GM-Exponentials Sparsity preservation A Hierarchy Extreme rays Conclusion Appendices

Signomial programming

A signomial program (SP) is an optimization problem stated with signomials, e.g.

inf
x∈Rn

{
f(x) : gi(x) ≤ 0 for all i in [k]

}
.

Major applications in aircraft design [24, 25, 26, 27, 28] and structrual engineering
[29, 30, 31, 32]. Additional applications in EE [33], communications [34], and ML [35].
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The AM/GM-inequality

If u,λ ∈ Rm are positive and 1ᵀλ = 1, then

uλ ≤ λᵀu.

Proof. If v = logu, then uλ = exp(λᵀv)≤
∑m
i=1 λi exp vi= λᵀu. �

A recent history of using the AM/GM inequality to certify function nonnegativity:

1978 and 1989: Reznick [36, 37].

2009: Pébay, Rojas and Thompson [38].

2012 and 2013: Ghasemi and Marshall [39], Ghasemi, Lasserre, and Marshall [40].

2012: Paneta, Koeppl, and Craciun [41], and August, Craciun, and Koeppl [42].

2016: Iliman and de Wolff [43].

When used for computation, exponents {ai}mi=1 were presumed to be highly structured.

E.g. conv{ai}mi=1 has m− 1 extreme points, 1 point in its relative interior.
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Definitions from convex analysis

A set convex set K is called a cone if

x ∈ K ⇒ λx ∈ K for all λ ≥ 0;

the dual cone to K is
K† = {y : yᵀx ≥ 0 for all x in K}.

– and we have (K†)† = clK

A convex set X induces a support function

σX(λ) = sup{λᵀx : x in X}.

The relative entropy function continuously extends

D(u,v) =
m∑
i=1

ui log(ui/vi) to Rm+ × Rm+ .

Important: if you evaluate D(·, ·) outside Rm+ × Rm+ , you get +∞.
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A trick with convex duality

Start with a primal problem

Val(c) = inf
x
{cᵀx : Ax = b,x ≥ 0}.

Obtain a dual problem

Val(c) = sup
µ
{−bᵀµ : Aᵀµ+ c ≥ 0}.

We will encounter constraints like

Val(c) + L ≥ 0.

Write such a constraint as: there exists a µ where

Aᵀµ+ c ≥ 0 and bᵀµ ≤ L.
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Nonnegativity and optimization

We’ll work with sets X ⊂ Rn. Speaking abstractly, for any f : Rn → R

f?X = inf{f(x) : x in X}
= sup{γ : f − γ is nonnegative over X}.

Make this more concrete. For signomials:

CNNS(A, X)
.
=

{
c :

m∑
i=1

ci exp(ai · x) ≥ 0∀x ∈ X

}
, A

.
=


0
a2

...
am

 ∈ Rm×n.

So for f(x) =
∑m
i=1 ci exp(ai · x),

f?X = sup {γ : c− γe1 ∈ CNNS(A, X)}

– where e1 is the 1st standard basis vector in Rm.
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Duality and moment relaxations

Abbreviate exp(Ax) ∈ Rm elementwise, and express

CNNS(A, X) = {c : cᵀexp(Ax) ≥ 0∀x ∈ X}.

The definition of “dual cone” requires

CNNS(A, X)† = {v : cᵀv ≥ 0 ∀ c ∈ CNNS(A, X)}.

So we end up getting CNNS(A, X)† = co {exp(Ax) : x ∈ X} – a “moment cone.”

conv {exp(Ax) : x ∈ X} =

Ex [exp(Ax)] : x ∼ F, suppF ⊂ X︸ ︷︷ ︸
conditional probability


Get moment relaxations from conic duality

sup
γ
{γ : c− γe1 ∈ CNNS(A, X)}︸ ︷︷ ︸

f?
X

= inf

{
cᵀv :

v ∈ CNNS(A, X)†

satisfies v · e1 = 1

}
.

Riley Murray 10



Motivation Preliminaries Sums-of-AM/GM-Exponentials Sparsity preservation A Hierarchy Extreme rays Conclusion Appendices

Motivation.
Mathematical Preliminaries.
Sums-of-AM/GM-Exponentials.

Sparsity preservation.

A hierarchy.

Extreme rays.

Conclusion.

Riley Murray 11



Motivation Preliminaries Sums-of-AM/GM-Exponentials Sparsity preservation A Hierarchy Extreme rays Conclusion Appendices

X-AGE functions

Definition. An X-AGE function is an X-nonnegative signomial, which has at most one
negative coefficient. Generalizes X = Rn from [44]; see [45].

Consider f(x) =
∑m
i=1 ci exp(aᵀ

ix). If c ∈ Rm has c\k
.
= (ci)i∈[m]\k ≥ 0, then

f(x) ≥ 0 ⇔
m∑
i=1

ci exp([ai − ak] · x) ≥ 0 ⇔
∑
i6=k

ci exp([ai − ak] · x)

︸ ︷︷ ︸
convex!

+ck ≥ 0.

Theorem (M., Chandrasekaran, & Wierman (2019))

If X is a convex set, then the conditions

c\k ≥ 0 and c ∈ CNNS(A, X)

are equivalent to the existence of some ν ∈ Rm satisfying

1ᵀν = 0 and σX (−Aᵀν) +D(ν\k, ec\k) ≤ ck.
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X-SAGE certificates & lower bounds

A signomial is X-SAGE if it can be written as a sum of appropriate X-AGE functions.

The cone of coefficients

CSAGE(A, X)
.
=
{
c : {(ν(k), c(k))}mk=1 satisfy c =

∑m
k=1 c

(k), 1ᵀν(k) = 0,

and σX
(
−Aν(k)

)
+D

(
ν

(k)

\k , c
(k)

\k

)
≤ c(k)

k ∀ k ∈ [m]

}
is contained within CNNS(A, X).

Consider f(x) =
∑m
i=1 ci exp(ai · x) with a1 = 0:

f?X = sup{γ : c− γe1 in CNNS(A, X)}

≥ sup{ γ : c− γe1 in CSAGE(A, X)} =: fSAGE
X .

MOSEK + sageopt = off-the-shelf software for computing fSAGE
X .
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Conditional moment relaxations via SAGE

Consider f(x) =
∑m
i=1 ci exp(ai · x) with a1 = 0. Applying conic duality ...

sup{ γ : c− γe1 in CSAGE(A, X)} = fSAGE
X = inf

{
cᵀv :

v in CSAGE(A, X)†

satisfies v · e1 = 1

}
Conic duality reverses inclusions

CNNS(A, X)† ⊂ CSAGE(A, X)†.

The dual X-SAGE cone is

CSAGE(A, X)† = cl{v : some z1, . . . , zm in Rn satisfy

vk log(v/vk) ≥ [A− 1ak]zk

and zk/vk ∈ X for all k in [m]}.

The dual helps with solution recovery. Useful even when fSAGE
X < f?X !
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An example in R3

Minimize

f(x) = exp(x1 − x2)/2− expx1 − 5 exp(−x2)

over

X =
{
x : (70, 1, 0.5) ≤ expx ≤ (150, 30, 21)

exp(x2 − x3)

100
+

expx2

100
+

exp(x1 + x3)

2000
≤ 1

}
.

Compute fSAGE
X = −147.85713 ≤ f?X , and recover feasible

x̃ = (5.01063529, 3.40119660,−0.48450710)

satisfying f(x̃) = −147.66666.
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Sparsity and SAGE signomials

Theorem (M., Chandrasekaran, & Wierman)

Fix a vector c ∈ Rm with nonempty N = {i : ci < 0}.

If c ∈ CSAGE(A, X), then there exist X-AGE vectors {c(i)}i∈N where c
(i)
i = ci and

c =
∑
i∈N

c(i).

This is true even if X is not convex.

Proven formally for X = Rn in [46].

Let K ⊃ Rm+ induce Ci
.
= {c ∈ K : c\i ≥ 0}.

1 Show that for j 6∈ N , can eliminate c(j) ∈ Cj from an existing decomposition.

2 Show that conic combinations of {c(i) ∈ Ci}i∈N can reduce to c
(i)
i = ci.
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Sparsity preservation: a univariate example

f(x) = e−3x + e−2x + 4ex + e2x − 4e−x − 1− e3x over x ≤ 0

-1.0 -0.5 0.5 1.0

-3

-2

-1

1

2

3

4

f1(x) = 0.88 · e−3x + 0.82 · e−2x + 2.69 · ex + 0.12 · e2x − 4 · e−x

f2(x) = 0.10 · e−3x + 0.15 · e−2x + 0.90 · ex + 0.12 · e2x − 1

f3(x) = 0.02 · e−3x + 0.03 · e−2x + 0.41 · ex + 0.76 · e2x − e3x
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Applying Sums-of-Squares (SOS) to an AGE function

Consider the following function on R2

f(x, y) = 1− 2e(2x+2y) +
1

2

(
e8x + e8y) .

Use sageopt, round solution, certify f is R2-AGE with ν? = (1,−2, 1/2, 1/2).

We can express f as a sum-of-squares, but this requires new terms

f(x, y) =
(

1− 2e(2x+2y)
)2

+
1

2

(
e4x − e4y)2

=
(

1− 2e(2x+2y)+e(4x+4y)
)

+
1

2

(
e8x + e8y−2e(4x+4y)

)
.

SOS is the predominant way to certify polynomial nonnegativity.

SAGE can certify polynomial nonnegativity [46] with X ( Rn [45].

Remark: In the special case X = Rn with integer exponents, the sparsity result can also be
deduced from Jie Wang’s work on Sums-of-Nonnegative-Circuit polynomials [47, 48].
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A hierarchy of stronger convex relaxations.

The earlier example with X ⊂ R3 –

f(x) = exp(x1 − x2)/2− expx1 − 5 exp(−x2).

We found bounds

fSAGE
X = −147.85713 ≤ f?X and f?X ≤ f(x̃) = −147.66666.

The modulation trick lets us construct a sequence of bounds

f
(`)
X

.
= sup{γ :

(∑m
i=1 exp(ai · x)

)`
(f(x)− γ) is X-SAGE}.

Using MOSEK + sageopt with this particular example,

` SAGE bound solve time (s)
0 -147.85713 0.01
1 -147.67225 0.02
2 -147.66680 0.08
3 -147.66666 0.26
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Convergence results

When introducing Rn-SAGE, Chandrasekaran and Shah proved two results for hierarchies.

No known convergence conditions for f
(`)
X , prior to March 2020.

Theorem (Wang, Jaini, Yu, Poupart [49])

Let A ∈ Qm×n be a rank n matrix with a1 = 0, and consider f(x) =
∑m
i=1 ci exp(ai · x).

If X is a compact convex set, then

lim
`→∞

f
(`)
X = f?X .

Assumes nothing about the representation of X.

Compare to the canonical (non X-SAGE) approach, which uses a Lagrangian relaxation:

inf
x
{f(x) : g(x) ≥ 0} ≥ sup

γ,λ
{γ : f − γ −

∑
i λi · gi ∈ Λ, λi ∈ Λ′}

Λ,Λ′ are sets of nonnegative functions.
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Affine matroid-theoretic circuits

A circuit is a minimal affinely dependent {ai}i∈I ⊂ Rn.

A circuit is simplicial if conv{ai}i∈I has |I| − 1 extreme points.

As a matter of notation, let Lk = {λ : λᵀ1 = 0, λk = −1, λ\k ≥ 0}.

Simplicial circuits obtained from A ∈ Rm×n are 1-to-1 with certain λ ∈ Rm

λ ∈ Lk for some k ∈ [m], Aᵀλ = 0 and {ai : λi > 0} is affinely independent.
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Circuits and Rn-SAGE

M., Chandrasekaran, and Wierman [46] determined extreme rays of

CAGE(A, i) = {c ∈ CNNS(A,Rn) : c\i ≥ 0}.

The ordinary SAGE cone is a Minkowski sum

CSAGE(A) =

m∑
i=1

CAGE(A, i).

Katthän, Naumann, and Theobald [50] completely determined ext CSAGE(A).

Forsg̊ard and de Wolff [51] studied ∂CSAGE(A) in detail ;defined

Rez(A) = co{λ ∈ Rm : λ is a simplicial circuit w.r.t. A}.

Combine [50, 51] to clearly link ext CSAGE(A) and ext Rez(A).
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Circuits and X-SAGE

The following is ongoing, joint work with Helen Naumann and Thorsten Theobald.

Definition. A simplicial X-circuit induced by A ∈ Rm×n is a vector λ? ∈ Rm where

1. λ? ∈ Lk for some k ∈ [m],

2. σX (−Aᵀλ?) < +∞, and

3. if λ 7→ σX (−Aᵀλ) is linear on [λ1,λ2] ⊂ Lk, then λ? 6∈ relint[λ1,λ2].

A clean generalization from X = Rn.

Provides the basis for a “Reznick cone” with conditional SAGE certificates.

Particularly informative when X is a polyhedron.

E.g., if X is a polyhedron, then CSAGE(A, X) is power-cone representable.
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Some open problems

1. When do we have CSAGE(A, X) = CNNS(A, X)?

For X = Rn see [46, 51], and also [46, 47] for polynomials.

2. If f > 0 on compact X, is there some g > 0 so f · g is X-SAGE?

Resolved in the affirmative for A ∈ Qm×n [49]! Follow-up questions ...

If “h =standard multiplier,” how to bound least ` where h` · f is X-SAGE?

Irrational A? Perhaps leverage Hausdorff continuity.

3. Complexity of testing “c ∈ CNNS(α, X)” with two ci < 0?

Many possible algorithmic projects (ask me for details).

More open problems to follow once “X-circuit” paper is put on arXiv.
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Rn-SAGE Exactness
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Simplicial sign patterns

Theorem (7)
If conv(A) is simplicial, and ci ≤ 0 for all nonextremal ai,

then c ∈ CNNS(A,Rn) if and only if c ∈ CSAGE(A,Rn).
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Simplicial sign patterns

Theorem (7)
If conv(A) is simplicial, and ci ≤ 0 for all nonextremal ai,

then c ∈ CNNS(A,Rn) if and only if c ∈ CSAGE(A,Rn).

0
0

1

2

1 0
1

2 2
f(x) = (ex1 − ex2 − ex3)2

is clearly nonnegative, but

f − γ is not SAGE ∀ γ ∈ R.
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Partitioning a Newton polytope

We say that A can be partitioned into ` faces if we can permute its rows so that
A = [A(1); . . . ;A(`)] where {convA(i)}`i=1 are mutually disjoint faces of conv(A).
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Partitioning a Newton polytope

Theorem (8)

If {A(i)}`i=1 are matrices partitioning A = [A(1); . . . ;A(`)], then

CNNS(A,Rn) = ⊕`i=1CNNS(A(i),Rn)

–and the same is true of CSAGE(A,Rn).

Sanity checks :

All matrices A admit a trivial partition with ` = 1.

If all ai are extremal, then CNNS(A,Rn) = Rm+ .
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An Rn-SAGE exactness theorem

Theorem (9)

Suppose A can be partitioned into faces where

1 each simplicial face has ≤ 2 nonextremal exponents, and

2 all other faces contain at most one nonextremal exponent.

Then CSAGE(A,Rn) = CNNS(A,Rn).

Violate the first hypothesis? Consider

f(x) = (ex1 − ex2 − ex3)2 not SAGE, per C&S’16.

Violate the second hypothesis? Consider

Aᵀ = [e1, e2, 2e1, 2e2, 2(e1 + e2), 0],

for which (−4, −2, 3, 2, 1, 1.8) ∈ CNNS(A,R2) \ CSAGE(A,R2).
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Optimization with nonconvex constraints

Q: What should we do when some constraints are nonconvex?

A: Combine X-SAGE certificates with Lagrangian relaxations.

Concretely, suppose we want to minimize f over

Ω
.
= X ∩ {x : g(x) ≤ 0}

where X is convex, but g1, . . . , gk are nonconvex signomials.

Then, if λ1, . . . , λk are nonnegative dual variables, we have

inf
x∈Ω

f(x) ≥ sup

{
γ : f +

k∑
i=1

λigi − γ is X-SAGE

}
.

Riley Murray 49



Motivation Preliminaries Sums-of-AM/GM-Exponentials Sparsity preservation A Hierarchy Extreme rays Conclusion Appendices

The SimPleAC aircraft design problem

From Warren Hoburg’s PhD thesis.

Problem statistics:

140 variables.

89 inequality constraints (1 nonconvex).

67 equality constraints (15 nonconvex).

Performance of the most basic SAGE relaxation:

bound “cost ≥ 2957” (roughly match a known solution).

MOSEK solves in two seconds, on a six year old laptop.

solution recovery fails (numerical issues).

Riley Murray 50



Motivation Preliminaries Sums-of-AM/GM-Exponentials Sparsity preservation A Hierarchy Extreme rays Conclusion Appendices

The sageopt python package

import sageopt as so

y = so.standard_sig_monomials(3)

f = 0.5*y[0]/y[1] - y[0] - 5/y[1]

ineqs = [100 - y[1]/y[2] - y[1] - 0.05*y[0]*y[2],

y[0] - 70, y[1] - 1, y[2] - 0.5,

150 - y[0], 30 - y[1], 21 - y[2]]

X = so.infer_domain(f, gts, [])

prob = so.sig_relaxation(f, X, form=’dual’)

prob.solve()

solutions = so.sig_solrec(prob)
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The sageopt python package

... # define f, X as before

from sageopt import coniclifts as cl

modulator = so.Signomial(f.alpha, np.ones(f.m)) ** 3

gamma = cl.Variable()

h = modulator * (f - gamma)

con = cl.PrimalSageCone(h.c, h.alpha, X, ’con_name’)

prob = cl.Problem(cl.MAX, gamma, [con])

prob.solve()

age_vecs = [v.value for v in con.age_vectors.values()]

age_sigs = [so.Signomial(h.alpha, v) for v in age_vecs]

h_numeric = so.Signomial(h.alpha, h.c.value)
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Log-log convexity: examples

With domains D = Rn++:

g(x) = max{x1, . . . , xn}

g(x) = xa11 · · ·xann

g(x) =

(∫ ∞
x

e−t
2

dt

)−1

With more restricted domains:

x 7→ (−x log x)−1 D = (0, 1)

X 7→ (I −X)−1

D = {X ∈ Rn×n++ : ρ(X) < 1}

x 7→ (log x)−1 D = (1,∞)

Some tractable constraints for X-SAGE polynomials:

‖x‖p ≤ a x2
j = a a ≤ P{N (0, σ) ≥ |x|}

where a > 0.
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