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-
Semidefinite programming

A semidefinite program is

min CeX
Xesn
(SDP) st. A;jeX=bforie[m]
X >0

where C, A1,...,An€S", beR™.
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where C, A1,...,An€S", beR™.

@ This is a convex problem.

@ Polynomial time solvable with interior point methods
(Nesterov-Nemirovski'87).

@ Many different applications.

Goal: Show that SDPs can be solved in polynomial time with a more
recent class of methods. The proof is remarkably geometric.
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SDP applications

Matrix completion

Max-Cut

1 /-1 1
JH

Rotation synchronization

Phase Retrieval
xray
sample source

mask I !

diffraction
pattern
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-
Solving large scale SDPs

Interior point methods intractable for large SDPs (too much memory)

Practical methods
e Low rank factorization (Burer, Monteiro)
e Frank-Wolfe / CGM (Hazan, Jaggi, Freund, Grigas, Mazumder)
@ Sketching (Yurtsever, Ding, Udell, Tropp, Cevher)
e Bundle (Helmberg, Rendl, Oustry)
@ Subgradients (Nesterov, Yurtsever, Tran Dinh, Cevher)

The Burer-Monteiro method is one of the most widely used in practice.
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Burer-Monteiro method

(SDP) )rgneiSnH CeX st. AieX=bjforie[m], X=0
Assume the optimal solution has rank < p, and factorize
X =YY" where Y € R™P

Use local optimization to solve the nonconvex problem

(BM) min  Ce YYT st AjeYYT =b; foric[m]

How large should we choose p?
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Burer-Monteiro method

(SDP) )r<1r1€iSr1n CeX st. AieX=bjforie[m], X=0

Assume the optimal solution has rank < p, and factorize
X =YY" where Y € R™P
Use local optimization to solve the nonconvex problem

(BM) min  Ce YYT st AjeYYT =b; foric[m]

How large should we choose p?

Theorem (Barvinok-Pataki bound)
BM is equivalent to SDP when (pgl) > m. So we need p = v/2m.
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Known global guarantees on BM

Below Barvinok-Pataki bound
There might be spurious local minima [Waldspurger, Waters].
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Cifuentes (MIT) Burer-Monteiro method in polynomial time vsOPT'20 6/20



Known global guarantees on BM

Below Barvinok-Pataki bound
There might be spurious local minima [Waldspurger, Waters].

Above Barvinok-Pataki bound

Assume (P31) > m.

e BM should work [Burer-Monteiro, Journée et al.]
Assume the feasible set is smooth.

@ For generic C, no spurious local minima [Boumal-Voroninski-Bandeira]
Assume compactness and (pgl) > %mlog(a‘l) for some o > 0.

e Randomly perturb C (magnitude o). No spurious approximate local
minima w.h.p. [Pumir-Jelassi-Boumal]

No polynomial time guarantees known!
Obstacle: How to find a local minimum that is exactly feasible?
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Our results

Assumptions:
o (P > (1+n)m for a fixed n > 0.
o Constraint set is smooth and compact.

@ Solve BM using local method with 2nd order guarantees.

Theorem (Polytime optimality)

Randomly perturb C (magnitude o). Given an initial approx feasible point,

then BM computes a point that is approx feasible & approx optimal w.h.p.
in poly(n,o~1) iterations.
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-
Smoothed analysis [Spielman-Teng '01]

@ Some practical algorithms are slow in a few instances.

@ Example: Simplex is very efficient in practice, but it takes exponential
time in the worst case.

Cifuentes (MIT) Burer-Monteiro method in polynomial time vsOPT'20 8/20



-
Smoothed analysis [Spielman-Teng '01]

@ Some practical algorithms are slow in a few instances.

@ Example: Simplex is very efficient in practice, but it takes exponential
time in the worst case.

@ Smoothed complexity: Take a random perturbation (magnitude o) of
a worst-case input.

e Example: Simplex takes poly(n,c~1) time.

Cifuentes (MIT) Burer-Monteiro method in polynomial time vsOPT'20 8/20



-
Smoothed analysis [Spielman-Teng '01]

@ Some practical algorithms are slow in a few instances.

@ Example: Simplex is very efficient in practice, but it takes exponential
time in the worst case.

@ Smoothed complexity: Take a random perturbation (magnitude o) of
a worst-case input.

e Example: Simplex takes poly(n,c~1) time.

Theorem (Polytime optimality)

Randomly perturb C (magnitude o). Given an initial approx feasible point,
then BM computes a point that is approx feasible & approx optimal w.h.p.
in poly(n, 1) iterations.

Cifuentes (MIT) Burer-Monteiro method in polynomial time vsOPT'20 8/20



-
BM for SDP feasibility

Goal:

find X st. AjeX=bjforiec[m], X>0

Cifuentes (MIT) Burer-Monteiro method in polynomial time vsOPT'20 9/20



-
BM for SDP feasibility

Goal:
find X st. AjeX=bjforiec[m], X>0
Consider the least squares problem:

. i . . 2
(SDP) in E(A, e X —bj)° st X >0

The associated Burer-Monteiro problem is

(BMIS) )r/nelgn Z(A, [ YYT — b,‘)2

1

Previous work on BMs relies on RIP [Bhojanapalli-Neyshabur-Srebro].
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Our results

Assumptions:
° (p;rl) > (14n)m for a fixed n > 0
@ Constraint set is smooth and compact

@ Solve BM using local method with 2nd order guarantees.

Theorem (Polytime optimality)

Randomly perturb C (magnitude o). Given an initial approx feasible point,
then BM computes a point that is approx feasible & approx optimal w.h.p.
in poly(n,o 1) iterations.

Theorem (Polytime feasibility)

Randomly perturb As, ..., A (magnitude o). Then BMs computes an
approx feasible point w.h.p. in poly(n,o~1) iterations.
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-
Optimality /Criticality conditions

(SDP) min CeX st. AjeX=b;foric[m], X>=0
Lemma

Assuming strong duality, X is optimal for SDP iff there exists A such that

AieX=b, X=0, SAX=0, S()=0,

where S(A) :== C — >_; MiA;.
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Optimality /Criticality conditions

(SDP) min CeX st. AjeX=b;foric[m], X>=0
Lemma
Assuming strong duality, X is optimal for SDP iff there exists A such that

AieX=b, X=0, SAX=0, S()=0,

where S(A) :== C — >_; MiA;.

(BM) min CeYY' st AeYYT =bpforic[m]
Lemma
Y is a 2-critical point of BM iff there exists \ such that

AieYYT=h, SA)Y =0, S\)eUUT >0 VU:AeUYT =0

A critical point Y of BM is spurious if YY T is not optimal for SDP.
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Spurious critical points

A critical point Y of BM is spurious if YY T is not optimal for SDP.

Theorem (Boumal-Voroninski-Bandeira)

Spurious critical points may only exist if

CeM+LcCS

where M = {S : rankS < n—p} and L = span{Ay,...,An}

o Assume that (P3%) > m.

o M + L is an algebraic variety of
codimension (P31) — m.

@ Generically, no spurious points.
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-
Approximate optimality /criticality

(SDP) X is d-optimal if there exists A such that
|Ai @ X — bi|| <4, [S(A)X] <6, X =0, S(A) = —6l,.
(BM) Y is e-critical for BM if there exists A such that

|Ai e YYT — bif| <, IS Y| < €,
SN eUUT > —e YU ||U| <1, |AeUYT|| <e.

Theorem (C.-Moitra)

Assume domain is smooth and compact. Given an approx feasible point,
local optimization can produce an approx critical point in poly(e~!).
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Spurious approximate critical points

An e-critical point Y of BM is spurious if YY T is not d-optimal for SDP,
with = O(e).
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Spurious approximate critical points

An e-critical point Y of BM is spurious if YY T is not d-optimal for SDP,
with 6=0(e).

Theorem (C.-Moitra)

Spurious e-critical points may only exist if
C € tube(M+L) CS"

where tube, (W) := {X : dist(X, W) < ¢}
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Volumes of tubes

Theorem (Weyl 1939)

Let V C R" manifold of codimension c. There
are curvature constants k;(V') such that

Vol[tube (V)] = i’:k,-(V) €

i=c

Theorem (Lotz 2015)

Let V C R" variety of codimension c defined by
polynomials of degree D. Let x uniformly
distributed on a ball of radius . Then

Prlx € tube (V)] < O(nDe/c)* J
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-
Polytime optimality

Theorem (C.-Moitra)

Assumptions: (p;rl) > (14n)m, constraint set smooth and compact, solve

BM with local method with 2nd order guarantees.

Randomly perturb C (magnitude o). Given an approx feasible point, BM
computes an approx optimal solution w.h.p. in poly(n,oc~1) iterations.
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-
Polytime optimality

Theorem (C.-Moitra)

Assumptions: (p;rl) > (14n)m, constraint set smooth and compact, solve
BM with local method with 2nd order guarantees.

Randomly perturb C (magnitude o). Given an approx feasible point, BM
computes an approx optimal solution w.h.p. in poly(n,oc~1) iterations.

Proof.

Method converges to an e-critical point in poly(e~1). Using tubes,

Pr[spurious] < Pr[C € tube,(M+L)] < (3)-m o <n3/a) (°3")

For (”;1) >(14+n)m and e= O(a/n3)1+1/77 the probability is tiny. O

v
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-
Polytime feasibility
(BM) min Z(A,- e YYT — b)?
Theorem (C.-Moitra)

Spurious e-critical points may only exist if

tube(M) N L nontrivial

Theorem (C.-Moitra)

Assumptions: (p;rl) > (14n)m, constraint set smooth and compact, solve
BM,s with local method with 2nd order guarantees.

Randomly perturb Ai, ..., A (magnitude o). Then BMs computes an
approximately feasible solution w.h.p. in poly(n,o~1) iterations.
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|
Experiments

o Generate planted matrix of rank r.
@ Generate SDP for which planted marix is optimal.
@ Solve BM using augmented Lagrangians.

n =50, m=7(r)
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Experiments

Experiments solved (%)

@ Fix an SDP instance for which BM behaves badly.

@ Perturb the problem with small noise.

@ Solve BM using augmented Lagrangians.
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Summary

@ We proved the first polynomial time guarantees for the
Burer-Monteiro method.

o Guarantees work arbitrarily close to the Barvinok-Pataki bound.

@ Proof relies on geometric ideas (varieties, tubes).
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