Polynomial time guarantees for the Burer-Monteiro method

Diego Cifuentes

Department of Mathematics Massachusetts Institute of Technology

Joint work with **Ankur Moitra** (MIT) arXiv:1912.01745

Virtual Seminar on Optimization and Related Areas - 2020

Cifuentes (MIT)

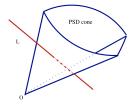
Burer-Monteiro method in polynomial time

Semidefinite programming

A semidefinite program is

$$(SDP) \qquad \begin{array}{l} \min_{X \in \mathbb{S}^n} \quad C \bullet X \\ \text{s.t.} \quad A_i \bullet X = b_i \text{ for } i \in [m] \\ X \succeq 0 \end{array}$$

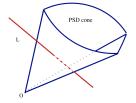
where $C, A_1, \ldots, A_m \in \mathbb{S}^n$, $b \in \mathbb{R}^m$.



Semidefinite programming

A semidefinite program is

$$(\text{SDP}) \qquad \begin{array}{l} \min_{X \in \mathbb{S}^n} \quad C \bullet X \\ \text{s.t.} \quad A_i \bullet X = b_i \text{ for } i \in [m] \\ X \succeq 0 \end{array}$$



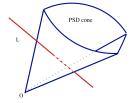
where $C, A_1, \ldots, A_m \in \mathbb{S}^n$, $b \in \mathbb{R}^m$.

- This is a *convex* problem.
- Polynomial time solvable with interior point methods (Nesterov-Nemirovski'87).
- Many different applications.

Semidefinite programming

A semidefinite program is

$$(SDP) \qquad \begin{array}{l} \min_{X \in \mathbb{S}^n} \quad C \bullet X \\ \text{s.t.} \quad A_i \bullet X = b_i \text{ for } i \in [m] \\ X \succeq 0 \end{array}$$



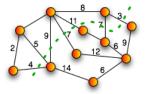
where $C, A_1, \ldots, A_m \in \mathbb{S}^n$, $b \in \mathbb{R}^m$.

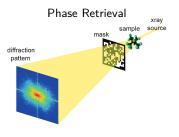
- This is a *convex* problem.
- Polynomial time solvable with interior point methods (Nesterov-Nemirovski'87).
- Many different applications.

Goal: Show that SDPs can be solved in polynomial time with a more recent class of methods. The proof is remarkably geometric.

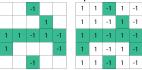
SDP applications

Max-Cut

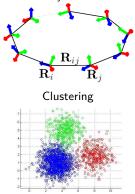




Matrix completion



Rotation synchronization



Burer-Monteiro method in polynomial time

Interior point methods intractable for large SDPs (too much memory)

Practical methods

- Low rank factorization (Burer, Monteiro)
- Frank-Wolfe / CGM (Hazan, Jaggi, Freund, Grigas, Mazumder)
- Sketching (Yurtsever, Ding, Udell, Tropp, Cevher)
- Bundle (Helmberg, Rendl, Oustry)
- Subgradients (Nesterov, Yurtsever, Tran Dinh, Cevher)

The Burer-Monteiro method is one of the most widely used in practice.

$$(\mathsf{SDP}) \qquad \min_{X \in \mathbb{S}^n} \quad C \bullet X \quad \text{s.t.} \quad A_i \bullet X = b_i \text{ for } i \in [m], \quad X \succeq 0$$

Assume the optimal solution has rank $\leq p$, and factorize

$$X = YY^T$$
 where $Y \in \mathbb{R}^{n \times p}$

Use local optimization to solve the nonconvex problem

(BM)
$$\min_{Y \in \mathbb{S}^n} \quad C \bullet YY^T \quad \text{s.t.} \quad A_i \bullet YY^T = b_i \text{ for } i \in [m]$$

How large should we choose p?

(SDP) $\min_{X \in \mathbb{S}^n} C \bullet X$ s.t. $A_i \bullet X = b_i$ for $i \in [m], X \succeq 0$

Assume the optimal solution has rank $\leq p$, and factorize

 $X = YY^T$ where $Y \in \mathbb{R}^{n \times p}$

Use local optimization to solve the nonconvex problem

(BM)
$$\min_{Y \in \mathbb{S}^n} \quad C \bullet YY^T \quad \text{s.t.} \quad A_i \bullet YY^T = b_i \text{ for } i \in [m]$$

How large should we choose *p*?

Theorem (Barvinok-Pataki bound)

BM is equivalent to SDP when $\binom{p+1}{2} \ge m$. So we need $p \gtrsim \sqrt{2m}$.

Below Barvinok-Pataki bound

There might be spurious local minima [Waldspurger, Waters].

Below Barvinok-Pataki bound

There might be spurious local minima [Waldspurger, Waters].

Above Barvinok-Pataki bound

Assume $\binom{p+1}{2} > m$.

• BM should work [Burer-Monteiro, Journée et al.]

Below Barvinok-Pataki bound

There might be spurious local minima [Waldspurger, Waters].

Above Barvinok-Pataki bound

Assume $\binom{p+1}{2} > m$.

• BM should work [Burer-Monteiro, Journée et al.]

Assume the feasible set is smooth.

• For generic C, no spurious local minima [Boumal-Voroninski-Bandeira]

Below Barvinok-Pataki bound

There might be spurious local minima [Waldspurger, Waters].

Above Barvinok-Pataki bound

Assume $\binom{p+1}{2} > m$.

• BM should work [Burer-Monteiro, Journée et al.]

Assume the feasible set is smooth.

• For generic C, no spurious local minima [Boumal-Voroninski-Bandeira]

Assume compactness and $\binom{p+1}{2} > \frac{9}{2}m\log(\sigma^{-1})$ for some $\sigma > 0$.

 Randomly perturb C (magnitude σ). No spurious approximate local minima w.h.p. [Pumir-Jelassi-Boumal]

Below Barvinok-Pataki bound

There might be spurious local minima [Waldspurger, Waters].

Above Barvinok-Pataki bound

Assume $\binom{p+1}{2} > m$.

• BM should work [Burer-Monteiro, Journée et al.]

Assume the feasible set is smooth.

- For generic *C*, no spurious local minima [Boumal-Voroninski-Bandeira] Assume compactness and $\binom{p+1}{2} > \frac{9}{2}m\log(\sigma^{-1})$ for some $\sigma > 0$.
 - Randomly perturb C (magnitude σ). No spurious approximate local minima w.h.p. [Pumir-Jelassi-Boumal]

No polynomial time guarantees known! *Obstacle:* How to find a local minimum that is exactly feasible?

Our results

Assumptions:

- $\binom{p+1}{2} > (1+\eta)m$ for a fixed $\eta > 0$.
- Constraint set is smooth and compact.
- Solve BM using local method with 2nd order guarantees.

Theorem (Polytime optimality)

Randomly perturb C (magnitude σ). Given an initial approx feasible point, then BM computes a point that is approx feasible & approx optimal w.h.p. in poly (n, σ^{-1}) iterations.

Smoothed analysis [Spielman-Teng '01]

- Some practical algorithms are slow in a few instances.
- Example: Simplex is very efficient in practice, but it takes exponential time in the worst case.

Smoothed analysis [Spielman-Teng '01]

- Some practical algorithms are slow in a few instances.
- Example: Simplex is very efficient in practice, but it takes exponential time in the worst case.
- Smoothed complexity: Take a random perturbation (magnitude σ) of a worst-case input.
- Example: Simplex takes $poly(n, \sigma^{-1})$ time.

Smoothed analysis [Spielman-Teng '01]

- Some practical algorithms are slow in a few instances.
- Example: Simplex is very efficient in practice, but it takes exponential time in the worst case.
- Smoothed complexity: Take a random perturbation (magnitude σ) of a worst-case input.
- Example: Simplex takes $poly(n, \sigma^{-1})$ time.

Theorem (Polytime optimality)

Randomly perturb C (magnitude σ). Given an initial approx feasible point, then BM computes a point that is approx feasible & approx optimal w.h.p. in poly (n, σ^{-1}) iterations.

BM for SDP feasibility

Goal:

find X s.t. $A_i \bullet X \approx b_i$ for $i \in [m]$, $X \succeq 0$

BM for SDP feasibility

Goal:

find X s.t.
$$A_i \bullet X \approx b_i$$
 for $i \in [m]$, $X \succeq 0$

Consider the least squares problem:

$$(SDP_{ls}) \qquad \min_{X \in \mathbb{S}^n} \sum_i (A_i \bullet X - b_i)^2 \quad \text{s.t.} \quad X \succeq 0$$

The associated Burer-Monteiro problem is

$$(\mathsf{BM}_{ls}) \qquad \qquad \min_{Y \in \mathbb{S}^n} \quad \sum_i (A_i \bullet YY^T - b_i)^2$$

Previous work on BM_{Is} relies on RIP [Bhojanapalli-Neyshabur-Srebro].

Our results

Assumptions:

- $\binom{p+1}{2} > (1+\eta)m$ for a fixed $\eta > 0$
- Constraint set is smooth and compact
- Solve BM using local method with 2nd order guarantees.

Theorem (Polytime optimality)

Randomly perturb C (magnitude σ). Given an initial approx feasible point, then BM computes a point that is approx feasible & approx optimal w.h.p. in poly (n, σ^{-1}) iterations.

Theorem (Polytime feasibility)

Randomly perturb A_1, \ldots, A_m (magnitude σ). Then BM_{ls} computes an approx feasible point w.h.p. in poly (n, σ^{-1}) iterations.

Optimality/Criticality conditions

(SDP) min
$$C \bullet X$$
 s.t. $A_i \bullet X = b_i$ for $i \in [m], X \succeq 0$
Lemma

Assuming strong duality, X is optimal for SDP iff there exists λ such that

$$A_i \bullet X = b_i, \quad X \succeq 0, \quad S(\lambda)X = 0, \quad S(\lambda) \succeq 0,$$

where $S(\lambda) := C - \sum_i \lambda_i A_i$.

11 / 20

Optimality/Criticality conditions

(SDP) min
$$C \bullet X$$
 s.t. $A_i \bullet X = b_i$ for $i \in [m], X \succeq 0$
Lemma

Assuming strong duality, X is optimal for SDP iff there exists λ such that

$$A_i ullet X = b_i, \quad X \succeq 0, \quad S(\lambda)X = 0, \quad S(\lambda) \succeq 0,$$

where $S(\lambda) := C - \sum_i \lambda_i A_i$.

(BM) min
$$C \bullet YY^T$$
 s.t $A_i \bullet YY^T = b_i$ for $i \in [m]$

Y is a 2-critical point of BM iff there exists λ such that

$$A_i \bullet YY^T = b_i, \quad S(\lambda)Y = 0, \quad S(\lambda) \bullet UU^T \ge 0 \quad \forall U : A_i \bullet UY^T = 0$$

A critical point Y of BM is spurious if YY^T is not optimal for SDP.

Spurious critical points

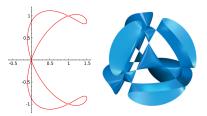
A critical point Y of BM is spurious if YY^T is not optimal for SDP. Theorem (Boumal-Voroninski-Bandeira) Spurious critical points may only exist if

 $C \in \mathcal{M} + \mathcal{L} \subset \mathbb{S}^n$

where
$$\mathcal{M} = \{S: \mathsf{rank}S \leq n\!-\!p\}$$
 and $\mathcal{L} = \mathsf{span}\{A_1, \dots, A_m\}$

• Assume that
$$\binom{p+1}{2} > m$$
.

- M + L is an algebraic variety of codimension (^{p+1}₂) − m.
- Generically, no spurious points.



Approximate optimality/criticality

(SDP) X is δ -optimal if there exists λ such that

$$\|A_i \bullet X - b_i\| \leq \delta, \qquad \|S(\lambda)X\| \leq \delta, \qquad X \succeq 0, \qquad S(\lambda) \succeq -\delta I_n.$$

(BM) Y is ϵ -critical for BM if there exists λ such that

$$\begin{aligned} \|A_i \bullet YY^{T} - b_i\| &\leq \epsilon, \qquad \|S(\lambda)Y\| \leq \epsilon^2, \\ S(\lambda) \bullet UU^{T} \geq -\epsilon \quad \forall U : \|U\| \leq 1, \ \|A_i \bullet UY^{T}\| \leq \epsilon. \end{aligned}$$

Theorem (C.-Moitra)

Assume domain is smooth and compact. Given an approx feasible point, local optimization can produce an approx critical point in $poly(\epsilon^{-1})$.

Spurious approximate critical points

An ϵ -critical point Y of BM is spurious if YY^T is not δ -optimal for SDP, with $\delta = O(\epsilon)$.

Spurious approximate critical points

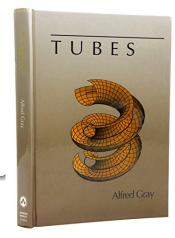
An ϵ -critical point Y of BM is spurious if YY^T is not δ -optimal for SDP, with $\delta = O(\epsilon)$.

Theorem (C.-Moitra)

Spurious ϵ -critical points may only exist if

 $C \in \mathsf{tube}_{\epsilon}(\mathcal{M} + \mathcal{L}) \subset \mathbb{S}^n$

where tube_{ϵ}(W) := {X : dist(X, W) $\leq \epsilon$ }



Volumes of tubes

Theorem (Weyl 1939)

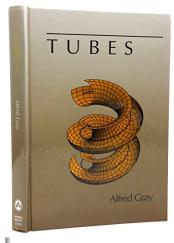
Let $V \subset \mathbb{R}^n$ manifold of codimension c. There are curvature constants $k_i(V)$ such that

$$\operatorname{Vol}[\operatorname{tube}_{\epsilon}(V)] = \sum_{i=c}^{n} k_i(V) \epsilon^i$$

Theorem (Lotz 2015)

Let $V \subset \mathbb{R}^n$ variety of codimension c defined by polynomials of degree D. Let x uniformly distributed on a ball of radius σ . Then

$$\Pr[x \in \mathsf{tube}_{\epsilon}(V)] \leq O(nD\epsilon/\sigma)^{c}$$



Polytime optimality

Theorem (C.-Moitra)

Assumptions: $\binom{p+1}{2} > (1+\eta)m$, constraint set smooth and compact, solve BM with local method with 2nd order guarantees.

Randomly perturb C (magnitude σ). Given an approx feasible point, BM computes an approx optimal solution w.h.p. in poly (n, σ^{-1}) iterations.

Polytime optimality

Theorem (C.-Moitra)

Assumptions: $\binom{p+1}{2} > (1+\eta)m$, constraint set smooth and compact, solve BM with local method with 2nd order guarantees.

Randomly perturb C (magnitude σ). Given an approx feasible point, BM computes an approx optimal solution w.h.p. in poly (n, σ^{-1}) iterations.

Proof.

Method converges to an ϵ -critical point in poly (ϵ^{-1}) . Using tubes,

$$\mathsf{Pr}[\mathsf{spurious}] \ \le \ \mathsf{Pr}[\mathcal{C} \in \mathsf{tube}_{\epsilon}(\mathcal{M} + \mathcal{L})] \ \le \ \epsilon^{\binom{p+1}{2} - m} \cdot O\left(n^3/\sigma\right)^{\binom{p+1}{2}}$$

For $\binom{p+1}{2} > (1+\eta)m$ and $\epsilon = O(\sigma/n^3)^{1+1/\eta}$ the probability is tiny.

Polytime feasibility

$$(\mathsf{BM}_{ls}) \qquad \qquad \min_{Y \in \mathbb{S}^n} \quad \sum_i (A_i \bullet YY^T - b_i)^2$$

Theorem (C.-Moitra)

Spurious ϵ -critical points may only exist if

 $\mathsf{tube}_{\epsilon}(\mathcal{M}) \cap \mathcal{L}$ nontrivial

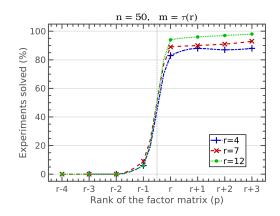
Theorem (C.-Moitra)

Assumptions: $\binom{p+1}{2} > (1+\eta)m$, constraint set smooth and compact, solve BM_{ls} with local method with 2nd order guarantees.

Randomly perturb A_1, \ldots, A_m (magnitude σ). Then BM_{ls} computes an approximately feasible solution w.h.p. in poly (n, σ^{-1}) iterations.

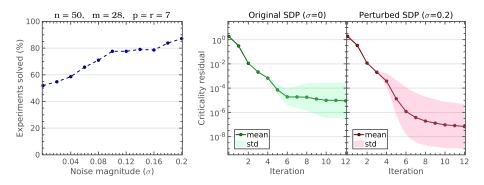
Experiments

- Generate planted matrix of rank r.
- Generate SDP for which planted marix is optimal.
- Solve BM using augmented Lagrangians.



Experiments

- Fix an SDP instance for which BM behaves badly.
- Perturb the problem with small noise.
- Solve BM using augmented Lagrangians.



- We proved the first polynomial time guarantees for the Burer-Monteiro method.
- Guarantees work arbitrarily close to the Barvinok-Pataki bound.
- Proof relies on geometric ideas (varieties, tubes).

- We proved the first polynomial time guarantees for the Burer-Monteiro method.
- Guarantees work arbitrarily close to the Barvinok-Pataki bound.
- Proof relies on geometric ideas (varieties, tubes).

References:

- D. Cifuentes, A. Moitra, *Polynomial time guarantees for the Burer-Monteiro method*, arXiv:1912.01745.
- D. Cifuentes On the Burer-Monteiro method for general semidefinite programs, arXiv:1904.07147.

Thanks for your attention

