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Semidefinite programming
A semidefinite program is

(SDP)

min
X∈Sn

C • X

s.t. Ai • X = bi for i ∈ [m]
X � 0

where C ,A1, . . . ,Am∈Sn, b∈Rm.

This is a convex problem.
Polynomial time solvable with interior point methods
(Nesterov-Nemirovski’87).
Many different applications.

Goal: Show that SDPs can be solved in polynomial time with a more
recent class of methods. The proof is remarkably geometric.
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SDP applications

Max-Cut

Phase Retrieval

Matrix completion

Rotation synchronization

Clustering
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Solving large scale SDPs

Interior point methods intractable for large SDPs (too much memory)

Practical methods
Low rank factorization (Burer, Monteiro)
Frank-Wolfe / CGM (Hazan, Jaggi, Freund, Grigas, Mazumder)
Sketching (Yurtsever, Ding, Udell, Tropp, Cevher)
Bundle (Helmberg, Rendl, Oustry)
Subgradients (Nesterov, Yurtsever, Tran Dinh, Cevher)

The Burer-Monteiro method is one of the most widely used in practice.
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Burer-Monteiro method

(SDP) min
X∈Sn

C • X s.t. Ai • X = bi for i ∈ [m], X � 0

Assume the optimal solution has rank ≤ p, and factorize

X = YY T where Y ∈ Rn×p

Use local optimization to solve the nonconvex problem

(BM) min
Y∈Sn

C • YY T s.t. Ai • YY T = bi for i ∈ [m]

How large should we choose p?

Theorem (Barvinok-Pataki bound)

BM is equivalent to SDP when
(p+1

2
)
≥ m. So we need p &

√
2m.
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Known global guarantees on BM

Below Barvinok-Pataki bound
There might be spurious local minima [Waldspurger, Waters].

Above Barvinok-Pataki bound
Assume

(p+1
2
)
> m.

BM should work [Burer-Monteiro, Journée et al.]
Assume the feasible set is smooth.

For generic C , no spurious local minima [Boumal-Voroninski-Bandeira]
Assume compactness and

(p+1
2
)
> 9

2m log(σ−1) for some σ > 0.
Randomly perturb C (magnitude σ). No spurious approximate local
minima w.h.p. [Pumir-Jelassi-Boumal]

No polynomial time guarantees known!
Obstacle: How to find a local minimum that is exactly feasible?
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Our results

Assumptions:(p+1
2
)
> (1+η)m for a fixed η > 0.

Constraint set is smooth and compact.
Solve BM using local method with 2nd order guarantees.

Theorem (Polytime optimality)
Randomly perturb C (magnitude σ). Given an initial approx feasible point,
then BM computes a point that is approx feasible & approx optimal w.h.p.
in poly(n, σ−1) iterations.
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Smoothed analysis [Spielman-Teng ’01]

Some practical algorithms are slow in a few instances.
Example: Simplex is very efficient in practice, but it takes exponential
time in the worst case.

Smoothed complexity: Take a random perturbation (magnitude σ) of
a worst-case input.
Example: Simplex takes poly(n, σ−1) time.

Theorem (Polytime optimality)
Randomly perturb C (magnitude σ). Given an initial approx feasible point,
then BM computes a point that is approx feasible & approx optimal w.h.p.
in poly(n, σ−1) iterations.
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BM for SDP feasibility

Goal:

find X s.t. Ai • X ≈ bi for i ∈ [m], X � 0

Consider the least squares problem:

(SDPls) min
X∈Sn

∑
i

(Ai • X − bi )2 s.t. X � 0

The associated Burer-Monteiro problem is

(BMls) min
Y∈Sn

∑
i

(Ai • YY T − bi )2

Previous work on BMls relies on RIP [Bhojanapalli-Neyshabur-Srebro].
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Our results

Assumptions:(p+1
2
)
> (1+η)m for a fixed η > 0

Constraint set is smooth and compact
Solve BM using local method with 2nd order guarantees.

Theorem (Polytime optimality)
Randomly perturb C (magnitude σ). Given an initial approx feasible point,
then BM computes a point that is approx feasible & approx optimal w.h.p.
in poly(n, σ−1) iterations.

Theorem (Polytime feasibility)
Randomly perturb A1, . . . ,Am (magnitude σ). Then BMls computes an
approx feasible point w.h.p. in poly(n, σ−1) iterations.
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Optimality/Criticality conditions

(SDP) min C • X s.t. Ai • X = bi for i ∈ [m], X � 0
Lemma
Assuming strong duality, X is optimal for SDP iff there exists λ such that

Ai • X = bi , X � 0, S(λ)X = 0, S(λ) � 0,

where S(λ) := C −
∑

i λi Ai .

(BM) min C • YY T s.t Ai • YY T = bi for i ∈ [m]
Lemma
Y is a 2-critical point of BM iff there exists λ such that

Ai • YY T = bi , S(λ)Y = 0, S(λ) • UUT ≥ 0 ∀U : Ai • UY T = 0

A critical point Y of BM is spurious if YY T is not optimal for SDP.
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Spurious critical points

A critical point Y of BM is spurious if YY T is not optimal for SDP.

Theorem (Boumal-Voroninski-Bandeira)
Spurious critical points may only exist if

C ∈ M+ L ⊂ Sn

where M = {S : rankS ≤ n−p} and L = span{A1, . . . ,Am}

Assume that
(p+1

2
)
> m.

M+ L is an algebraic variety of
codimension

(p+1
2
)
−m.

Generically, no spurious points.

Cifuentes (MIT) Burer-Monteiro method in polynomial time vsOPT’20 12 / 20



Approximate optimality/criticality

(SDP) X is δ-optimal if there exists λ such that

‖Ai • X − bi‖ ≤ δ, ‖S(λ)X‖ ≤ δ, X � 0, S(λ) � −δIn.

(BM) Y is ε-critical for BM if there exists λ such that

‖Ai • YY T − bi‖ ≤ ε, ‖S(λ)Y ‖ ≤ ε2,
S(λ) • UUT ≥ −ε ∀U : ‖U‖ ≤ 1, ‖Ai •UY T‖ ≤ ε.

Theorem (C.-Moitra)
Assume domain is smooth and compact. Given an approx feasible point,
local optimization can produce an approx critical point in poly(ε−1).
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Spurious approximate critical points

An ε-critical point Y of BM is spurious if YY T is not δ-optimal for SDP,
with δ=O(ε).

Theorem (C.-Moitra)
Spurious ε-critical points may only exist if

C ∈ tubeε(M+ L) ⊂ Sn

where tubeε(W) := {X : dist(X ,W) ≤ ε}
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Volumes of tubes

Theorem (Weyl 1939)
Let V ⊂ Rn manifold of codimension c. There
are curvature constants ki (V ) such that

Vol[tubeε(V )] =
n∑

i=c
ki (V ) εi

Theorem (Lotz 2015)
Let V ⊂ Rn variety of codimension c defined by
polynomials of degree D. Let x uniformly
distributed on a ball of radius σ. Then

Pr[x ∈ tubeε(V )] ≤ O(nDε/σ)c
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Polytime optimality

Theorem (C.-Moitra)

Assumptions:
(p+1

2
)
> (1+η)m, constraint set smooth and compact, solve

BM with local method with 2nd order guarantees.
Randomly perturb C (magnitude σ). Given an approx feasible point, BM
computes an approx optimal solution w.h.p. in poly(n, σ−1) iterations.

Proof.
Method converges to an ε-critical point in poly(ε−1). Using tubes,

Pr[spurious] ≤ Pr[C ∈ tubeε(M+L)] ≤ ε(
p+1

2 )−m · O
(

n3/σ
)(p+1

2 )

For
(p+1

2
)
>(1+η)m and ε=O(σ/n3)1+1/η the probability is tiny.
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Polytime feasibility

(BMls) min
Y∈Sn

∑
i

(Ai • YY T − bi )2

Theorem (C.-Moitra)
Spurious ε-critical points may only exist if

tubeε(M) ∩ L nontrivial

Theorem (C.-Moitra)

Assumptions:
(p+1

2
)
> (1+η)m, constraint set smooth and compact, solve

BMls with local method with 2nd order guarantees.
Randomly perturb A1, . . . ,Am (magnitude σ). Then BMls computes an
approximately feasible solution w.h.p. in poly(n, σ−1) iterations.
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Experiments

Generate planted matrix of rank r .
Generate SDP for which planted marix is optimal.
Solve BM using augmented Lagrangians.
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Experiments

Fix an SDP instance for which BM behaves badly.
Perturb the problem with small noise.
Solve BM using augmented Lagrangians.
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Summary

We proved the first polynomial time guarantees for the
Burer-Monteiro method.
Guarantees work arbitrarily close to the Barvinok-Pataki bound.
Proof relies on geometric ideas (varieties, tubes).

References:
D. Cifuentes, A. Moitra, Polynomial time guarantees for the Burer-Monteiro method,
arXiv:1912.01745.
D. Cifuentes On the Burer-Monteiro method for general semidefinite programs,
arXiv:1904.07147.
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Thanks for your attention
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