
Sum-of-Squares and
Spectral Algorithms

Tselil Schramm
June 23, 2017

Workshop on SoS @ STOC 2017

SoS Semidefinite Programs

Spectral algorithms as a tool for
analyzing SoS.

Spectral Algorithms

SoS Semidefinite Programs

SoS suggests a new family of
spectral algorithms!

Structured Instances
Average-Case &

Spectral Algorithms

Average Case SoS/Spectral Algorithms

• Tensor Decomposition/Dictionary Learning

• Planted Sparse Vector

• Tensor Completion

• Refuting Random CSPs

• Tensor Principal Components Analysis

[Barak-Kelner-Steurer’14, Ge-Ma’15, Ma-Shi-Steurer’16]

[Barak-Brandão-Harrow-Kelner-Steurer-Zhou’12, Barak-Kelner-Steurer’14]

[Barak-Moitra’16, Potechin-Steurer’17]

[Allen-O’Donnell-Witmer’15, Raghavendra-Rao-S’17]

[Hopkins-Shi-Steurer’15,Bhattiprolu-Guruswami-Lee’16, Raghavendra-Rao-S’17]

Average Case SoS/Spectral Algorithms

• Tensor Decomposition/Dictionary Learning

• Planted Sparse Vector

• Tensor Completion

• Refuting Random CSPs

• Tensor Principal Components Analysis

[Barak-Kelner-Steurer’14, Ge-Ma’15, Ma-Shi-Steurer’16]

[Barak-Brandão-Harrow-Kelner-Steurer-Zhou’12, Barak-Kelner-Steurer’14]

[Barak-Moitra’16, Potechin-Steurer’17]

[Allen-O’Donnell-Witmer’15, Raghavendra-Rao-S’17]

[Hopkins-Shi-Steurer’15,Bhattiprolu-Guruswami-Lee’16, Raghavendra-Rao-S’17]

Tensor Principle Components Analysis (TPCA)

𝑛 × 𝑛 × 𝑛

𝑇 =

Want ``max tensor singular value/vector’’:

𝜎∗ = max
𝑥∈𝕊𝑛−1

𝑇, 𝑥⊗3 and 𝑥∗ = argmax
𝑥∈𝕊𝑛−1

𝑇, 𝑥⊗3

NP-hard in worst case.

This notation…

𝑘

⋯

⋯
⋮

⋮⋱𝐵 = ℓ

⋯

⋯
⋮ ⋮⋱

⋯

⋯
⋮ ⋮⋱

⋯

⋯
⋮ ⋮⋱

⋯

⋯
⋮ ⋮⋱

⋯

⋯
⋮ ⋮⋱

⋯

⋯
⋮ ⋮⋱

⋯

⋯

⋮
⋮𝐴⊗𝐵 =

𝐴1,1

𝐴2,1

𝐴𝑛,1

𝐴1,𝑚

𝐴𝑛,𝑚

𝐴1,2

𝑚𝑘

𝑛ℓ

𝑚

⋯

⋯

⋮
⋮⋱𝐴 = 𝑛

𝑥 = 𝑛

1

𝑥⊗3 = 𝑛3

1

𝑥𝑖𝑥𝑗𝑥𝑘

Kronecker/tensor product:

Definition

e.g. tensor power of 𝑥:

Tensor Principle Components Analysis (TPCA)

𝑛 × 𝑛 × 𝑛

𝑇 =

Want ``max tensor singular value/vector’’:

𝜎∗ = max
𝑥∈𝕊𝑛−1

𝑇, 𝑥⊗3 and 𝑥∗ = argmax
𝑥∈𝕊𝑛−1

𝑇, 𝑥⊗3

NP-hard in worst case.

𝑥

𝑥

𝑥

𝑇

“Spiked” tensor model for TPCA

𝑇 =

entries ∼ 𝒩(0,1)

𝐺+
𝑣

𝑣

𝑣
𝜆 ⋅

𝑇 =

𝑛 × 𝑛 × 𝑛

𝑇 =

[Montanari-Richard’14]

entries ∼ 𝒩(0,1)

𝐺

signal noise

noiseSearch: find 𝑣 in planted case

Distinguishing: planted or random case?

Refutation: certify upper bound on max
𝑥

𝑇, 𝑥⊗3 in random case

planted

random

The Plan

Refutation: certify upper bound on max
𝑥

𝑇, 𝑥⊗3 in random case

𝑇 =

entries ∼ 𝒩(0,1)

𝐺

noise

random

1. SoS suggests a family of spectral algorithms

2. Naïve spectral algorithm

3. Improving with SoS spectral algorithms

𝑇 =

entries ∼ 𝒩(0,1)

𝐺+
𝑣

𝑣

𝑣
𝜆 ⋅

signal noise

planted
Search: find 𝑣 in planted case

4. Use SoS analysis to get fast algorithms

෩𝔼 1 = 1

෩𝔼: 𝑝 𝑥 → ℝ

Degree- SoS

෩𝔼 𝑎 ⋅ 𝑝 𝑥 + 𝑏 ⋅ 𝑞(𝑥) = 𝑎 ⋅ ෩𝔼 𝑝 𝑥 + 𝑏 ⋅ ෩𝔼 𝑞 𝑥

deg 𝑝 ≤ 𝐷

𝑛 variables

෩𝔼 𝑞 𝑥 2 ≥ 0 deg 𝑞 ≤
𝐷

2

Linearity:

Fixed Scalars:

Solve for

Non-negative squares: + problem-specific constraints, e.g.

෩𝔼 𝑥 2 = 1

SoS suggests spectral algorithms

Rearrange entries along “monomial symmetries”

Apply degree-𝐷 SoS polynomial inequalities

Cauchy-Schwarz,
Jensen’s Inequality (for squares), …

Use problem-specific constraints (e.g. 𝑥𝑖
2 = 1)

If we want to bound 𝑓 𝑥 … associate some matrix with 𝑓 and then

SoS captures spectral algorithms

𝑓(𝑥) = 𝐹, 𝑥⊗2𝑑

e.g.

symmetric
matrix representation

of 𝑓(𝑥)

෩𝔼 𝑓 𝑥 ≤ 𝜆max(𝑓)

Theorem

𝜆max 𝑓 = argmin 𝜆max 𝐹

𝑓 𝑥 = 𝐹, 𝑥⊗2𝑑

𝐹 symmetric

Definition

SoS captures spectral algorithms

෩𝔼 𝑓(𝑥) = ෩𝔼 𝐹, 𝑥⊗2𝑑

symmetric
matrix representation

of 𝑓(𝑥)

= ∑𝜎𝑖𝑢𝑖𝑢𝑖
⊤

≥ 0

𝜆 ⋅ 𝐼𝑑 − 𝐹 , 𝑥⊗2𝑑 = ∑ 𝜎𝑖 ⋅ 𝑢𝑖 , 𝑥
⊗𝑑 2

0 ≼ 𝜆 ⋅ 𝐼𝑑 − 𝐹

𝜆 = 𝜆max 𝐹

sum of degree-𝑑 squares

෩𝔼 ෩𝔼 ≥ 0

if 2𝑑 ≤ 𝐷

෩𝔼 𝑓 𝑥 ≤ 𝜆max(𝑓)

Theorem

Proof

SoS captures spectral algorithms

෩𝔼 𝑓 𝑥 ≤ 𝜆max(𝑓)

Theorem

Proof

if 2𝑑 ≤ 𝐷 ≤ ෩𝔼 𝐹, 𝑥⊗2𝑑 + ෩𝔼 𝜆 ⋅ 𝐼𝑑 − 𝐹, 𝑥⊗2𝑑

= ෩𝔼 𝜆 ⋅ 𝐼𝑑, 𝑥⊗2𝑑By linearity

= 𝜆 ⋅ ෩𝔼 𝑥 2𝑑

squares on diagonal

sum of degree-𝑑 squares෩𝔼 𝑓(𝑥) = ෩𝔼 𝐹, 𝑥⊗2𝑑

What kind of spectral algorithms?

Choose best matrix representation 𝐹 by:

Rearranging entries along “symmetries” of 𝑥⊗𝑑

Applying degree-𝐷 SoS polynomial inequalities

Cauchy-Schwarz,
Jensen’s Inequality (for squares), …

Problem-specific constraints (e.g. 𝑥𝑖
2 = 1)

What kind of spectral algorithms?

Rearranging entries along “symmetries” of 𝑥⊗𝑑

Applying degree-𝐷 SoS polynomial inequalities

Cauchy-Schwarz,
Jensen’s Inequality (for squares), …

Problem-specific constraints (e.g. 𝑥𝑖
2 = 1)

Choose best matrix representation 𝐹 by:

SoS suggests several spectral algorithms

matrix representation
of 𝑓(𝑥)

≤ 𝜆 ⋅ ෩𝔼 𝑥 2𝑑

choice of may affect !

SoS suggests several spectral algorithms

𝑓 𝑥 = 𝔼𝑔∼𝒩(0,𝐼𝑑) 𝑥, 𝑔 4 = 3

unit vector

∼ 𝒩(0,1)

There exist 𝑓(𝑥) with representations 𝐹1 , 𝐹2 such that

𝑓 𝑥 = 𝐹1 , 𝑥
⊗𝑑 = 𝐹2 , 𝑥

⊗𝑑 but 𝜆 𝐹1 ≫ 𝜆(𝐹2).

Claim

SoS suggests several spectral algorithms

𝑖 = 𝑗 = 𝑘 = ℓ
𝑖, 𝑗, 𝑘, ℓ two distinct pairs

any index with odd multiplicity

There exist 𝑓(𝑥) with representations 𝐹1 , 𝐹2 such that

𝑓 𝑥 = 𝐹1 , 𝑥
⊗𝑑 = 𝐹2 , 𝑥

⊗𝑑 but 𝜆 𝐹1 ≫ 𝜆(𝐹2).

Claim

𝑓 𝑥 = 𝔼𝑔∼𝒩(0,𝐼𝑑) 𝑥, 𝑔 4

unit vector

∼ 𝒩(0,1)

= 𝔼 𝑔⊗4 , 𝑥⊗4

SoS suggests several spectral algorithms

𝔼 𝑔⊗ 𝑔 𝑔⊗𝑔 ⊤ =

𝑗𝑗

𝑖𝑖

𝑖𝑗

𝑖𝑗𝑖𝑖

𝑗𝑗

𝑗𝑖

𝑗𝑖

1

1

3

3
⋱

1

1

1 1

⋱0

0

⋱

𝑛

𝑛

eigenvalue is 𝑛 ≫ 3

There exist 𝑓(𝑥) with representations 𝐹1 , 𝐹2 such that

𝑓 𝑥 = 𝐹1 , 𝑥
⊗𝑑 = 𝐹2 , 𝑥

⊗𝑑 but 𝜆 𝐹1 ≫ 𝜆(𝐹2).

Claim

𝑓 𝑥 = 𝔼𝑔∼𝒩(0,𝐼𝑑) 𝑥, 𝑔 4

unit vector

∼ 𝒩(0,1)
= 𝔼 𝑔⊗4 , 𝑥⊗4

Rearranging entries along “symmetries” of

𝑗𝑗

𝑖𝑖

𝑖𝑗

𝑖𝑗𝑖𝑖

𝑗𝑗

𝑗𝑖

𝑗𝑖

1

1

3

3
⋱

1

1

1 1

⋱0

0

⋱

𝑛

𝑛

𝑖𝑗

𝑖𝑗𝑖𝑖

𝑗𝑗

+1

-1

+

+(𝑥𝑖
2𝑥𝑗

2 − 𝑥𝑖
2𝑥𝑗

2)

There exist 𝑓(𝑥) with representations 𝐹1 , 𝐹2 such that

𝑓 𝑥 = 𝐹1 , 𝑥
⊗𝑑 = 𝐹2 , 𝑥

⊗𝑑 but 𝜆 𝐹1 ≫ 𝜆(𝐹2).

Claim

𝑓 𝑥 = 𝔼𝑔∼𝒩(0,𝐼𝑑) 𝑥, 𝑔 4

unit vector

∼ 𝒩(0,1)
= 𝔼 𝑔⊗4 , 𝑥⊗4

Rearranging entries along “symmetries” of

𝑗𝑗

𝑖𝑖

𝑖𝑗

𝑖𝑗𝑖𝑖

𝑗𝑗

𝑗𝑖

𝑗𝑖

1

2

3

3
⋱

1

0

1 1

⋱0

0

⋱

𝑛

𝑛

There exist 𝑓(𝑥) with representations 𝐹1 , 𝐹2 such that

𝑓 𝑥 = 𝐹1 , 𝑥
⊗𝑑 = 𝐹2 , 𝑥

⊗𝑑 but 𝜆 𝐹1 ≫ 𝜆(𝐹2).

Claim

𝑓 𝑥 = 𝔼𝑔∼𝒩(0,𝐼𝑑) 𝑥, 𝑔 4

unit vector

∼ 𝒩(0,1)
= 𝔼 𝑔⊗4 , 𝑥⊗4

Rearranging entries along “symmetries” of

𝑗𝑗

𝑖𝑖

𝑖𝑗

𝑖𝑗𝑖𝑖

𝑗𝑗

𝑗𝑖

𝑗𝑖

1

2

3

3
⋱

1

0

1 1

⋱0

0

⋱

𝑛

𝑛

There exist 𝑓(𝑥) with representations 𝐹1 , 𝐹2 such that

𝑓 𝑥 = 𝐹1 , 𝑥
⊗𝑑 = 𝐹2 , 𝑥

⊗𝑑 but 𝜆 𝐹1 ≫ 𝜆(𝐹2).

Claim

𝑓 𝑥 = 𝔼𝑔∼𝒩(0,𝐼𝑑) 𝑥, 𝑔 4

unit vector

∼ 𝒩(0,1)
= 𝔼 𝑔⊗4 , 𝑥⊗4

Rearranging entries along “symmetries” of

𝑗𝑗

𝑖𝑖

𝑖𝑗

𝑖𝑗𝑖𝑖

𝑗𝑗

𝑗𝑖

𝑗𝑖

0

2

3

3
⋱

1

0

1 2

⋱0

0

⋱

𝑛

𝑛

There exist 𝑓(𝑥) with representations 𝐹1 , 𝐹2 such that

𝑓 𝑥 = 𝐹1 , 𝑥
⊗𝑑 = 𝐹2 , 𝑥

⊗𝑑 but 𝜆 𝐹1 ≫ 𝜆(𝐹2).

Claim

𝑓 𝑥 = 𝔼𝑔∼𝒩(0,𝐼𝑑) 𝑥, 𝑔 4

unit vector

∼ 𝒩(0,1)
= 𝔼 𝑔⊗4 , 𝑥⊗4

Rearranging entries along “symmetries” of

𝑗𝑗

𝑖𝑖

𝑖𝑗

𝑖𝑗𝑖𝑖

𝑗𝑗

𝑗𝑖

𝑗𝑖

0

3

3

3
⋱

0

0

0 3

⋱0

0

⋱

𝑛

𝑛

= 3 ⋅ 𝐼𝑑

eigenvalues are 3!

There exist 𝑓(𝑥) with representations 𝐹1 , 𝐹2 such that

𝑓 𝑥 = 𝐹1 , 𝑥
⊗𝑑 = 𝐹2 , 𝑥

⊗𝑑 but 𝜆 𝐹1 ≫ 𝜆(𝐹2).

Claim

𝑓 𝑥 = 𝔼𝑔∼𝒩(0,𝐼𝑑) 𝑥, 𝑔 4

unit vector

∼ 𝒩(0,1)
= 𝔼 𝑔⊗4 , 𝑥⊗4

Rearranging entries along “symmetries” of

𝑓 𝑥 = 𝔼 𝑔⊗4 , 𝑥⊗4 = 3 ⋅ 𝐼𝑑, 𝑥⊗4 = 3

There exist 𝑓(𝑥) with representations 𝐹1 , 𝐹2 such that

𝑓 𝑥 = 𝐹1 , 𝑥
⊗𝑑 = 𝐹2 , 𝑥

⊗𝑑 but 𝜆 𝐹1 ≫ 𝜆(𝐹2).

Claim

𝑓 𝑥 = 𝔼𝑔∼𝒩(0,𝐼𝑑) 𝑥, 𝑔 4

unit vector

∼ 𝒩(0,1)
= 𝔼 𝑔⊗4 , 𝑥⊗4

What kind of spectral algorithms?

Choose best matrix representation by:

Rearranging entries along “symmetries” of 𝑥⊗𝑑

Applying degree-𝐷 SoS polynomial inequalities

Cauchy-Schwarz,
Jensen’s Inequality (for squares), …

Tensor Norm Refutation

max
𝑥∈𝕊𝑛

𝐺, 𝑥⊗3 ≤ 𝑂 𝑛 with high probability over 𝐺

random case, noise only

Gordon’s Theorem → 𝜎max(𝐺) ≈ 𝑛

𝑛𝐺

𝑛2
𝐺, 𝑥⊗3 ≤ 𝜎max (𝐹𝐺)

“Simple” spectral algorithm can only certify 𝑂 𝑛 .

Claim

Proof:

Representations all the
same because 𝐺 is

symmetric with iid entries

SoS Cauchy-Schwarz

if

Claim

Proof:

degree ≤ 𝐷 square

Cauchy-Schwarz for Tensor PCA Refutation

෩𝔼 𝐺, 𝑥⊗3 ≤ 𝑛3/4
unit vector

noise ∼ 𝒩(0,1)

Theorem

Cauchy-Schwarz

𝐺, 𝑥⊗3

Proof:

𝑛

𝑛

𝑛

𝑖𝐺𝑖

Cauchy-Schwarz for Tensor PCA Refutation

෩𝔼 𝐺, 𝑥⊗3 ≤ 𝑛3/4
unit vector

noise ∼ 𝒩(0,1)

Theorem

Cauchy-Schwarz

𝐺, 𝑥⊗3

Proof:

eigenvalues are ≈ 𝑛3/2

SoS analysis → spectral algorithm
for refutation!

What kind of spectral algorithms?

Choose best matrix representation by:

Rearranging entries along “symmetries” of 𝑥⊗𝑑

Applying degree-𝐷 SoS polynomial inequalities

Cauchy-Schwarz,
Jensen’s Inequality (for squares), …

Better Approx (in more time)

But actually, max
𝑥∈𝕊𝑛

𝐺, 𝑥⊗3 ≤ 𝑂 𝑛 .

෩𝔼 𝐺, 𝑥⊗3 ≤ 𝑛3/4
unit vector

noise ∼ 𝒩(0,1)

Theorem

unit vector

noise ∼ 𝒩(0,1)

Theorem

(in time 𝑛𝐷)

Information-theoretically, can certify ≤ 𝑂 𝑛 in time 2𝑛 (epsilon net).

Better Approx (in more time)

෩𝔼 𝐺, 𝑥⊗3 ≤ 𝑛3/4
unit vector

noise ∼ 𝒩(0,1)

Theorem

unit vector

noise ∼ 𝒩(0,1)

Theorem

(in time 𝑛𝐷)

log 𝐷

log 𝑛

approximation factor →

1

0

Tensor PCA Refutation

𝑛 ൗ1 4

poly(𝑛)

𝜀 ↔ 𝐷 = 𝑛𝜖
SoS and spectral algorithms

1

2𝑛

SoS lower bounds
[Hopkins-Kothari-

Potechin-Raghavendra-
S-Steurer’17]

Jensen’s Inequality

For 𝑑 a power of 2, 𝐷 ≥ 𝑑 ⋅ deg(𝑓)

෩𝔼 𝑓 𝑥 𝑑 2 ≤ ෩𝔼 𝑓 𝑥 2𝑑

Proof by induction on 𝑑…

apply inductive hypothesis

Jensen’s Inequality

For 𝑑 a power of 2, 𝐷 ≥ 𝑑 ⋅ deg(𝑓)

We can take advantage of increased symmetry
in higher-degree polynomials
(more matrix representations)

Better Approximation

Jensen’s inequality for 𝑑 some power of 2

unit vector

noise∼ 𝒩(0,1)

Theorem

(in time 𝑛𝐷)

Proof:

Better Approximation

Jensen’s inequality for 𝑑 some power of 2

unit vector

noise∼ 𝒩(0,1)

Theorem

(in time 𝑛𝐷)

Proof:

Symmetrize to improve eigenvalue

𝑆

𝜋(𝑆)

𝑛2𝑑

𝑛2𝑑

ordered multiset
of 2𝑑 variables

ෑ

𝑖∈𝑆

𝑥𝑖 = ෑ

𝑗∈𝜋(𝑆)

𝑥𝑗

Taking the average of row 𝑆 and 𝜋(𝑆) fixes the polynomial

entries degree-2𝑑
polynomials in Gijk ∼

𝒩(0,1)

Symmetrizing to improve eigenvalue

𝑆

𝜋(𝑆)

𝑛2𝑑

𝑛2𝑑

Taking the average of row 𝑆 and 𝜋(𝑆) fixes the polynomial

entries degree-2𝑑
polynomials in Gijk ∼

𝒩(0,1)

𝑀𝑎𝑏𝑐𝑑,𝑖𝑗𝑘ℓ
(2)

≔
1

4!
(∑𝐺𝑖⊗𝐺𝑖)𝑎𝑏𝑖𝑗(∑𝐺𝑖⊗𝐺𝑖)𝑐𝑑𝑘ℓ+(∑𝐺𝑖⊗𝐺𝑖)𝑎𝑐𝑖𝑗(∑𝐺𝑖⊗𝐺𝑖)𝑏𝑑𝑘ℓ+⋯

Heuristic spectral norm calculation

each entry is average of ~𝑑! “i.i.d.
uniform” randomly signed variables

⟹
(∑𝐺𝑖 ⊗ 𝐺𝑖)

⊗𝑑 = 𝑛3/2
𝑑

avg. entry
magnitude

m →≈
𝑚

𝑑!

⟹

Spectral norm?

𝜋 𝐼

𝐼

Improving Tensor PCA noise parameter

Jensen’s inequality for 𝑑 some power of 2 (if 𝐷 ≥ 4𝑑)

= ෩𝔼 𝑥⊗4𝑑, 𝑀(𝑑) 1/2𝑑
≤ 𝑀 𝑑 1/2𝑑

Average over symmetries of 𝑥⊗2𝑑 to reduce matrix representation eigenvalues

w.h.p.

unit vector

noise∼ 𝒩(0,1)

Theorem

What kind of spectral algorithms?

Choose best matrix representation by:

Rearranging entries along “symmetries” of 𝑥⊗𝑑

Applying degree-𝐷 SoS polynomial inequalities

Cauchy-Schwarz,
Jensen’s Inequality (for squares), …

Other SoS (via Spectral) Algorithms

• Tensor Decomposition: symmetry, Cauchy-Schwarz, constant-𝑑 Jensen’s

• Dictionary Learning: symmetry + tensor decomposition

• Planted Sparse Vector: symmetry

• Tensor Completion: symmetry, Cauchy-Schwarz

• Refuting Random CSPs: symmetry, Cauchy-Schwarz, Jensen’s, (𝑥𝑖
2 = 1) constraints

• Polynomial Maximization over 𝕊𝑛: symmetry, Cauchy-Schwarz, Jensen’s, worst case

[Barak-Kelner-Steurer’14, Ge-Ma’15, Ma-Shi-Steurer’16]

[Barak-Brandão-Harrow-Kelner-Steurer-Zhou’12, Barak-Kelner-Steurer’14]

[Barak-Moitra’16, Potechin-Steurer’17]

[Allen-O’Donnell-Witmer’15, Raghavendra-Rao-S’17]

[Bhattiprolu-Ghosh-Guruswami-E.Lee-Tulsiani’16]

Fast spectral algorithms from SoS Analyses
[Hopkins-S-Shi-Steurer’16]

SoS Gives Spectral Search Algorithm
𝑛

𝑛

𝑛

𝑖𝑇𝑖

= ∑𝐺𝑖 ⊗𝐺𝑖 + cross-terms + ∑𝜆2𝑣𝑖
2 ⋅ 𝑣𝑣⊤ ⊗ 𝑣𝑣⊤= ∑𝐺𝑖 ⊗𝐺𝑖 + cross-terms + 𝜆2 ⋅ 𝑣𝑣⊤ ⊗ 𝑣𝑣⊤

𝑇𝑖 = 𝐺𝑖 + 𝜆𝑣𝑖 ⋅ 𝑣𝑣
⊤

eigenvalue ≤ 𝑛3/2 eigenvalue = 𝜆2

∑𝑣𝑖
2 = 1

𝑇 = 𝐺 + 𝜆 ⋅ 𝑣⊗3

𝑇𝑖 ⊗ 𝑇𝑖

𝑛2

𝑛2

Running in ….

sum of 𝑛 matrices of
size 𝑛2 × 𝑛2 time = 𝑛5 + 𝑛4log 𝑛

build
matrix

compute top
eigenvalue

practical spectral algorithm?

𝑛

𝑛

𝑛

𝑖𝑇𝑖

𝑇 = 𝐺 + 𝜆 ⋅ 𝑣⊗3

Can compress to get an
𝑂 𝑛3 -time algorithm.

Theorem

𝑇𝑖 ⊗ 𝑇𝑖

𝑛2

𝑛2

“Compressing” the matrix

∑𝑇𝑖 ⊗ 𝑇𝑖 = ∑𝐺𝑖 ⊗𝐺𝑖 + crossterms + 𝜆2 ⋅ 𝑣𝑣⊤ ⊗𝑣𝑣⊤

How to reduce dimension but preserve signal-to-noise ratio?

Tr𝑝𝑎𝑟 𝜆2𝑣𝑣⊤ ⊗ 𝑣𝑣⊤

Tr𝑝𝑎𝑟 ∑𝐺𝑖 ⊗𝐺𝑖 = ∑Tr 𝐺𝑖 ⋅ 𝐺𝑖
≈ ±𝑛1/2

eigenvalue ≤ 𝑛3/2 eigenvalue = 𝜆2

Partial Trace: Tr𝑝𝑎𝑟 𝐴⊗𝐵 = Tr 𝐴 ⋅ 𝐵

𝐴,𝐵 are 𝑛 × 𝑛 matrices
𝐴𝑖,𝑖 ⋅ 𝐵

eigenvalues ≈ ±𝑛1/2

→ eigs 𝑛3/2

= 𝜆2 𝑣 2 ⋅ 𝑣𝑣⊤ = 𝜆2 ⋅ 𝑣𝑣⊤
signal-to-noise

ratio preserved!

There is an 𝑂 𝑛3 -time algorithm.

Theorem

“Compressing” the matrix

How to reduce dimension but preserve signal-to-noise ratio?

Partial Trace: Tr𝑝𝑎𝑟 𝐴⊗𝐵 = Tr 𝐴 ⋅ 𝐵

𝐴,𝐵 are 𝑛 × 𝑛 matrices
𝐴𝑖,𝑖 ⋅ 𝐵

Tr𝑝𝑎𝑟 ∑𝑇𝑖 ⊗𝑇𝑖 = ∑Tr 𝑇𝑖 ⋅ 𝑇𝑖
computing all Tr(𝑇𝑖) : 𝑛2 time

each of the 𝑛2 entries is sum of 𝑛 numbers: 𝑛3 time

computing top eigenvector/eigenvalue of 𝑛 × 𝑛 matrix: 𝑛2 log 𝑛 time

runtime?

linear in input!

There is an 𝑂 𝑛3 -time algorithm.

Theorem

∑𝑇𝑖 ⊗ 𝑇𝑖 = ∑𝐺𝑖 ⊗𝐺𝑖 + crossterms + 𝜆2 ⋅ 𝑣𝑣⊤ ⊗𝑣𝑣⊤

eigenvalue ≤ 𝑛3/2 eigenvalue = 𝜆2

Fast Spectral Algorithms via SoS

• Tensor PCA

• Tensor decomposition

• Planted Sparse Vector

• Tensor Completion

[Hopkins-S-Shi-Steurer’16, S-Steurer’17]

[Montanari-Sun’17]

Secret Sauce: apply partial trace to SoS matrix (in a way that enables fast power iteration)

[Hopkins-S-Shi-Steurer’16]

[Hopkins-S-Shi-Steurer’16]

Sum-of-Squares Algorithms

Structured Instances
Average-Case &

Spectral Algorithms

SoS perspective gives new spectral algorithms

Spectral techniques let us analyze SoS

Worst-case problems?

