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Spectral algorithms as a tool for
analyzing Sos.

SoS Semidefinite Programs Spectral Algorithms
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SoS suggests a new family of
spectral algorithms!

SoS Semidefinite Programs Spectral Algorithms

1T

Average-Case &
Structured Instances



Average Case SoS/Spectral Algorithms
* Tensor Decomposition/Dictionary Learning
* Planted Sparse Vector

* Tensor Completion

e Refuting Random CSPs

* Tensor Principal Components Analysis



Average Case SoS/Spectral Algorithms

* Tensor Decomposition/Dictionary Learning
[Barak-Kelner-Steurer’14, Ge-Ma’15, Ma-Shi-Steurer’16]

* Planted Spa rse Vector [Barak-Brand3o-Harrow-Kelner-Steurer-Zhou’12, Barak-Kelner-Steurer’14]

e Tensor Completion [Barak-Moitra’16, Potechin-Steurer’17]

e Refuting Random CSPs [Allen-0'Donnell-witmer’15, Raghavendra-Rao-5'17]

* Tensor Principal Components Analysis
[Hopkins-Shi-Steurer’15,Bhattiprolu-Guruswami-Lee’16, Raghavendra-Rao-5'17]



Tensor Principle Components Analysis (TPCA)

nxnxn

Want ““max tensor singular value/vector’”:

X

c* = max (T,x®3) and x* = argmax(T,x®3)
XES; 1 XES,_1

NP-hard in worst case.



This @ notation...

Definition
4 Kronecker/tensor product: )
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Tensor Principle Components Analysis (TPCA)

nxnxn

Want “max tensor singular value/vector’’: ~ NP-hard in worst case.

c* = max (T,x®3) and x* = argmax(T,x®3)
XESn—1 \ xegy
' A==

(T )




“Spiked” tensor model for TPCA wennarisicharaia,

planted

/ signal noise \
T = )y T=1- |

nxnxn K entries ~ NV (0,1) /

random
4 N

h 4
A

Search: find v in planted case noise

Distinguishing: planted or random case?

T =

I

K entries ~ N'(0,1) /

Refutation: certify upper bound on maX(T,x®3) in random case
X




The Plan

Refutation: certify upper bound on max(T, x®3) in random case
X

1. SoS suggests a family of spectral algorithms
2. Naive spectral algorithm

3. Improving with SoS spectral algorithms

random

~

noise

\U |

entries ~ N(O,l)/

planted

Search: find v in planted case a

4. Use SoS analysis to get fast algorithms

~

noise

entries ~ N(O,ly




Degree-D SoS

deg(p) <D
~
Solve for H p(x) - R
n\/ariables

Linearity:
Ela-p(x) +b-q(x)] = a-E[p(x)] +b - E[q(x)]

Fixed Scalars:

~

E[1] = 1 ) )
Non-negative squares: + problem-specific constraints, e.g.
E[q(x)?] = 0 s <5 Ef[llx)2] = 1

- /




SoS suggests spectral algorithms

If we want to bound f(x)... associate some matrix with f and then
Rearrange entries along “monomial symmetries”

Apply degree-D SoS polynomial inequalities

Cauchy-Schwarz,
Jensen’s Inequality (for squares), ...

Use problem-specific constraints (e.g. xl2 = 1)



SoS captures spectral algorithms

Theorem

E[f ()] < Amax(f)

Definition symmetric
matrix representation
g - ) of f(x)
Amax(f) = argmin {24 (F) } |
F symmetric . 2d
flx) = (F,x®24) f(x) T <F1x® )
N J

2 1 g

2
X% XX
e.g. x12+4x1x2+x§=<1 2],[ ! 12”
XXy X



SoS captures spectral algorithms

Theorem
E[f ()] < Amax(f)
symmetric
Pr?jf - matrix ;ip;z?;e)?ntation
E[f ()] = E[(F,x®?2%)]
/1 T Amax(F) =0

J /T
0<A-Id —F = )0iu;y;

if2d <D
E(A-1d —F,x®%4) = E ¥(Jo; - (ui,x‘g’d))2 > ()

sum of degree-d squares




SoS captures spectral algorithms

Theorem
E[f(X)] < Amax(f)
Proof
E[f (x)] p— IE (F’ x®2d>: sum of degree-d squares

r2a<0 < E[(F,x®28)| + E[(1-Id — F,x®2%)]
By linearity — E[(A . Id,X®2d>] squares on diagonal
= A - E[llx[1?] [ ]



What kind of spectral algorithms?

Choose best matrix representation F by:

Rearranging entries along “symmetries” of x®4

Applying degree-D SoS polynomial inequalities
Cauchy-Schwarz,

Jensen’s Inequality (for squares), ...

Problem-specific constraints (e.g. xl2 = 1)



What kind of spectral algorithms?

Choose best matrix representation F by:

Rearranging entries along “symmetries” of x®4

Applying degree-D SoS polynomial inequalities

Cauchy-Schwarz,
Jensen’s Inequality (for squares), ...

Problem-specific constraints (e.g. xl2 = 1)



SoS suggests several spectral algorithms

matrix representation

of f(x)

E[f ()] = E[(F,x®2?)] < 2-E[|lx[|**]

choice of F may affect 1!



SoS suggests several spectral algorithms

Claim

There exist f(x) with representations F;, I, such that
fx) = (F,x®%) = (F,, x®%) but A(F,) >» A(F,).

fx) = *g~]\f(0,1d)[<x:g>4] =3




SoS suggests several spectral algorithms

Claim

There exist f (x) with representations F;, I, such that
fx) = (F,x®%) = (F,, x®%) but A(F,) >» A(F,).

f(X) — II3g~]\f(0,1d) [(X, g>4] — ( [E[g®4]1 X®4>

(3 i=j=k=1¢

E[(9 ® 9)(9 ® 9) " Nijre = E[9igjgige] = {1 Lk £ two distinct pairs
kO any index with odd multiplicity




SoS suggests several spectral algorithms

Claim unit vector

v
_ 4
There exist f (x) with representations F, I, such that f(x) = IEg'vJ\f(O,Id)[(x| ,9)"]

f(x) = (F,x®) = (F,, x®4) but A(F,) » A(F,). = (E[g®1], x®% OV
i jj: ij ji
ii 3 1
n DU 0
T j.1 3
E[®g)g®g)']l= " .
eigenvalueisn > 3 ij . 1 1

Ji




Rearranging entries along “symmetries” of x®4

Claim

_ 4
There exist f (x) with representations F;, I, such that flx) = Eg'vN(OJd)[(x' g)°]

fx) = (F,x®%) = (F,, x®%) but A(F,) >» A(F,). = ( E[g®*], x®%)

i jj ij Ji il ij

ii 3 1
0

j ot 3 ji| 1

.|.

ij | 1 1 ij +1

0 :

Ji



Rearranging entries along “symmetries” of x®4

Claim

_ 4
There exist f (x) with representations F, I, such that flx) = Eg'vN(OJd)[(x' g)°]

fx) = (F,x®%) = (F,, x®%) but A(F,) >» A(F,). = ( E[g®*], x®%)
i jj g ji
ii 3 1
.
ji 3
lj | 1
0 :

Ji



Rearranging entries along “symmetries” of x®4

Claim

_ 4
There exist f (x) with representations F, I, such that flx) = Eg'vN(OJd)[(x' g)°]

fx) = (F,x®%) = (F,, x®%) but A(F,) >» A(F,). = ( E[g®*], x®%)
i Jjj i Ji
4] 3
., 0
ji 3
lj | 1
0 :

Ji



Rearranging entries along “symmetries” of x®4

Claim

_ 4
There exist f (x) with representations F, I, such that flx) = Eg'vN(OJd)[(x' g)°]

fx) = (F,x®%) = (F,, x®%) but A(F,) >» A(F,). = ( E[g®*], x®%)
i Jjj i Ji
4] 3
., 0
ji 3
lj | 1
0 :

Ji



Rearranging entries along “symmetries” of x®4

Claim

_ 4
There exist f (x) with representations F, I, such that flx) = Eg'vN(OJd)[(x' g)°]

fx) = (F,x®%) = (F,, x®%) but A(F,) >» A(F,). = ( E[g®*], x®%)
i jj ij  Ji
ii 3 0
0
jj O 3
ij 3 0
0 eigenvalues are 3!

Ji



Rearranging entries along “symmetries” of x®4

Claim

_ 4
There exist f (x) with representations F, I, such that flx) = [Eg'vN(OJd)[(x'g) ]
fx) = (F,x®%) = (F,, x®%) but A(F,) >» A(F,). = ( E[g®*], x®%)

flx) = IE[g®4], x®%) = ( x®4) =



What kind of spectral algorithms?

Choose best matrix representation by:

M Rearranging entries along “symmetries” of x®4

Applying degree-D SoS polynomial inequalities

Cauchy-Schwarz,
Jensen’s Inequality (for squares), ...



Tensor Norm Refutation

random case, noise only

max (G, X®3> < 0(\/77) with high probability over G

XES,,

Claim

“Simple” spectral algorithm can only certify O(n).

Proof:

(G; x®3> < Omax (Fg)

G n

nZ

Gordon’s Theorem — 0, (G) = 1

Representations all the
same because G is
symmetric with iid entries



SoS Cauchy-Schwarz

Claim

- ~ 1/2 /1~ 1/2
E(F,g) < (Ellgll?) " (ENFI?) " itp = 2deg(f), 2deg(9).

Proof:

IS T U DU
E(f;mSEIE“f“ +§IE||9|| E(f;mSEIE”f” +§IE||9||

\ degree < D square /
1

0<=|If —gll?
=Zlf =4l



Cauchy-Schwarz for Tensor PCA Refutation

Theorem

E(G,x®3) < n3/4

Proof:

(G, x®3) = in - xTGx

l

< [|x]l

\

E(XTGix)z < |||l

l

N

Z(X®2)T(Gi ® G;)x®2



Cauchy-Schwarz for Tensor PCA Refutation

Theorem

E(G,x®3) < n3/4

SoS analysis — spectral‘algorithm
Proof: for refutation!

(G, x®3) = in - xTGx

l

< [lx| <ZGi®Gi;x®4
V1T

eigenvalues are = n3/2

< [lx||®




What kind of spectral algorithms?

Choose best matrix representation by:

M Rearranging entries along “symmetries” of x®4

Applying degree-D SoS polynomial inequalities

M Cauchy-Schwarz,
Jensen’s Inequality (for squares), ...



Better Approx (in more time)

Theorem
Theorem
unit'/vector unit¢vector n3/4
i 3 3/4 ™ 3
IE(Q,,X@) )Sn / E@x@) )S 0<D1/4) (in time nP)
noise ~ N (0,1) noise ~ N (0,1)

But actually, max (G,x®3) < 0(/n).
XEon

Information-theoretically, can certify < 0(+/n) in time 2™ (epsilon net).



Better Approx (in more time)

Theorem
Theorem
unit'/vector unit¢vector n3/4-
i 3 3/4 ™ 3
IE(Q,,X(X) )Sn / E@x@) )S 0, D1/4‘ (in time nP)
noise ~ N (0,1) noise ~ N (0,1)

on Tensor PCA Refutation

1 sg T T ¥ —
@ SoS and spectral algorithms

: [Hopkins-Kothari-
log D /{ SoS lower bounds Potechin-Raghavendra-
log n i S-Steurer’17]
0 - poly(n)

1
approximation factor — n /4



Jensen’s Inequality

Ford apower of 2,D > d - deg(f)

E[f ()] < (E[f (x)4])

1/d

Proof by induction on d...

0 < E(F(0)¢ - Elf (04])°
E[f (x)?]? < E[f (x)?9]

1/2
f(X) ([E f(x)Zd ) apply inductive hypothesis



Jensen’s Inequality

Ford apower of 2, D > d - deg(f)

E[f ()] < (E[f (x)4])

1/d

We can take advantage of increased symmetry
in higher-degree polynomials
(more matrix representations)



Theorem

) . N unit'Lvector n3/4
Better Approximation (G, x®%) < 0 (Dl /4) intime 1)

Proof:

E(G,x®3) =E zxi cxTGx < (fEf
i

1/2
X®4,Z Gi ® Gl>>
l

Jensen’s inequality for d some power of 2

d
<|E <x®4,z G, ® Gi>
[

1/2d



Theorem

) . N unit¢vector n3/4
Better Approximation (G, x9%) < 0 (Dl /4) intime 10
Proof:

1/2
X®4,Z Gi ® Gl>>
l

Jensen’s inequality for d some power of 2

E(G,x®3) =E zxi cxTGx < (fEf
i

1/2d




Symmetrize to improve eigenvalue

Taking the average of row S and m(S) fixes the polynomial
ordered multiset
of 2d variables A

N\,

®d S """"""""""""""""""""""""""""""""""
entries degree-2d
Z Gi ® Gi — polynomials in Gjjx ~ n2d Hxi = 1_[ Xj
i N(0,1) / i€S JEm(S)
(S) - -

A
v



Symmetrizing to improve eigenvalue

Taking the average of row S and m(S) fixes the polynomial

S___ ____________________________________________________
i ®d ] entries degree-2d
a) _ polynomials in Gi;j ~
Vs = AVen 6@ Gy N(0,1) ” "
R (S),T £ () MM -
< i’y >

M) e = ((ZG ® G apij(Z6: ® G)oaret(T6i ® 6)acij(X6; ® Gparet+ )

2d



Heuristic spectral norm calculation

Spectral norm?

-

M@ = Avg, [((ZGi X G i)®d)n]

\

g

J

\_ J
( | ~
d
dll| — 3/2

. ”(ZGL X Gi)® ” — (n 4 ) ) avg. entry
p = maghitude | — ”M(d)” <

each entry is average of ~d! “i.i.d. m— ~ %

uniform” randomly signed variables N /

I
(7;(1)

n34/2

da/?2




Improving Tensor PCA noise parameter

Theorem
unit vector 3/4-
1/2 ~ v n
_ _ E(G,x®3) <0
i
Jensen’s inequality for d some power of 2 (if D = 4d)

1/2d
Xd
< E X®4d,<2 Gl®Gl>
L

Average over symmetries of x ®24 1o reduce matrix representation eigenvalues

3
= (B(x®4, M@ < m@|[Y2 0 s




What kind of spectral algorithms?

Choose best matrix representation by:

M Rearranging entries along “symmetries” of x®4

Applying degree-D SoS polynomial inequalities

% Cauchy-Schwarz,
Jensen’s Inequality (for squares), ...



Other SoS (via Spectral) Algorithms

* Tensor Decomposition: symmetry, Cauchy-Schwarz, constant-d Jensen’s

* Dictionary Learning: symmetry + tensor decomposition
[Barak-Kelner-Steurer’14, Ge-Ma’15, Ma-Shi-Steurer’16]

* Planted Sparse Vector: symmetry

[Barak-Brand3ao-Harrow-Kelner-Steurer-Zhou’12, Barak-Kelner-Steurer’14]

* Tensor Completion: symmetry, Cauchy-Schwarz [Barak-Moitra’16, Potechin-Steurer’17]

e Refuting Random CSPs: symmetry, Cauchy-Schwarz, Jensen’s, (x> = 1) constraints
l
[Allen-O’Donnell-Witmer’15, Raghavendra-Rao-5'17]

¢ Polynomial Maximization over Sni symmetry, Cauchy-Schwarz, Jensen’s, worst case
[Bhattiprolu-Ghosh-Guruswami-E.Lee-Tulsiani’16]



Fast spectral algorithms from SoS Analyses



SoS Gives Spectral Search Algorithm LT =G+ 1 v®3 J

n

e
Ti T In
n
T, Q T; n?
z @ T, T, =G;+ Av; -vv'
1€|n]
) n2 - Zvlz =1
N\
=26, QG+ + I ufrTv@ 1@ vv T

. . _ 2
eigenvalue < n3/2 eigenvalue = A



Running in 0(n>).... £T=G+/1-v®3J

.,
Ti B In
n
2
T; ® T; n
LE[n] practical spectral algorithm?
< nz
Theorem
sum of n matrices of
sizen? x n2 ===  time =n> + n'logn Can compress to get an
4 \ 0(n3)-time algorithm.
build compute top

matrix eigenvalue



Theorem

”COm preSSiﬂg” the matrix There is an 0(n3)-time algorithm.

DI QT =X6; ®G; + +_/12 v’ @ UU.T

eigenvalue < n3/2 eigenvalue = 1?

How to reduce dimension but preserve signal-to-noise ratio?

A, B are n X n matrices

Al,l * B

]

Partial Trace: Tr,,.(A @ B) = Tr(A) - B

Trpar A2vvT @ vv') = 2%||v||% - v’ =® vu!T

Trpar (6 @ G;) = ZTF(Gi_) -G — eigs n3/?

1/2

signal-to-noise
ratio preserved!

~ 4n1/2 :
~ +nt/ eigenvalues ~ +n



Theorem

”COm preSSing” the matrix There is an 0(n3)-time algorithm.

YT, QT; =Y6; Q G; + +22 - vvT Quv'

eigenvalue < n3/2 eigenvalue = 1?

How to reduce dimension but preserve signal-to-noise ratio?

A, B are n X n matrices

Ai;-B

]

Partial Trace: Tr,,.(A @ B) = Tr(A) - B

Trpar QT ® T;) = XTr(T;) - T;

linear in input!
computing all Tr(T;) : n? time
runtime? each of the n? entries is sum of n number me

computing top eigenvector/eigenvalue of n X n matrix: n®log n time



Fast Spectral Algorithms via SoS

Secret Sauce: apply partial trace to SoS matrix (in a way that enables fast power iteration)
e Tensor PCA [Hopkins-S-Shi-Steurer’16]

e Tensor decomposition [Hopkins-S-Shi-Steurer’16, S-Steurer’17]

* Planted Sparse Vector [Hopkins-S-Shi-Steurer’16]

* Tensor Completion [vontanari-sun’17]



4 SoS perspective gives new spectral algorithms

Spectral techniques let us analyze SoS

Worst-case problems?

Spectral Algorithms

Average-Case &
Structured Instances

Sum-of-Squares Algorithms




